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Classical Linear Model

Consider a classical linear model with observed response
variable yi and covariates xi = (xi1, · · · , xipn )′ as follows,

yi = x′iβn + εi , 1 ≤ i ≤ n,

where βn = (β1, · · · , βpn )′ is a pn-dimensional vector of the
unknown parameters, and εi ’s are independent and identically
distributed with center 0 and variance σ2.
Subscript n in pn indicates that the number of coefficients may
increase with the sample size n.
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Model Selection & Estimation Problem

Candidate Full Model Estimation

A Great Deal of Redundancy in the Candidate Full Model

Too Many Nuisance Regression Parameters

Candidate Full Model is Sparse

Candidate Subspace
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Model Selection & Estimation Problem

We want to estimate β when it is plausible that β lie in the
subspace

Hβ = h

Human Eye: Uncertain Prior Information (UPI)
Machine Eye: Auxiliary Information (AE)

UPI or AI : Hβ = h

In many applications it is assumed that model is sparse, i.e.
β = (β′1,β

′
2)′, β2 = 0.

S. Ejaz Ahmed Big Data Analysis



Model Selection & Estimation Problem

We want to estimate β when it is plausible that β lie in the
subspace

Hβ = h

Human Eye: Uncertain Prior Information (UPI)
Machine Eye: Auxiliary Information (AE)

UPI or AI : Hβ = h

In many applications it is assumed that model is sparse, i.e.
β = (β′1,β

′
2)′, β2 = 0.

S. Ejaz Ahmed Big Data Analysis



Model Selection & Estimation Problem

We want to estimate β when it is plausible that β lie in the
subspace

Hβ = h

Human Eye: Uncertain Prior Information (UPI)
Machine Eye: Auxiliary Information (AE)

UPI or AI : Hβ = h

In many applications it is assumed that model is sparse, i.e.
β = (β′1,β

′
2)′, β2 = 0.

S. Ejaz Ahmed Big Data Analysis



Model Selection & Estimation Problem

We want to estimate β when it is plausible that β lie in the
subspace

Hβ = h

Human Eye: Uncertain Prior Information (UPI)
Machine Eye: Auxiliary Information (AE)

UPI or AI : Hβ = h

In many applications it is assumed that model is sparse, i.e.
β = (β′1,β

′
2)′, β2 = 0.

S. Ejaz Ahmed Big Data Analysis



Model Selection & Estimation Problem

We want to estimate β when it is plausible that β lie in the
subspace

Hβ = h

Human Eye: Uncertain Prior Information (UPI)
Machine Eye: Auxiliary Information (AE)

UPI or AI : Hβ = h

In many applications it is assumed that model is sparse, i.e.
β = (β′1,β

′
2)′, β2 = 0.

S. Ejaz Ahmed Big Data Analysis



Classical Estimation Problem

Candidate Full Model Estimation

Maximum Likelihood
Least Square
Ridge regression Or any other

Candidate Submodel Estimation

β̂SM = β̂FM − (X′X)−1H′(H(X′X)−1H′)−1(Hβ̂FM − h).

An interesting application of the restriction is that β can be
partitioned as β = (β′1,β

′
2)′, if model is sparse, then β2 = 0

Sparsity is the Name of the Game?
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Classical Model Selection

Preliminary Testing

H0 : Hβ = h Ha : Hβ 6= h

Test Statistics

Tn =
(Hβ̂FM − h)′(HC−1H′)−1(Hβ̂FM − h)

s2
e

, (1)

where

s2
e =

(Y− Xβ̂FM)′(Y− Xβ̂FM)

n − p
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Estimation Strategies

Pretest Estimation Strategy

The pretest estimator (PTE) of β based on β̂FM and β̂SM is
defined as

β̂PT = β̂FM − (β̂FM − β̂SM)I(Tn ≤ χ2
p2,α

), p2 ≥ 1,

I(A) is an indicator function of a set A and χ2
p2,α

is the α-level

critical value of the distribution of Tn under H0.
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Estimation Strategies

Shrinkage Estimation Strategy

β̂S = β̂SM +
(

1− (p2 − 2)T−1
n

)
(β̂FM − β̂SM), p2 ≥ 3,

Possible over-shrinking problem is defined as

β̂S+ = β̂SM +
(

1− (p2 − 2)T−1
n

)+
(β̂FM − β̂SM),

where z+ = max(0, z).
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Executive Summary

Bancroft (1944) suggested two problems on preliminary
test strategy.

Data pooling problem based on a preliminary test. This
stream followed by a host of researchers.

Model selection problem in linear regression model based
on a preliminary test.

Stein (1956, 1961) developed highly efficient shrinkage
estimators in balanced designs. Most statisticians have
ignored these (perhaps due to lack of understanding)
Modern regularization estimation strategies based on
penalized least squares with penalties extend Stein’s
procedures powerfully.
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Big Data Analysis

Penalty Estimation Strategy

The penalty estimators are members of the penalized least
squares (PLS) family and they are obtained by optimizing a
quadratic function subject to a penalty.
PLS estimation provides a generalization of both
nonparametric least squares and weighted projection
estimators.
A popular version of the PLS is given by Tikhonov (1963)
regularization.
A generalized version of penalty estimator is the bridge
regression (Frank and Friedman,1993).
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Big Data Analysis

Penalty Estimation Strategy

For a given penalty function π(·) and regularization
parameter λ, the general form of the objective function can
be written as

φ(β) = (y − Xβ)T (y − Xβ) + λπ(β),

Penalty function is of the form

π(β) =

p∑
j=1

|βj |γ , γ > 0. (2)
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Big Data Analysis

Penalty Estimation Strategy

For γ = 2, we have ridge estimates which are obtained by
minimizing the penalized residual sum of squares

β̂ridge = arg min
β

∣∣∣∣∣∣∣∣y − p∑
j=1

X jβj

∣∣∣∣∣∣∣∣2 + λ

p∑
j=1

||βj ||2, (3)

λ is the tuning parameter which controls the amount of
shrinkage and || · || = || · ||2 is the L2 norm.

S. Ejaz Ahmed Big Data Analysis



Big Data Analysis

Penalty Estimation Strategy

For γ < 2, it shrinks the coefficient towards zero, and
depending on the value of λ, it sets some of the
coefficients to exactly zero.
The procedure combines variable selection and shrinking
of the coefficients of a penalized regression.
An important member of the penalized least squares family
is the L1 penalized least squares estimator, which is
obtained when γ = 1.
This is known as the Least Absolute Shrinkage and
Selection Operator (LASSO): Tibshirani(1996)
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Big Data Analysis

Penalty Estimation Strategy

LASSO is closely related to the ridge regression and its
solutions are similarly obtained by replacing the squared
penalty ||βj ||2 in the ridge solution (??) with the absolute
penalty ||βj ||1 in the LASSO–

β̂LASSO = arg min
β

∣∣∣∣∣∣∣∣y − p∑
j=1

X jβj

∣∣∣∣∣∣∣∣2 + λ

p∑
j=1

||βj ||1. (4)

Good Strategy if Model is Sparse
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Penalty Estimation

Algorithm, Algorithm, Algorithm

Efron et al. (2004, Annals of Statistics,32) proposed an
efficient algorithm called Least Angle Regression (LARS)
that produce the entire Lasso solution paths in only p
steps. In comparison, the classical Lasso require hundreds
or thousands of steps.
LARS, least angle regression provides a clever and very
efficient algorithm of computing the complete LASSO
sequence of solutions as s is varied from 0 to∞
Friedman, et al. (2007, 2008) and Wu and Lange
developed the coordinate descent (CD) algorithm for
penalized linear regression and penalized logistic
regression and was shown to gain computational
superiority.
For a review, we refer to Zhang et al. (2010)
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Penalty Estimation

Family Ever Growing!!

Adaptive LASSO

Elastic Net Penalty

Minimax Concave Penalty

SCAD
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Penalty Estimation

Extension and Comparison with non-penalty Estimators

Ahmed et al. (2008, 2009) penalty estimation for partially
linear models.

Fallahpour, Ahmed and Doksum (2010) partially linear
models with Random Coefficient autoregressive Errors.

Ahmed and Fallahpour (2012) for Quasi-likelihood models.

Ahmed et al. (2012) for Weibull censored regression
models.

A relative performance of penalty, shrinkage and pretest
estimators were showcased.
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Penalty Estimation

Extension and Comparison with non-penalty Estimators

S. E. Ahmed (2014). Penalty, Pretest and Shrinkage
Estimation: Variable Selection and Estimation. Springer.

S. E. Ahmed (Editor). Perspectives on Big Data Analysis:
Methodologies and Applications. To be published by
Contemporary Mathematics, a co-publication of American
Mathematical Society and CRM, 2014.
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Innate Difficulties: Can Signals be Septated from
Noise?

All penalty estimators may not provide an estimator with
both estimation consistency and variable selection
consistency simultaneously.
Adaptive LASSO, SCAD, and MCP are Oracle
(asymptoticaly).
Asymptotic properties are based on assumptions on both
true model and designed covariates.
Sparsity in the model (most coefficients are exactly 0), few
are not
Nonzero coefficients are big enough to to be separated
from zero ones.
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Innate Difficulties: Ultrahigh Dimensional Features

In genetic micro-array studies, n is measured in hundreds,
the number of features p per sample can exceed millions!!!
penalty estimators are not efficient when the dimension p
becomes extremely large compared with sample size n.
There are still challenging problems when p grows at a
non-polynomial rate with n.
Non-polynomial dimensionality poses substantial
computational challenges.
The developments in the arena of penalty estimation is still
infancy.
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Shrinkage Estimation for Big Data

The classical shrinkage estimation methods are limited to
fixed p.
The asymptotic results depend heavily on a maximum
likelihood full estimation with component-wise consistency
at rate of

√
n.

When pn > n, a component-wise consistent estimator of
βn is not available since βn is not identifiable.
Here βn is not identifiable in the sense that there always
exist two different estimations of βn, β(1)

n and β
(2)
n , such

that x′iβ
(1)
n = x′iβ

(2)
n for 1 ≤ i ≤ n.

S. Ejaz Ahmed Big Data Analysis



Shrinkage Estimation for Big Data

The classical shrinkage estimation methods are limited to
fixed p.
The asymptotic results depend heavily on a maximum
likelihood full estimation with component-wise consistency
at rate of

√
n.

When pn > n, a component-wise consistent estimator of
βn is not available since βn is not identifiable.
Here βn is not identifiable in the sense that there always
exist two different estimations of βn, β(1)

n and β
(2)
n , such

that x′iβ
(1)
n = x′iβ

(2)
n for 1 ≤ i ≤ n.

S. Ejaz Ahmed Big Data Analysis



Shrinkage Estimation for Big Data

The classical shrinkage estimation methods are limited to
fixed p.
The asymptotic results depend heavily on a maximum
likelihood full estimation with component-wise consistency
at rate of

√
n.

When pn > n, a component-wise consistent estimator of
βn is not available since βn is not identifiable.
Here βn is not identifiable in the sense that there always
exist two different estimations of βn, β(1)

n and β
(2)
n , such

that x′iβ
(1)
n = x′iβ

(2)
n for 1 ≤ i ≤ n.

S. Ejaz Ahmed Big Data Analysis



Shrinkage Estimation for Big Data

The classical shrinkage estimation methods are limited to
fixed p.
The asymptotic results depend heavily on a maximum
likelihood full estimation with component-wise consistency
at rate of

√
n.

When pn > n, a component-wise consistent estimator of
βn is not available since βn is not identifiable.
Here βn is not identifiable in the sense that there always
exist two different estimations of βn, β(1)

n and β
(2)
n , such

that x′iβ
(1)
n = x′iβ

(2)
n for 1 ≤ i ≤ n.

S. Ejaz Ahmed Big Data Analysis



Shrinkage Estimation for Big Data

The classical shrinkage estimation methods are limited to
fixed p.
The asymptotic results depend heavily on a maximum
likelihood full estimation with component-wise consistency
at rate of

√
n.

When pn > n, a component-wise consistent estimator of
βn is not available since βn is not identifiable.
Here βn is not identifiable in the sense that there always
exist two different estimations of βn, β(1)

n and β
(2)
n , such

that x′iβ
(1)
n = x′iβ

(2)
n for 1 ≤ i ≤ n.

S. Ejaz Ahmed Big Data Analysis



Shrinkage Estimation for Big Data

we write the pn−dimensional coefficients vector
βn = (β′1n,β

′
2n)′,, where β1n is the coefficient vector for

main covariates, β2n include all nuisance parameters.
Sub-vectors β1n, β2n, have dimensions p1n, p2n,
respectively, where p1n ≤ n and p1n + p2n = pn.
Let X1n and X2n be the sub-matrices of Xn corresponding
to β1n and β2n, respectively.
Let us assume true parameter vector

β0 = (β01, · · · , β0pn )′ = (β′10,β
′
20)′.
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Shrinkage Estimator for High Dimensional Data

Let S10 and S20 represent the corresponding index sets for
β10 and β20, respectively.
Specifically, S10 includes important predictors and S20
includes sparse and weak signals satisfying the following
assumption.

(A0) |β0j | = O(n−ς), for ∀j ∈ S20, where ς > 1/2 does not
change with n.
Condition (A0) is considered to be the sparsity of the
model. A simpler representation for the finite sample is that
β0j = 0 ∀j ∈ S20, that is, most coefficients are 0 exactly.
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Shrinkage Estimator for High Dimensional Data

A Class of Submodels

Predictors indexed by S10 are used to construct a
submodel.
However, other predictors, especially ones in S20 may also
make some contributions to the response and cannot be
ignored.

Consider
UPI or AI : (β′20)′ = 0p2n .
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A Candidate Submodel Estimator

We make the following assumptions on the random error and
design matrix of the true model:

(A1) The random error εi ’s are independent and identically
distributed with mean 0 and variance 0 < σ2 <∞. Further,
E(εmi ) <∞, for an even integer m not depending on n.

(A2) ρ1n > 0, for all n, the smallest eigenvalue of C12n

Under (A1-A2) and UPI/AE, the submodel estimator (SME) of
β1n is defined as

β̂SM
1n = (X′1nX1n)−1X′1ny.
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A Candidate Full Model Estimator

Weighted Ridge Estimation

We estimate an estimator of βn by minimizing a partial
penalized objective function,

β̂(rn) = argmin{‖y− X1nβ1n − X2nβ2n‖2 + rn‖β2n‖2}

where “‖ · ‖” is the `2 norm and rn > 0 is a tuning parameter.
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Weighted Ridge Estimation

Since pn >> n and under the sparsity assumption
Define

an = c1n−ω, 0 < ω ≤ 1/2, c1 > 0.

We define a weighted ridge estimator of βn is denoted as

β̂WR
n (rn,an) =

(
β̂WR

1n (rn)

β̂WR
2n (rn,an)

)
, where

β̂WR
1n (rn) = β̂1n(rn)

and for j /∈ S10,

β̂WR
j (rn,an) =

{
β̂j(rn,an), β̂j(rn,an) > an;
0, otherwise.
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Weighted Ridge Estimation

We call β̂(rn,an) as a weighted ridge estimator from two
aspects.
We use a weighted ridge instead of ridge penalty for the
HD shrinkage estimation strategy since we do not want to
generate some additional biases caused by an additional
penalty on β1n if we already have a candidate subset
model.
Here β̂WR

1n (rn) changes with rn and β̂WR
2n (rn,an) changes

with both rn and an.
For the notation’s convenience, we denote the weighted
ridge estimators as β̂WR

1n and β̂WR
2n .
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A Candidate HD Shrinkage Estimator

A HD shrinkage estimators (HD-SE) β̂S
1n is

β̂S
1n = β̂WR

1n − (h − 2)T−1
n (β̂WR

1n − β̂SM
1n ),

h > 2 is the number of nonzero elements in β̂WR
2n

Tn = (β̂WR
2 )′(X′2M1X2)β̂WR

2 /σ̂2, (5)

M1 = In − X1n(X′1nX1n)−1X′1n

σ̂2 is a consistent estimator of σ2.
For example, we can choose
σ̂2 =

∑n
i=1(yi − x′i β̂

SM)2/(n − 1) under UPI or AI.
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A Candidate HD Positive Shrinkage Estimator

A HD positive shrinkage estimator (HD-PSE),

β̂PSE
1n = β̂WR

1n − ((h − 2)T−1
n )1(β̂WR

1n − β̂SM
1n ),

where (a)1 = 1 and a for a > 1 and a ≤ 1, respectively.
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Consistency and Asymptotic Normality

Weighted Ridge Estimation

Let s2
n = σ2d′nΣ

−1
n dn for any p12n × 1 vector dn satisfying

‖dn‖ ≤ 1.

n1/2s−1
n d′n(β̂WR

12n − β120) = n−1/2s−1
n

n∑
i=1

εid′nΣ
−1
n zi + oP(1)

d−→N(0,1).
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Asymptotic Distributional Risk

Define

Σn11 = limn→∞ X′1nX1n/n, Σn22 = limn→∞ X′2nX2n/n,
Σn12 = limn→∞ X′1nX2n/n, Σn21 = limn→∞ X′2nX1n/n,
Σn22.1 = limn→∞ n−1X′2nX2n − X′2nX1n(X′1nX1n)−1X′1nX2n
Σn11.2 = limn→∞ n−1X′1nX1n − X′1nX2n(X′2nX2n)−1X′2nX1n
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Asymptotic Distributional Risk

Kn : β20 = n−1/2δ and β30 = 0p3n ,

δ = (δ1, δ2, · · · , δp2n )′ ∈ Rp2n , δj is fixed.

Define ∆n = δ′Σn22.1δ,

n1/2d′1ns−1
1n (β∗1n − β10) is asymptotically normal under

{Kn}, where s2
1n = σ2d′1nΣ

−1
n11.2d1n.

The asymptotic distributional risk (ADR) of d′1nβ
∗
1n is

ADR(d′1nβ
∗
1n) = lim

n→∞
E{[n1/2s−1

1n d′1n(β∗1n − β10)]2}.

S. Ejaz Ahmed Big Data Analysis



Asymptotic Distributional Risk Analysis

Mathematical Proof

Under regularity conditions and Kn, and suppose there exists
0 ≤ c ≤ 1 such that c = limn→∞ s−2

1n d′1nΣ
−1
n11d1n, we have

ADR(d′1nβ̂
WR
1n ) = 1, (6a)

ADR(d′1nβ̂
SM
1n ) = 1− (1− c)(1−∆d1n ), (6b)

ADR(d′1nβ̂
S
1n) = 1− E [g1(z2 + δ)], (6c)

ADR(d′1nβ̂
PSE
1n ) = 1− E [g2(z2 + δ)], (6d)

∆d1n =
d′1n(Σ−1

n11Σn12δδ
′Σn21Σ

−1
n11)d1n

d′1n(Σ−1
n11Σn12Σ

−1
n22.1Σn21Σ

−1
n11)d1n

.

s−1
2n d′2nz2 → N(0,1)

d2n = Σn21Σ
−1
n11d1n

s2
2n = d′2nΣ

−1
n22.1d2n
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Asymptotic Distributional Risk Analysis

Mathematical Proof

g1(x) = lim
n→∞

(1− c)
p2n − 2

x′Σn22.1x

[
2−

x′((p2n + 2)d2nd′2n)x
s2

2nx′Σn22.1x

]
,

g2(x) = limn→∞
p2n − 2

x′Σn22.1x

[
(1− c)

(
2−

x′((p2n + 2)d2nd′2n)x
s2

2nx′Σn22.1x

)]
I(x′Σn22.1x ≥ p2n − 2)

+ limn→∞[(2− s−2
2n x′δ2nδ

′
2nx)(1− c)]I(x′Σn22.1x ≤ p2n − 2),
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Moral of the Story

By Ignoring the Bias, it will Not go away!

Submodel estimator provided by some existing variable
selection techniques when pn � n are subject to bias.

The prediction performance can be improved by the
shrinkage strategy.

Particulary when an under-fitted submodel is selected by
an aggressive penalty parameter.
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Moral of the Story

By Ignoring the Bias, it will Not go away!

When p � n, we assume the true model is sparse in the
sense that most coefficients goes to 0 when n→∞.

However, it is realistic to assume that some βj may be
small, but not exactly 0.

Such predictors with small amount of influence on the
response variable are often ignored incorrectly in HD
variable selection methods.

We borrow (re-gain) some information from those
predictors using the shrinkage strategy to improve the
prediction performance.
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Engineering Proof: Simulation

In all experiments, εi ’s are simulated from i.i.d standard
normal random variables, xis = (ξ1

(is))
2 + ξ2

(is), where ξ1
(is)

and ξ2
(is), i = 1, · · · ,n, s = 1, · · · ,pn are also independent

copies of standard normal distribution.

In all sampling experiments, we let pn = nα for different
sample size n, where α changes from 1 to 1.8 with an
increment of 0.2. The HD-PSE is computed for rn = p1/8

n
and an = 0.1n−1/3.
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Simulation Results

Engineering Proof

The performance of an estimator of β will be appraised
using the mean squared error (MSE) criterion.

All computations were conducted using the R statistical
software.

We have numerically calculated the relative MSE of the
estimators with respect to β̂WR by simulation.

The simulated relative efficiency (SRE) of the estimator β�

to the maximum likelihood estimator β̂FM is denoted by

SRE(β̂FM : β�) =
MSE(β̂WR)

MSE(β�)
.

A SRE larger than one indicates the degree of superiority
of the estimator β� over β̂WR.
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Simulation Results

Engineering Proof

Relative Performance

We let β10 = (1.5,3,2)′ be fixed for every design.

Let ∆∗ = ‖β20 − 0‖2 varying between 0 and 4.

We choose n = 30 or 100.
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Table: Simulated RMSEs

.
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(n,p) ∆∗ β̂SM
1n β̂PSE

1n (n,p) ∆∗ β̂SM
1n β̂PSE

1n
0.00 16.654 4.101 0.00 8.953 5.385
0.05 8.202 3.446 0.05 4.456 3.794
0.20 2.855 2.610 0.20 1.551 3.216
0.25 2.074 2.437 0.25 1.422 2.833
0.30 1.857 2.180 0.30 1.091 2.459

(30,30) 0.35 1.643 1.949 (30,59) 0.35 0.986 2.447
0.80 0.649 1.506 0.80 0.542 1.601
2.50 0.232 1.160 2.50 0.234 1.171
3.30 0.170 1.095 3.30 0.210 1.108

0.00 12.672 4.260 0.00 5.546 5.388
0.05 2.546 3.538 0.05 1.255 1.900
0.10 1.129 3.256 0.15 0.441 1.322
0.20 0.628 2.948 0.20 0.361 1.382
0.25 0.481 3.366 0.25 0.316 1.358

(100,158) 0.40 0.311 2.272 (100,398) 0.40 0.198 1.543
1.40 0.110 1.500 1.40 0.096 1.826
3.10 0.066 1.181 3.10 0.079 1.304
3.50 0.060 1.217 3.50 0.075 1.297
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Figure: The top three panels (a-c) are for n = 30 and pn = 30, 59, 117 from the left
to the right. The bottom panels (d-f) are for n = 100 and pn = 158, 251, 398 from the
left to the right. Solid curves: RMSE(β̂SM

1n ); Dashed curves: RMSE(β̂PSE
1n ).
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Shrinkage Versus Penalty Estimators

Engineering Solution: Simulation Results

Performance of HD-PSE relative to penalty estimators including
Lasso, ALasso, SCAD, MCP and Threshold Ridge (TR).

We let β10 = (1.5,3,2,0.1, · · · ,0.1︸ ︷︷ ︸
p1n−3

)′, β20 = 0′p2n
.

The model includes some predictors with weak signals. We
consider n = 30 and p1n = 3,4,10,20.

We choose a = 3.7 and γ = 3 for SCAD and MCP, respectively.

For TR, we choose αn = c6n−1/3 and λ = c7(log log n)3/α2
n,

where c6 and c7 are two tuning parameters.

All tuning parameters are chosen using the generalized cross
validation.
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Figure: RMSEs forn = 30. Plots (a-d) are for p1 = 3, 4, 10, 20, respectively.
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p1 pn β̂SM
1n β̂PSE

1n β̂SCAD
1n β̂MCP

1n β̂ALasso
1n β̂Lasso

1n β̂TR
1n

3 30 23.420 8.740 14.486 14.247 11.399 3.130 1.097
59 9.900 6.951 7.588 7.499 6.244 1.257 0.015
231 4.292 4.291 2.568 2.622 2.714 0.166 0.003
456 3.977 3.977 1.739 1.576 2.059 0.099 0.002

4 30 15.055 6.882 11.809 11.291 9.528 2.830 0.993
59 6.954 4.933 5.260 5.204 4.469 0.966 0.019
231 3.605 3.605 2.222 2.154 2.045 0.167 0.004
456 3.184 3.184 1.648 1.436 1.703 0.102 0.003

10 30 7.528 4.526 1.232 1.469 2.391 1.497 1.001
59 3.899 3.534 0.493 0.538 0.746 0.321 0.032
231 2.212 2.212 0.104 0.083 0.117 0.034 0.005
456 1.997 1.997 0.052 0.032 0.050 0.017 0.003

20 30 4.603 3.139 0.099 0.128 0.892 0.599 0.981
59 2.231 2.194 0.016 0.018 0.067 0.031 0.013
231 1.489 1.489 0.002 0.002 0.003 0.002 0.002
456 1.392 1.392 0.001 0.001 0.002 0.001 0.001
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Threshold Ridge Regression

A Threshold ridge (TR) for 1 ≤ j ≤ pn of βj is given by (Shao and
Deng (2008))

β̂TR
j =

{
β̃j , |β̃j | > an,

0, |β̃j | ≤ an,

where

β̃n = arg min
β


n∑

i=1

yi −
pn∑

j=1

xijβj

2

+ λ

pn∑
j=1

β2
j


and an = cn−ω for 0 < ω < 1/2 and c > 0.
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Shrinkage Versus Penalty Estimators

The submodel estimator dominates all other estimators in the
class, since β̂SM is computed based on the true submodel.

SCAD and MCP work better than the HD-PSE for smaller pn.

HD-PSE performs better than penalty estimators for larger pn.

Penalty estimators are even less efficient than the weighted
ridge estimate.

This phenomenon can be explained by the existence of
predictors with weak effects, which cannot be separated from
zero effects using Lasso-type methods.

The predictors are designed to be correlated, the weighted ridge
step can generate a better estimation at the starting point.
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The predictors are designed to be correlated, the weighted ridge
step can generate a better estimation at the starting point.
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Microarray Data Example

We apply the proposed HD-PSE strategy to the data set
reported in Scheetz et al. (2006) and also analyzed by Huang,
Ma and Zhang (2008).

In this dataset, 120 twelve-week-old male offsprings of F1
animals were selected for tissue harvesting from the eyes for
microarray analysis.

The microarrays used to analyze the RNA from the eyes of these
F2 animals contain over 31,042 different probe sets (Affymetric
GeneChip Rat Genome 230 2.0 Array).
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Microarray Data Example

Huang, Ma and Zhang (2008) studied a total of 18,976 probes
including gene TRIM32, which was recently found to cause
Bardet-Biedl syndrome (Chiang et al. (2006)), a genetically
heterogeneous disease of multiple organ systems including the
retina.

A regression analysis was conducted to find the probes among
the remaining 18,975 probes that are most related to TRIM32
(Probe ID: 1389163_at). Huang et al (2008) found 19 and 24
probes based on Lasso and adaptive Lasso methods,
respectively.

We compute HD-PSEs based on two different candidate subset
models consisting of 24 and 19 probes selected from Lasso and
adaptive Lasso, respectively.
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Microarray Data Example

In the largest full set model, we consider at most 1,000 probes
with the largest variances. Other smaller full set model with top
pn probes are also considered.

Here we choose different pn’s between 200 and 1,000.

The relative prediction error (RPE) of the estimator β∗J relative to
weighted ridge estimator β̂WR

J is computed as follows

RPE(β∗J ) =

∑n
i=1 ‖y−

∑
j∈J XJ β̂WR

J ‖2∑n
i=1 ‖y−

∑
j∈J XJβ∗J ‖2

,

where J is the index of the submodel including either 24 or 19
elements.
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Envoi

We generalized the classical Stein’s shrinkage estimation to a
high-dimensional sparse model with some predictors with weak
signals.

When pn grows with n quickly, it is reasonable to suspect that
most predictors do not contribute, that is model is sparse.

We proposed a HD shrinkage estimation strategy by shrinking a
weighted ridge estimator in the direction of a candidate
submodel.
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Envoi

Existing penalized regularization approaches have some
advantages of generating a parsimony sparse model, but tends
to ignore the possible small contributions from some predictors.

Lasso-type methods provide estimation and prediction only
based on the selected candidate submodel, which is often
inefficient with the existence of mild or weak signals.

Our proposed HD shrinkage strategy takes into account possible
contributions of all other possible nuisance parameters and has
dominant prediction performances over submodel estimates
generated from Lasso-type methods, which depend strongly on
the sparsity assumption of the true model.
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Envoi

Gauss offered two justifications for least squares: First, what we
now call the maximum likelihood argument in the Gaussian error
model. Second, the concept of risk and the start of what we now
call the Gauss-Markov theorem.

Stein’s 1956 paper revealed that neither maximum likelihood
estimators nor unbiased estimators have desirable risk functions
when the dimension of the parameter space is not small.

PSE outperforms the maximum likelihood estimator of the
regression parameter vector in the entire parameter space.
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Envoi

Big data is the future of Science and Transdisciplinary research
in Statistical Sciences is a must.

A greater collaboration between statisticians, computer
scientists and social scientists (Facebook clicks, Netflix queues,
and GPS data, a few to mention)

Data is never neutral and unbiased, we must pull expertise
across a host of fields to combat the biases in the estimation.
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Is Classical Shrinkage Estimation Dead?

Long Live L2 Shrinkage!

Long Live L2 Shrinkage!

Long Live L2 Shrinkage!
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Clash of Cultures

Culture in Statistical Sciences

Study classical problems - Classical assumptions

Exact/Analytic Solutions

Low-dimensional Data Analysis

Work Alone or in Small Teams

Glory of the Individual
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Clash of Cultures

World is Changing

Complex Problems, Approximate Solutions

Visualizing Complex Data - Use of Technology

High-Dimensional Statistical Inference

Think Tanks - Trans-disciplinary Research

Glory of the Research Team
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Thank you!

Thank you and thanks to organizers!
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