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Structure of minimising subgroups

Let α ∈ End(G) and V ∈ B(G). Define

V+ = {v ∈ V | ∃{vn}n≥0 ⊂ V with v0 = v and α(vn+1) = vn}
and V− = {v ∈ V | αn(v) ∈ V ∀n ≥ 0} .

Theorem
The subgroup V ∈ B(G) is minimising for α ∈ End(G) iff

TA(α) V = V+V−;
TB1(α) V++ :=

⋃
n≥0 α

n(V+) is closed; and

TB2(α)
{
[αn+1(V+) : α

n(V+)]
}

n≥0 is constant.

In this case, s(α) = [α(V+) : V+].

V is tidy above for α if it satisfies TA(α) and tidy below if it
satisfies TB1(α) and TB2(α).
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OUTLINE OF PROOF

1. Given V ∈ B(G), reduce to a subgroup U that satisfies
TA(α).
wU(α) ≤ wV (α), with equality iff V satisfies TA(α).

2. Given V ∈ B(G) satisfying TA(α), augment V to obtain a
subgroup U satisfying TB(α) as well.
wU(α) ≤ wV (α), with equality iff V satisfies TB(α).

3. Show that, if U and V are both tidy for α, then
wU(α) = wV (α).



Definition of the subgroup Lα,V

Definition
Let V be tidy above for α. Put

Lα,V = {v ∈ G | αn(v) ∈ V for almost every n ∈ Z}

and Lα,V = Lα,V .

Then Lα,V is a closed subgroup of G and the orbit {αn(v)}n∈Z
has compact closure for each v ∈ Lα,V .



Proof of compactness of Lα,V

For v ∈ Lα,V and not in V0 :=
⋂

k∈Z α
k (V ), write:

m(v) for the largest m such that αm(v) ∈ V+,
and M(v) for the smallest m such that αm(v) ∈ V−.
Define e(v) = M(v)−m(v)− 1 and e(v)= 0 if v ∈ V0.

Let v1, . . . , vr be representatives chosen from the V+-cosets in
(α(V+) \ V+) ∩Lα,V such that e(vj) is minimised. Note that
m(vj) = −1 and e(vj) = M(vj) for each vj .

Lemma
Let v ∈ Lα,V . Then

v = v0α
m1(vj1) . . . α

ml (vjl ), (1)

where v0 ∈ V0 and vji ∈ {v1, . . . , vr} for each i ∈ {1, . . . , l} and
m1 < m2 < · · · < ml .
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Lemma
Put M = max{M(vj) | j ∈ {1, . . . , r}}. Then

Lα,V ⊆ αM(V+)V−.

Proposition
Let α ∈ Aut(G) and V be a compact open subgroup of G that is
tidy above for α. Then Lα,V is compact.



Joining Lα,V to V

Proposition
Let α ∈ Aut(G) and V be tidy above for α. Then

V ′ :=
{

v ∈ V | vLα,V ⊆ Lα,V V
}

is an open subgroup of V . Then U := V ′Lα,V is a compact open
subgroup of G that satisfies TA(α) and TB(α). Furthermore,

wU(α) = [α(U) : α(U) ∩ U] ≤ [α(V ) : α(V ) ∩ V ] = wV (α)

with equality if and only if Lα,V ≤ V .



Tidiness below in examples

Examples

1. Let G = FZ, let α be the shift automorphism and
V =

{
g ∈ FZ | g(n) = 1 if |n| < 3

}
.

Then Lα,V =
{

g ∈ FZ | g has finite support
}

and
Lα,V = G = U.

2. Let G = (Fp((t)),+), let α be multiplication by t−1 and
V = Fp[[t ]]. Then Lα,V and Lα,V are trivial, and U = V .
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Examples

3. Let G = Aut(Tq), let α be the inner automorphism αg ,
where g is a translation with axis `, and V = Fix([a,g.a]),
where a is a vertices distance 4 from `.
Then Lα,V comprises all automorphisms fixing all but
finitely many of the vertices gn.a (and all vertices on `).
Furthermore U = Fix([c,d ]) where c and d are the
projections of a and g.a onto `.

4. Let G = SL(n,Qp), let α conjugation by
(

p 0
0 1

)
and V be

any subgroup tidy above for α. Then Lα,V = V0 and
V = U is tidy for α.



V is minimising if and only if tidy

Theorem
Let U and V be tidy for α. Then U ∩ V is tidy for α.

Lemma
Let U and V be tidy for α. Then

[α(U) : α(U) ∩ U] = [α(V ) : α(V ) ∩ V ].

Theorem
Let α ∈ Aut(G). Then the compact open subgroup V ≤ G is
minimising for α if and only if tidy for α.

Corollary
s(αn) = s(α)n for every n ≥ 0.



Stability of tidiness

Lemma
Let g ∈ G and V ∈ B(G) be tidy above for g. Then for every
v ∈ V there are s ∈ V− and t ∈ V+ such that

s−1(gv)−ks ∈ Vg−k and t−1(gv)k t ∈ Vgk for every k ≥ 0. (2)

Proposition
Let g ∈ G and V ∈ B(G) be tidy above for g. Then there is
w ∈ V such that, for every k ≥ 0,

w
(

g±kVg±g∓k
)

w−1 = (gv)±kV(gv)±(gv)∓k . (3)



Stability of tidiness 2

Theorem
Let g ∈ G and V ∈ B(G) be tidy for g. Then, for every v ∈ V,
V is tidy for gv and s(gv) = s(g).

Corollary
The scale function s : G→ Z+ is continuous.
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