Totally Disconnected L.C. Groups: Tidy subgroups and the scale

> George Willis The University of Newcastle

February $10^{th} - 14^{th}$ 2014

Lecture 1: The scale and minimising subgroups for an endomorphism

Lecture 2: Tidy subgroups and the scale The tidy below condition Index the same for all tidy subgroups Continuity of the scale function on *G*

Lecture 3: The contraction group and the nub

Lecture 4: Flat groups of automorphisms

Structure of minimising subgroups

Let
$$\alpha \in \text{End}(G)$$
 and $V \in \mathcal{B}(G)$. Define
 $V_+ = \{ v \in V \mid \exists \{v_n\}_{n \ge 0} \subset V \text{ with } v_0 = v \text{ and } \alpha(v_{n+1}) = v_n \}$
and $V_- = \{ v \in V \mid \alpha^n(v) \in V \forall n \ge 0 \}.$

Theorem

The subgroup $V \in \mathcal{B}(G)$ is minimising for $\alpha \in End(G)$ iff $TA(\alpha) \quad V = V_+V_-;$ $TB1(\alpha) \quad V_{++} := \bigcup_{n \ge 0} \alpha^n(V_+)$ is closed; and $TB2(\alpha) \quad \left\{ [\alpha^{n+1}(V_+) : \alpha^n(V_+)] \right\}_{n \ge 0}$ is constant. In this case, $s(\alpha) = [\alpha(V_+) : V_+].$

V is *tidy above* for α if it satisfies TA(α) and *tidy below* if it satisfies TB1(α) and TB2(α).

Structure of minimising subgroups 2

OUTLINE OF PROOF

- Given V ∈ B(G), reduce to a subgroup U that satisfies TA(α).
 w_U(α) ≤ w_V(α), with equality iff V satisfies TA(α).
- Given V ∈ B(G) satisfying TA(α), augment V to obtain a subgroup U satisfying TB(α) as well.
 w_U(α) ≤ w_V(α), with equality iff V satisfies TB(α).
- 3. Show that, if *U* and *V* are both tidy for α , then $w_U(\alpha) = w_V(\alpha)$.

Definition of the subgroup $L_{\alpha,V}$

Definition Let V be tidy above for α . Put

 $\mathscr{L}_{\alpha,V} = \{ v \in G \mid \alpha^n(v) \in V \text{ for almost every } n \in \mathbb{Z} \}$

and $L_{\alpha,V} = \overline{\mathscr{L}_{\alpha,V}}$.

Then $L_{\alpha,V}$ is a closed subgroup of *G* and the orbit $\{\alpha^n(v)\}_{n\in\mathbb{Z}}$ has compact closure for each $v \in \mathscr{L}_{\alpha,V}$.

Proof of compactness of $L_{\alpha,V}$

For $v \in \mathscr{L}_{\alpha,V}$ and not in $V_0 := \bigcap_{k \in \mathbb{Z}} \alpha^k(V)$, write: $\mathfrak{m}(v)$ for the largest *m* such that $\alpha^m(v) \in V_+$, and $\mathfrak{M}(v)$ for the smallest *m* such that $\alpha^m(v) \in V_-$. Define $\mathfrak{e}(v) = \mathfrak{M}(v) - \mathfrak{m}(v) - 1$ and $\mathfrak{e}(v) = 0$ if $v \in V_0$.

Let v_1, \ldots, v_r be representatives chosen from the V_+ -cosets in $(\alpha(V_+) \setminus V_+) \cap \mathscr{L}_{\alpha,V}$ such that $\mathfrak{e}(v_j)$ is minimised. Note that $\mathfrak{m}(v_j) = -1$ and $\mathfrak{e}(v_j) = \mathfrak{M}(v_j)$ for each v_j .

Lemma

Let $v \in \mathscr{L}_{\alpha,V}$. Then

$$\mathbf{v} = \mathbf{v}_0 \alpha^{m_1}(\mathbf{v}_{j_1}) \dots \alpha^{m_l}(\mathbf{v}_{j_l}), \tag{1}$$

where $v_0 \in V_0$ and $v_{j_i} \in \{v_1, ..., v_r\}$ for each $i \in \{1, ..., l\}$ and $m_1 < m_2 < \cdots < m_l$.

Proof of compactness of $L_{\alpha,V}$ 2

Lemma

$$Put \mathfrak{M} = \max{\mathfrak{M}(v_j) | j \in \{1, ..., r\}}.$$
 Then
 $\mathscr{L}_{\alpha, V} \subseteq \alpha^{\mathfrak{M}}(V_+)V_-.$

Proposition

Let $\alpha \in Aut(G)$ and V be a compact open subgroup of G that is tidy above for α . Then $L_{\alpha,V}$ is compact.

Joining $L_{\alpha,V}$ to V

Proposition

Let $\alpha \in Aut(G)$ and V be tidy above for α . Then

$$\mathcal{V}' := ig\{ \mathcal{V} \in \mathcal{V} \mid \mathcal{V} \mathcal{L}_{lpha, \mathcal{V}} \subseteq \mathcal{L}_{lpha, \mathcal{V}} \mathcal{V} ig\}$$

is an open subgroup of *V*. Then $U := V'L_{\alpha,V}$ is a compact open subgroup of *G* that satisfies TA(α) and TB(α). Furthermore,

$$w_U(\alpha) = [\alpha(U) : \alpha(U) \cap U] \le [\alpha(V) : \alpha(V) \cap V] = w_V(\alpha)$$

with equality if and only if $\mathscr{L}_{\alpha,V} \leq V$.

Tidiness below in examples

Examples

- 1. Let $G = F^{\mathbb{Z}}$, let α be the shift automorphism and $V = \{g \in F^{\mathbb{Z}} \mid g(n) = 1 \text{ if } |n| < 3\}.$ Then $\mathscr{L}_{\alpha,V} = \{g \in F^{\mathbb{Z}} \mid g \text{ has finite support}\}$ and $L_{\alpha,V} = G = U.$
- 2. Let $G = (\mathbb{F}_{\rho}((t)), +)$, let α be multiplication by t^{-1} and $V = \mathbb{F}_{\rho}[[t]]$. Then $\mathscr{L}_{\alpha,V}$ and $L_{\alpha,V}$ are trivial, and U = V.

Tidiness below in examples 2

Examples

- 3. Let $G = \operatorname{Aut}(T_q)$, let α be the inner automorphism α_g , where g is a translation with axis ℓ , and $V = \operatorname{Fix}([a, g.a])$, where a is a vertices distance 4 from ℓ . Then $\mathscr{L}_{\alpha,V}$ comprises all automorphisms fixing all but finitely many of the vertices $g^n.a$ (and all vertices on ℓ). Furthermore $U = \operatorname{Fix}([c, d])$ where c and d are the projections of a and g.a onto ℓ .
- 4. Let $G = SL(n, \mathbb{Q}_p)$, let α conjugation by $\begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}$ and V be any subgroup tidy above for α . Then $\mathscr{L}_{\alpha, V} = V_0$ and V = U is tidy for α .

V is minimising if and only if tidy

Theorem Let U and V be tidy for α . Then U \cap V is tidy for α .

Lemma Let U and V be tidy for α . Then

$$[\alpha(\boldsymbol{U}):\alpha(\boldsymbol{U})\cap\boldsymbol{U}]=[\alpha(\boldsymbol{V}):\alpha(\boldsymbol{V})\cap\boldsymbol{V}].$$

Theorem

Let $\alpha \in Aut(G)$. Then the compact open subgroup $V \leq G$ is minimising for α if and only if tidy for α .

Corollary $s(\alpha^n) = s(\alpha)^n$ for every $n \ge 0$.

Stability of tidiness

Lemma

Let $g \in G$ and $V \in \mathcal{B}(G)$ be tidy above for g. Then for every $v \in V$ there are $s \in V_{-}$ and $t \in V_{+}$ such that

$$s^{-1}(gv)^{-k}s \in Vg^{-k}$$
 and $t^{-1}(gv)^kt \in Vg^k$ for every $k \ge 0$. (2)

Proposition

Let $g \in G$ and $V \in \mathcal{B}(G)$ be tidy above for g. Then there is $w \in V$ such that, for every $k \ge 0$,

$$w\left(g^{\pm k}V_{g\pm}g^{\mp k}\right)w^{-1} = (gv)^{\pm k}V_{(gv)\pm}(gv)^{\mp k}.$$
 (3)

Stability of tidiness 2

Theorem

Let $g \in G$ and $V \in \mathcal{B}(G)$ be tidy for g. Then, for every $v \in V$, V is tidy for gv and s(gv) = s(g).

Corollary

The scale function $s : G \to \mathbb{Z}^+$ is continuous.

References

- 1. G. Willis, 'The structure of totally disconnected, locally compact groups', *Math. Annalen*, **300** (1994), 341–363.
- G. Willis, 'Further properties of the scale function on totally disconnected groups', J. Algebra, 237 (2001), 142–164.

