# Statistical topological data analysis using persistence landscapes applied to brain arteries

CANSSI-SAMSI Workshop: Geometric Topological

and Graphical Model Methods in Statistics

#### Peter Bubenik

Department of Mathematics Cleveland State University p.bubenik@csuohio.edu http://academic.csuohio.edu/bubenik\_p/

May 23, 2014

#### funded by AFOSR

Application Theory Analysis

#### Statistical topological data analysis

#### The plan:



#### Brain arteries



Joint work with Ezra Miller (Duke/SAMSI), J.S. Marron (UNC-CH), Paul Bendich (Duke) and Sean Skwerer (UNC-CH).

#### Brain arteries



Goal: Analyze the shape of brain arteries in order to

- understand normal changes with respect to age
- detect and locate pathology (tumors)
- predict stroke risk

### The data

#### Bullitt and Aylward (2002) MRA $\rightarrow$ Tubes











































#### Mathematical viewpoint

Let X be a graph representing the brain arteries of one subject:

- vertices with (x, y, z, r) coordinates
- edges connecting adjacent vertices

#### Mathematical viewpoint

Let X be a graph representing the brain arteries of one subject:

- vertices with (x, y, z, r) coordinates
- edges connecting adjacent vertices

Let  $X_t$  denotes the full subgraph on the vertices with z coordinate at most t.

$$\emptyset = X_0 \subseteq X_1 \subseteq X_2 \subseteq \cdots \subseteq X_N = X$$

Take homology in degree 0.

$$H_0(X_0) \rightarrow H_0(X_1) \rightarrow H_0(X_2) \rightarrow \cdots \rightarrow H_0(H_N)$$

#### More general setup

For each t, have

- a simplicial complex  $X_t$
- a vector space  $H(X_t)$
- For  $t \leq t'$ , have  $\bullet$  an inclusion  $X_t \subseteq X_{t'}$ 
  - a linear map  $H(X_t) o H(X_{t'})$

Persistent homology is the image of this map.

This set of vector spaces and linear maps is called a persistence module.

We want a summary of the persistence module that is amenable to statistical analysis.

#### Persistence landscape

Recall that the persistence module consisted of linear maps

$$H(X_t) \rightarrow H(X_{t'})$$
, for  $t \leq t'$ .

For  $k = 1, 2, 3, \ldots$ , define  $\lambda_k : \mathbb{R} \to \mathbb{R}$  by

$$\lambda_k(t) = \max( | h | \operatorname{rank}(H(X_{t-h}) \rightarrow H(X_{t+h}) \ge k ))$$

We can combine these to get one function

$$\lambda: \mathbb{N} \times \mathbb{R} \to \mathbb{R},$$

where  $\lambda(k, t) = \lambda_k(t)$ .





Peter Bubenik Persistence landscapes





Peter Bubenik Persistence landscapes



Peter Bubenik Persistence landscapes

#### Mean landscapes

Persistence landscapes, 
$$\lambda^{(1)}, \ldots, \lambda^{(n)}$$
, have mean,  $\overline{\lambda} = \frac{1}{n} \sum_{i=1}^{n} \lambda^{(i)}$ .  
That is,

$$\overline{\lambda}_k(t) = rac{1}{n} \sum_{i=1}^n \lambda_k^{(i)}(t)$$

#### Mean landscape for brain arteries



#### Summary space

Let 
$$1 \leq p < \infty$$
. Then  $\|\lambda\|_p = \left(\sum_k \int {\lambda_k}^p \right)^{rac{1}{p}}$ .

We assume 
$$\|\lambda\| := \|\lambda\|_{\rho} < \infty$$
. That is,  $\lambda \in L^{\rho}(\mathbb{N} \times \mathbb{R})$ .

So  $\lambda$  is a random variable with values in a Banach space.

#### Asymptotics

 $\lambda \in L^p(\mathbb{N} \times \mathbb{R})$ ,  $\|\lambda\|$  is a real random variable.

If  $E \|\lambda\| < \infty$  then there exists  $E(\lambda) \in L^p(\mathbb{N} \times \mathbb{R})$  such that  $E(f(\lambda)) = f(E(\lambda))$  for all continuous linear functionals f.

Theorem (Strong Law of Large Numbers (SLLN))  $\overline{\lambda}^{(n)} \to E(\lambda)$  almost surely if and only if  $E \|\lambda\| < \infty$ .

Theorem (Central Limit Theorem (CLT))

Assume  $p \ge 2$ . If  $E \|\lambda\| < \infty$  and  $E(\|\lambda\|^2) < \infty$  then  $\sqrt{n}[\overline{\lambda}^{(n)} - E(\lambda)]$  converges weakly to a Gaussian random variable with the same covariance structure as  $\lambda$ .

.

#### Weighted norms

Recall that 
$$\|\lambda\|_p = \left(\sum_k \int \lambda_k^p\right)^{\frac{1}{p}}$$
.  
Fix  $i \leq j$ . Define  $\|\lambda\|_{p,i,j} = \left(\sum_{k=i}^j \int \lambda_k^p\right)^{\frac{1}{p}}$ 

The previous SLLN and CLT also apply to this weighted norm.

#### Correlation with age

Pearson's correlation coefficient of age with statistics derived from the brain arteries

Previous study without topology: Dan Shen et al (2014) r = 0.25

Using persistence landscape:

| topological statistic  | r      |
|------------------------|--------|
| $\ \lambda\ _1$        | 0.5077 |
| $\ \lambda\ _{1,2,57}$ | 0.5214 |
| $\ \lambda\ _{1,5,5}$  | 0.5582 |

Application Theory Analysis

Correlation with age PCA

# Correlation of age with $\|\lambda\|_{1,i,j}$



Peter Bubenik

Persistence landscapes









Application Theory Analysis

Correlation with age PCA



### Correlation with age

Pearson's correlation coefficient of age with statistics derived from the brain arteries

Previous study without topology: Dan Shen et al (2014) r = 0.25

Values of *r* using statistics derived from persistence landscape:

| landscapes used                   | 1-norm | first princ comp |
|-----------------------------------|--------|------------------|
| $\lambda_1, \ldots, \lambda_{57}$ | 0.5077 | 0.5216           |
| $\lambda_2, \ldots, \lambda_{57}$ | 0.5214 | 0.5666           |
| $\lambda_5,\ldots,\lambda_5$      | 0.5582 | 0.6000           |

Application Theory Analysis Correlation with age PCA

### Correlation of age with PCA1 on weighted norms



Peter Bubenik Persistence landscapes

# Summary

- Topology promising tool for analyzing data
- Persistence landscapes easy to combine with standard statistical techniques
- Looking for collaborators

# Summary

- Topology promising tool for analyzing data
- Persistence landscapes easy to combine with standard statistical techniques
- Looking for collaborators

Thank you!