Huckemann

Introduction Digitizing WiZer Persistence

Application

Outlook

References

Formation of Stress Fibres in Adult Stem Cells

Stephan F. Huckemann

University of Göttingen, Felix Bernstein Institute for Mathematical Statistics in the Biosciences

May 22, 2014

CANSSI - SAMSI Workshop at the Fields Institute

MS

supported by the

Niedersachsen Vorab of the Volkswagen Foundation

・ロット (雪) (日) (日)

Huckemann

- Introduction Digitizing
- WiZer
- Persistence
- Application
- Outlook
- References

Contributors

- Max Sommerfeld (SAMSI 2013/14)
- Kwang-Rae Kim (now at the Univ. of Nottingham)
- Florian Rehfeldt and Carina Wollnik (Physics III/Biophysics, Göttingen)
- Carsten Gottschlich, Benjamin Eltzner and Axel Munk
 (Univ. Göttingen)
- DFG CRC 755 "Nanoscale Photonic Imaging"
- SAMSI LDHD

Huckemann

Introduction

- WiZer
- Persistence
- Application
- Outlook
- References

One Motivation: Stem Cell Therapy

- Medical condition e.g. post heart attack,
- medical goal e.g. grow new heart muscle tissue,
- intervention strategy: inject stem cells.

Huckemann

- Introduction Digitizing
- WiZer
- Persistence
- Application
- Outlook
- References

One Motivation: Stem Cell Therapy

- Medical condition e.g. post heart attack,
- medical goal e.g. grow new heart muscle tissue,
- intervention strategy: inject stem cells.
- Here: adult mesenchymal human stem cells
- e.g. from bone marrow
- pluripotent = differentiate e.g. into
- myoblasts = muscle precusor cells,
- osteoblasts = bone precusor cells,
- lipoblasts = fat precursor cells,
- etc.

Huckemann

- Introduction Digitizing
- WiZer
- Persistence
- Application
- Outlook
- References

One Motivation: Stem Cell Therapy

- Medical condition e.g. post heart attack,
- medical goal e.g. grow new heart muscle tissue,
- intervention strategy: inject stem cells.
- Here: adult mesenchymal human stem cells
- e.g. from bone marrow
- pluripotent = differentiate e.g. into
- myoblasts = muscle precusor cells,
- osteoblasts = bone precusor cells,
- lipoblasts = fat precursor cells,
- etc.
- Previous research by Engler et al. (2006) indicates that surrounding tissue elasticity influences the blast – type.

Huckemann

Introduction Digitizing WiZer Persistence Application Outlook

Problem at Hand: Study Early Stem Cell Differentiation

- put cells on gel of varying elasticity (kPa),
- flourescence labeling of actin-myosin filaments,
- photograph after 24 hrs. (before duplication).

Huckemann

Introduction Digitizing WiZer Persistence Application Outlook

Problem at Hand: Study Early Stem Cell Differentiation

- put cells on gel of varying elasticity (kPa),
- flourescence labeling of actin-myosin filaments,
- photograph after 24 hrs. (before duplication).

Huckemann

Introduction Digitizing

WiZer

Persistence

Application

Outlook

References

Biomechanical Hypotheses

Orientation detection: elongated Laplacians of a Gaussian

Huckemann

Introduction Diaitizina

WiZer

Persistence

Application

Outlook

References

Biomechanical Hypotheses

Orientation detection: elongated Laplacians of a Gaussian

- Low rigidity (1kPa) ⇒ few short non-oriented filaments.
- Resonance rigidity (11 kPa) ⇒ many long aligned filaments.
- High rigidity (34 kPa) ⇒ many long filaments with varying directions.

Huckemann

Introduction Digitizing WiZer Persistence Application

Outlook

References

Good data: reliably digitize filament structure → filament process

$$(\lambda,\phi)_{z_i}, i = 1,\ldots,N, \lambda \in \mathbb{R}^+, \phi \in [0,\pi).$$

Challenges

Huckemann

Introduction Digitizing WiZer Persistence Application

Outlook

References

Good data: reliably digitize filament structure → filament process

$$(\lambda,\phi)_{z_i}, i = 1,\ldots, N, \lambda \in \mathbb{R}^+, \phi \in [0,\pi).$$

Challenges

2 Over time → a process of filament processes indexed in time.

Huckemann

Introduction Digitizing WiZer Persistence Application Outlook

Good data: reliably digitize filament structure → filament process

$$(\lambda,\phi)_{z_i}, i=1,\ldots,N, \lambda \in \mathbb{R}^+, \phi \in [0,\pi).$$

Challenges

- 2 Over time \rightarrow a process of filament processes indexed in time.
- Statistics of (processes of) filament processes or at least of descriptors.

Huckemann

Introduction Digitizing WiZer Persistence Application Outlook

Good data: reliably digitize filament structure → filament process

$$(\lambda,\phi)_{z_i}, i=1,\ldots,N, \lambda \in \mathbb{R}^+, \phi \in [0,\pi).$$

Challenges

- 2 Over time \rightarrow a process of filament processes indexed in time.
- Statistics of (processes of) filament processes or at least of descriptors.
- **4** Today: total pixel number of filaments in direction ϕ :

$$f(\phi) := \mathbb{E}[\lambda|\phi] \mathbb{E}[\sharp z_i|\phi], \ \phi \in [0,\pi).$$

Huckemann

Introduction Digitizing WiZer Persistence Application Outlook

Good data: reliably digitize filament structure → filament process

$$(\lambda,\phi)_{z_i}, i=1,\ldots,N, \lambda \in \mathbb{R}^+, \phi \in [0,\pi).$$

Challenges

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- 2 Over time \rightarrow a process of filament processes indexed in time.
- Statistics of (processes of) filament processes or at least of descriptors.
- **4** Today: total pixel number of filaments in direction ϕ :

$$f(\phi) := \mathbb{E}[\lambda|\phi] \mathbb{E}[\sharp z_i|\phi], \ \phi \in [0,\pi).$$

5 Infer on the number of modes of $f(\phi)$:

Huckemann

Introduction Digitizing WiZer Persistence Application Outlook

Good data: reliably digitize filament structure → filament process

$$(\lambda,\phi)_{z_i}, i=1,\ldots,N, \lambda \in \mathbb{R}^+, \phi \in [0,\pi).$$

Challenges

- 2 Over time → a process of filament processes indexed in time.
- Statistics of (processes of) filament processes or at least of descriptors.
- **4** Today: total pixel number of filaments in direction ϕ :

$$f(\phi) := \mathbb{E}[\lambda|\phi] \mathbb{E}[\sharp z_i|\phi], \ \phi \in [0,\pi).$$

5 Infer on the number of modes of $f(\phi)$:

• 1 kPa \Rightarrow many modes?

Huckemann

Introduction Digitizing WiZer Persistence Application Outlook

Good data: reliably digitize filament structure → filament process

$$(\lambda,\phi)_{z_i}, i=1,\ldots,N, \lambda \in \mathbb{R}^+, \phi \in [0,\pi).$$

- 2 Over time → a process of filament processes indexed in time.
- Statistics of (processes of) filament processes or at least of descriptors.
- **4** Today: total pixel number of filaments in direction ϕ :

$$f(\phi) := \mathbb{E}[\lambda|\phi] \mathbb{E}[\sharp z_i|\phi], \ \phi \in [0,\pi).$$

5 Infer on the number of modes of $f(\phi)$:

- 1 kPa \Rightarrow many modes?
- 11 kPa ⇒ one mode?

Challenges

Huckemann

Introduction Digitizing WiZer Persistence Application Outlook

● Good data: reliably digitize filament structure → filament process

$$(\lambda,\phi)_{z_i}, i=1,\ldots,N, \lambda \in \mathbb{R}^+, \phi \in [0,\pi).$$

- 2 Over time → a process of filament processes indexed in time.
- Statistics of (processes of) filament processes or at least of descriptors.
- **4** Today: total pixel number of filaments in direction ϕ :

$$f(\phi) := \mathbb{E}[\lambda|\phi] \mathbb{E}[\sharp z_i|\phi], \ \phi \in [0,\pi).$$

5 Infer on the number of modes of $f(\phi)$:

- 1 kPa \Rightarrow many modes?
- 11 kPa ⇒ one mode?
- 34 kPa ⇒ more than one but not many modes?

Challenges

Huckemann

Introduction

Digitizing WiZer Persistence Application Outlook

Good quality image

Good Data: Reliably Digitize Filament Structure

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Huckemann

Good Data: Reliably Digitize Filament Structure

Digitizing WiZer Persistence Application Outlook References

Good quality image

Elongated Laplacian of a Gaussian following Zemel et al. (2010) filament pixel \mapsto orientation

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Huckemann

Introductio

Digitizing WiZer Persistence Application Outlook

Good quality image

Elongated Laplacian of a Gaussian following Zemel et al. (2010) filament pixel \mapsto orientation Constrained reverse diffusion by Basu et al. (2013)

 $\begin{array}{l} \text{filament pixel} \mapsto \\ \text{yes/no} \end{array}$

Huckemann

Good Data: Reliably Digitize Filament Structure

Digitizing WiZer Persistence Application Outlook Beferences

Good quality image

Elongated Laplacian of a Gaussian following Zemel et al. (2010) filament pixel \mapsto orientation Constrained reverse diffusion by Basu et al. (2013)

 $\begin{array}{l} \text{filament pixel} \mapsto \\ \text{yes/no} \end{array}$

Ground truth?

Huckemann

Introduction Digitizing WiZer Persistence Application Outlook

Manually expert marked ground truth database

Methods Against Ground Truth

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Huckemann

Introduction Digitizing WiZer Persistence Application Outlook

Methods Against Ground Truth

Manually expert marked ground truth database eLoGs

CRD

- Yellow: correctly traced
- Green: false detects
- Red: not detected

Huckemann

Introduction

Digitizing WiZer Persistence Application Outlook Beferences

Tracing: The Filament Sensor

Ground truth

Filament sensor

- individual filaments: offset, length, angle, width
- incorporate expert knowledge

Huckemann

Introduction

Digitizing WiZer Persistence Application Outlook Beferences

Tracing: The Filament Sensor

Ground truth

Filament sensor

Filament sensor with expert knowledge

- individual filaments: offset, length, angle, width
- incorporate expert knowledge
- 20 secs per image (eLoG: 20 mins, CRD: 20 hrs)

Huckemann

Introduction Digitizing WiZer Persistence Application Outlook References

Angular Histograms

eLoGs

Hough transform

э

Huckemann

Introduction Digitizing WiZer Persistence Application Outlook References

Angular Histograms

ground truth

eLoGs

expert knowledge line sensor

Huckemann

Digitizing

Benchmarking

Histogram mass ratios

Normalized histogram distances

イロト イポト イヨト イヨト

₹ 9Q@

Huckemann

Introduction

Digitizing

WiZer

Persistence

Application

Outlook

References

Movie

How Many Modes?

Stem Cell Stress Fibres

Huckemann

How Many Modes?

After kernel smoothing:

Stem Cell Stress Fibres

Huckemann

- six modes (*h* = 2)?
- Two modes (*h* = 5)?
- One mode (h = 10)?
- What is the right scale (bandwidth h)?
- How persistent are modes over bandwidths?

Huckemann

Introduction Digitizing WiZer

Persistence

Application

Outlook

References

The Linear Scale Space / SiZer of Chaudhuri and Marron (1999, 2000)

(ロ) (同) (三) (三) (三) (○) (○)

- Unknown density $f : \mathbb{R} \to \mathbb{R}^+$,
- f_n its empirical histogram,
- $\hat{f}_n^{(h)} := g^{(h)} * f_n$ its kernel smoothed version,
- $\hat{f}^{(h)} := g^{(h)} * f$ the true kernel smoothed version,
- all with bandwidth $h \in \mathbb{R}^+$.

Huckemann

Digitizing

Persistence

Application

Outlook

References

The Linear Scale Space / SiZer of Chaudhuri and Marron (1999, 2000)

- Unknown density $f : \mathbb{R} \to \mathbb{R}^+$,
- f_n its empirical histogram,
- $\hat{f}_n^{(h)} := g^{(h)} * f_n$ its kernel smoothed version,
- $\hat{f}^{(h)} := g^{(h)} * f$ the true kernel smoothed version,
- all with bandwidth $h \in \mathbb{R}^+$.
- We have confidence that f̂^(h)_n has a mode "around" t ∈ ℝ if ∃ε₁, ε₂ > 0 such that

$$\partial_t \hat{f}_n^{(h)}(t+\epsilon_2) < 0 < \partial_t \hat{f}_n^{(h)}(t-\epsilon_1)$$

(ロ) (同) (三) (三) (三) (○) (○)

with significance.

Huckemann

Introductio Digitizing WiZer Persistenc

Application

Outlook

References

The Linear Scale Space / SiZer

(ロ) (同) (三) (三) (三) (○) (○)

(a) If $\left(\partial_t \hat{f}_n^{(h)}(t)\right)_{h,t} \to \partial_t f^{(h)}$ weakly

 obtain asymptotic confidence levels for the number modes of f^(h)(t).

Huckemann

Introduction Digitizing WiZer Persistence Application

Outiook

The Linear Scale Space / SiZer

(a) If $(\partial_t \hat{f}_n^{(h)}(t))_{h,t} \to \partial_t f^{(h)}$ weakly

- obtain asymptotic confidence levels for the number modes of f^(h)(t).
- (b) If causality holds, i.e.

 \sharp modes of $f^{(h)} \leq \sharp$ modes of $f^{(h')} \ \forall h \geq h' > 0$

(日) (日) (日) (日) (日) (日) (日)

• obtain asymptotic confidence levels for a lower bound for the number modes of $f = f^{(0)}$.

Huckemann

Introduction Digitizing WiZer Persistence Application

References

The Linear Scale Space / SiZer

(a) If $(\partial_t \hat{f}_n^{(h)}(t))_{h,t} \to \partial_t f^{(h)}$ weakly

- obtain asymptotic confidence levels for the number modes of f^(h)(t).
- (b) If causality holds, i.e.

 \sharp modes of $f^{(h)} \leq \sharp$ modes of $f^{(h')} \forall h \geq h' > 0$

• obtain asymptotic confidence levels for a lower bound for the number modes of $f = f^{(0)}$.

Theorem (Chaudhuri and Marron (1999, 2000)) If *f* is sufficiently regular and $g^{(h)}$ the Gaussian heat kernel then causality holds and

$$\sqrt{n} \Big(\partial_t \hat{f}_n^{(h)}(t) - \partial_t \hat{f}^{(h)}(t) \Big) o (G_h)_t$$
 weakly

with a Gaussian process $(G_h)_t$.

Stem Cell Stress Fibres The SiZer Map Huckemann no. Illaments 400 600 800 WiZer 200 0 50 100 150 2 10 andwid -7 04

100

50

150

The SiZer Map

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• Many (noisy) modes for $h \le 4$

Stem Cell Stress Fibres

Huckemann

WiZer

- Four modes persist from h = 4 to h = 7
- Two modes from h = 7 to h = 15
- One mode from h = 15 to $h = \infty$

The SiZer Map

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Many (noisy) modes for $h \le 4$
- Four modes persist from h = 4 to h = 7
- Two modes from h = 7 to h = 15
- One mode from h = 15 to $h = \infty$
- The data is cyclic!

Stem Cell Stress Fibres

Huckemann

WiZer

Huckemann

Introduction Digitizing WiZer Persistence Application The Circular SiZer

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Which smoothing kernel on the circle $[-\pi,\pi)$ gives

- **1** empirical scale space tube \rightarrow Gaussian process?
- 2 causality of the scale space tube?

 \Rightarrow confidence bounds from below for number of true modes.

Huckemann

Introduction Digitizing WiZer Persistence Application

The Circular SiZer

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Which smoothing kernel on the circle $[-\pi,\pi)$ gives

- **1** empirical scale space tube \rightarrow Gaussian process?
- 2 causality of the scale space tube?
- \Rightarrow confidence bounds from below for number of true modes.
 - 1 Kernels with second moments, e.g. the von Mises density, making the CircSiZer by Oliveira et al. (2013):

$$m_{\kappa}(x) := rac{1}{2\pi I_0(\kappa)} e^{\kappa \cos(x)}$$

Huckemann

Introduction Digitizing WiZer Persistence Application Outlook

References

The Circular SiZer

Which smoothing kernel on the circle $[-\pi,\pi)$ gives

- **1** empirical scale space tube \rightarrow Gaussian process?
- 2 causality of the scale space tube?
- \Rightarrow confidence bounds from below for number of true modes.
 - 1 Kernels with second moments, e.g. the von Mises density, making the CircSiZer by Oliveira et al. (2013):

$$m_{\kappa}(x) := rac{1}{2\pi I_0(\kappa)} e^{\kappa \cos(x)}$$

2 Not the CircSiZer (cf. also Munk (1999)):

Huckemann

Introduction Digitizing WiZer Persistence Application Outlook

The Circular SiZer

Which smoothing kernel on the circle $[-\pi,\pi)$ gives

- **1** empirical scale space tube \rightarrow Gaussian process?
- 2 causality of the scale space tube?
- \Rightarrow confidence bounds from below for number of true modes.
 - Kernels with second moments, e.g. the von Mises density, making the CircSiZer by Oliveira et al. (2013):

$$m_{\kappa}(x) := rac{1}{2\pi I_0(\kappa)} e^{\kappa \cos(x)}$$

Provide the original of the Circular heat equation: the wrapped Gaussian

$$g_h^{(w)}(x) := \sum_{m=-\infty}^{\infty} \frac{1}{\sqrt{2\pi} \, h} \, e^{-rac{(x+2\pi m)^2}{2h^2}}$$

guarantees causality of the scale space tube.

Huckemann

Introduction Digitizing WiZer Persistence Application

Outlook

References

Circular Scale Space Axiomatics

A family {L_h : h > 0} of convolution kernels (∫ L_h = 1) is
a semi-group if L_{h+h'} = L_h * L_{h'} for all h, h' > 0

- causal if $S(L_h * f) \leq S(f)$ for all f
- strongly Lipschitz if $\exists r > 0$

 $\forall \epsilon > 0 \ \exists h_0 = h_0(\epsilon) > 0 \text{ such that } |(\mathcal{F}L_h)_k - 1| < \epsilon h|k|^r$

A D F A 同 F A E F A E F A Q A

for all $k \in \mathbb{Z}$ and all $0 < h \le h_0$.

Huckemann

Introduction Digitizing WiZer Persistence Application

Circular Scale Space Axiomatics

A family {L_h : h > 0} of convolution kernels (∫ L_h = 1) is
a semi-group if L_{h+h'} = L_h * L_{h'} for all h, h' > 0

- causal if $S(L_h * f) \leq S(f)$ for all f
- strongly Lipschitz if $\exists r > 0$

 $\forall \epsilon > 0 \ \exists h_0 = h_0(\epsilon) > 0 \text{ such that } |(\mathcal{F}L_h)_k - 1| < \epsilon h|k|^r$

for all $k \in \mathbb{Z}$ and all $0 < h \le h_0$.

Theorem

The only casual and strongly Lipschitz semi-group on the circle is given by the wrapped Gaussians.

For Euclidean analogs, e.g. Weickert et al. (1999); Lindeberg (2011).

The WiZer Map

Many (noisy) modes for h ≤ 4

Stem Cell Stress Fibres

Huckemann

WiZer

• Four modes persist from h = 4 to h = 7

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Huckemann

Introduction Digitizing WiZer Persistence Application Outlook References

- Many (noisy) modes for $h \le 4$
- Four modes persist from h = 4 to h = 7
- One mode from h = 8 to h = 100
- No mode from h = 100 to $h = \infty$

Persistence

Persistence of Modes

・ロト ・戸下 ・ ヨト ・ ヨト

ъ

How to measure persistence?

- Not within a single WiZer map
- but across several WiZer maps.

Huckemann

Introduction Digitizing WiZer Persistence Application Outlook Beferences

Three Elasticities

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Huckemann

Introduction Digitizing WiZer Persistence Application Outlook References

Persistence Diagram of Modes

ヘロト 人間 とくほとくほとう

э.

Huckemann

Introduction Digitizing WiZer Persistence Application Outlook

Appliction: Log Persistence Diagram

Data: \approx 60 cells each of 1 kPa (black), 11 kPa (red) and 34 kPa (blue) after 24 hrs. with respective means.

- 1 kPa: least persistent first mode, most persistent higher modes,
- 11 kPa: least persistent modes,
- 34 kPa: almost like 11 kPa but intermediate persistent modes

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

Huckemann

Introductio

- Digitizin
- WiZer
- Persistence

Application

Outlook

References

Summary and Outlook

- Good data: entire cell filament process
- New circular scale space theory
- Bound the number of shape features from below with confidence:
 - above a given bandwidth,
 - truly statistical,
 - bound number of shape features simultaneously over all bandwidth (Max's master thesis)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• Corroborating early biomechanically induced stem cell differentiation.

Huckemann

Introduction

- Digitizing
- WiZer
- Persistence

Application

- Outlook
- References

Summary and Outlook

- Good data: entire cell filament process
- New circular scale space theory
- Bound the number of shape features from below with confidence:
 - above a given bandwidth,
 - truly statistical,
 - bound number of shape features simultaneously over all bandwidth (Max's master thesis)
- Corroborating early biomechanically induced stem cell differentiation.
- Outlook:
 - Include locality, statistics of more than just # modes,

(ロ) (同) (三) (三) (三) (○) (○)

- statistics of bounded inhomogeneous filament processes
- temporal evolution of filaments: from mode hunting → change point hunting

Huckemann

- Introduction
- Diaitizina
- WiZor
- Densister
- Persistence
- Application
- Outlook
- References

References

(ロ) (同) (三) (三) (三) (○) (○)

- Basu, S., K. Dahl, and G. Rohde (2013). Localizing and extracting filament distributions from microscopy images. *Journal of Microscopy 250*, 57–67.
- Brown, L. D., I. M. Johnstone, and K. B. MacGibbon (1981). Variation diminishing transformations: A direct approach to total positivity and its statistical applications. *Journal of the American Statistical Association 76*(376), 824–832.
- Chaudhuri, P. and J. Marron (1999). Sizer for exploration of structures in curves. Journal of the American Statistical Association 94(447), 807–823.
- Chaudhuri, P. and J. Marron (2000). Scale space view of curve estimation. The Annals of Statistics 28(2), 408–428.
- Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher (2006). Matrix elasticity directs stem cell lineage specification. *Cell* 126(4), 677–689.
- Huckemann, S. F., K.-R. Kim, A. Munk, F. Rehfeld, M. Sommerfeld, J. Weickert, and C. Wollnik (2014). The circular sizer, inferred persistence of shape parameters and application to stem cell stress fibre structures. arXiv preprint arXiv:1404.3300.
- Lindeberg, T. (2011). Generalized gaussian scale-space axiomatics comprising linear scale-space, affine scale-space and spatio-temporal scale-space. *Journal of Mathematical Imaging and Vision* 40(1), 36–81.
- Mairhuber, J., I. Schoenberg, and R. Williamson (1959). On variation diminishing transformations on the circle. *Rendiconti del Circolo matematico di Palermo 8*(3), 241–270.
- Munk, A. (1999). Optimal inference for circular variation diminishing experiments with applications to the von-mises distribution and the fisher-efron parabola model. *Metrika* 50(1), 1–17.
- Oliveira, M., R. M. Crujeiras, and A. Rodríguez-Casal (2013). Circsizer: an exploratory tool for circular data. Environmental and Ecological Statistics, 1–17.
- Weickert, J., S. Ishikawa, and A. Imiya (1999). Linear scale-space has first been proposed in Japan. Journal of Mathematical Imaging and Vision 10(3), 237–252.
- Zemel, A., F. Rehfeldt, A. E. X. Brown, D. E. Discher, and S. A. Safran (2010). Optimal matrix rigidity for stress-fibre polarization in stem cells. *Nat Phys* 6(6), 468–473.

Stem Cell Stress Fibres Huckemann

References

Mode Persistence Boxplots

= ∽<</p>

ъ