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Historical Note
I My original sources for DAM were a combo between applied

directional data analysis (Fisher, Hall, Jing and Wood (1996)),
shape data analysis (Dryden and Mardia (1992)) and theoretical
Statistical Manifolds ideas (Efron(1975, 1978))

I DAM started in the nineties (extrinsic sample means and function
estimation on submanifolds)

I continued with the Analysis of Object Data program at SAMSI in
2010 - 2011, in WG’s such as “Geometric Correspondence",
“Trees" and “Data Analysis on Sample Spaces with a Manifold
Stratification"

I advanced in 2012 - MBI Workshop of Statistics, Geometry, and
Combinatorics on Stratified Spaces Arising from Biological
Problems, and a meeting in Denmark on Geometry and Statistics

I added methodologies due to progress in WG’s of the 2013-2014
LDHD - SAMSI program including “Data Analysis on Hilbert
Manifolds and Their Applications" and “Nonlinear
Low-dimensional Structures in High-dimensions for Biological
Data"



Why Should Statisticians Care about Manifolds?
See http://www.fields.utoronto.ca/programs/scientific/13-
14/modelmethods/abstracts.html

I numerical data
I astronomy and cosmology data: galaxies, stars and planetary

orbits data
I Spatial Statistics : temperatures, snow and other functions

measured across the planet
I vector fields of wind velocities on the Earth surface
I Geology : paleomagnetic data, plate tectonics, volcanos
I Morphometric data
I protein and DNA structures
I medical imaging outputs, including : angiography data ( such as

brain vessels structure), CT, MRI
I satellite or aerial imaging
I digital camera imaging data



Data Collection and Sample Space Assumptions

We experience life, through senses, reflections and thoughts about
Mother Nature.
Most of the time Statisticians, under the influence of Mathematical
Analysis, may get fairly narrow or even incorrect scientific views
through simulations with nonexistent data. To get closer to the “truth",
we have to collect and analyze data by

I repeatedly, and, hopefully randomly, perform an experiment
I extract from an individual outcome information in the form of a

point on a sample space, which is assumed to be a complete
metric space, thus leading to consistent estimates

I bringing in a common sense assumption that the sample space
has a certain local dimension, making it locally homeomorphic to
a numerical space, or, worst case scenario, to an open cone or
open book like structure.

I accept the idea of infinite dimensionality (Hilbert).



Analyzing Linearized and Studentized Cartan Means

Compute the Cartan sample mean, when unique, and use its
asymptotic distribution around the population Fréchet mean
Using dimensionality, estimate sample mean second (or higher)
moments, yielding a geometric sample covariance matrix, in the
tangent space. In the finite D numeric case this generalizes the
sample covariance Sn = 1

n ((x1− x̄)(x1− x̄)T + · · ·+ (xn− x̄)(xn− x̄)T ),
to Fréchet sample covariance.
Use the linearity in the tangent cone, and via S−

1
2

n ( or a regularized
version of it ) studentize the Cartan sample mean, bringing in the
game asymptotic pivots that are tabulated, for improved estimation.



Large Sample Size Numerical Data Analysis
Assuming the population mean vector is µ and the sample size n is
large.

I Studentize the sample mean vector to get the vectorial z-scores
vector zn =

√
nS−

1
2

n (x̄ − µ)

I Compute the square distance to the zero vector T 2 = zT
n zn, also

known as the Hotelling T -square statistic
I Classical results in Large Sample Theory due to H. Cramer,

Slutsky, Feller, Billingsley a.o. show that T 2 has asymptotically a
χ2

p distribution.
I given α ∈ (0,1), construct a 100(1− α)% large sample

confidence region Cα for µ :

Cα = {µ ∈ Rp|T 2 ≤ χ2
p(α)}, (1)

where the probability for a χ2
p distributed random variable being

greater than χ2
p(α) is α.

I Such confidence regions are bounded by p − 1 dimensional
ellipsoids .



Nonparametric Bootstrap based Numerical Data
Analysis

Assuming the sample size n is small, say n < 30 + p, repeatedly
sample with replacement from the original sample, thus obtaining
bootstrap resamples r x∗1 , . . . ,r x∗n , for r = 1, . . . ,N. Typically
N ≥ 5000. or each resample r x∗ :

I compute the corresponding bootstrap statistics: the bootstrap
sample mean vector r x̄∗, the bootstrap sample covariance matrix
r S∗n = 1

n ((r x∗1 −r x̄∗)(r x∗1 −r x̄∗)T + · · ·+ (r x∗n −r x̄∗)(r x∗n −r x̄∗))

I if r S∗n has an inverse, compute the bootstrap z-scores vector
r z∗n =

√
n(r S∗n )−

1
2 (r x̄∗ − x̄)

I compute bootstrap T -square r T 2∗ = (r z∗n )T
r z∗n

Given the bootstrap distribution r T 2∗, r = 1,N :

I given α ∈ (0,1), compute the bootstrap (1− α)% percentile
χ2∗(α)

I use Efron’s nonparametric bootstrap to construct a 100(1− α)%
bootstrap confidence region Cα for µ :

C∗α = {µ ∈ Rp|T 2 ≤ χ2∗(α)}. (2)



Solar System Data Example

Figure: A pictorial representation of the Solar System.



Solar System - Data on a Sphere Example
For planets data, let i be the inclination of the orbital plane of a planet to the
ecliptic and Ω be the angle between a fixed line in the ecliptic ( the line joining
the Sun and the Earth at the time of the vernal equinox ), and the line joining
the ascending node of the planet ( the point where the orbit of the planet rises
to the positive side of the ecliptic). Then each orbit determines one directed
unit vector n , perpendicular to the orbital plane of the planet:

n = (sin Ωsini,− cos Ω sin i, cos i)

Table: The normals to the orbital planes of the nine planets

Planet nx ny nz

Mercury 0.001151 0.121864 0.99255
Venus 0.022170 -0.054694 0.99826
Earth 0.000000 0.000000 1.00000
Mars 0.032156 -0.002858 0.99948

Jupiter 0.020454 -0.010471 0.99974
Saturn 0.013473 -0.041487 0.99905
Uranus 0.012596 0.004514 0.99991

Neptune 0.029663 -0.009412 0.99952
Pluto 0.241063 0.170303 0.95545



Solar System Data Example - tangent plane
representation

Figure: Unit normals to the orbital planes of the nine planets projected on a
plane tangent at the sphere.



Solar System Data Analysis - Expected Results

Given a sample x1, . . . , xn of points on a sphere, their sample mean x̄
is located inside the sphere. The extrinsic sample mean is

x̄E =
x̄
‖x̄‖

(3)

We compute the bootstrap distribution of the extrinsic sample means.
From the general theory presented above, the bootstrap distribution
of the sample mean should look like a football shaped point cloud
inside a sphere, that is concentrated around the population mean
vector. If we are radially projecting this distribution on the sphere, we
obtain the distribution of the extrinsic sample mean in the shape of a
small elliptic cloud of points on the sphere around the extrinsic
sample mean. Further if we project the bootstrap distribution of the
extrinsic sample means on a plane tangent to the sphere at the
extrinsic sample mean, the resulting distribution should appear in the
shape of an ellipse centered around the null vector.



Solar System Data Analysis - Results
Surprisingly, what we get looks a bit different. We see more ellipses.



Solar System Data Analysis- Pluto Removed from the
sample

Take home message: Pluto has a different origin than the other planets in the
Solar system



Object Data Types and Data Analysis Methods

In general, besides classical multivariate analysis, so far statisticians
have considered three types of noncategorical data:

I directional data, shape and image data
I trees and graphs data
I functional data and shape of contours data

All these were studied using certain methodologies, that are specific
for each of these types, and there was little interaction between them.
These are

I Statistics on manifolds, or on orbifolds = spaces of
orbits of group actions

I Statistics of folded Euclidean spaces
I Statistics on Hilbert manifolds



A unified methodology for Object Data Analysis

We suggest a unified methodology, be extending the type sample
spaces considered to a generality that captures all the types of object
data known so far under one umbrella:
Data Analysis on Sample Spaces that admit a ( possibly
infinitely dimensional ) Manifold Stratification
Our approach is nonparametric, given the fairly complex structure of
the sample space, it is still early to consider parametric families. The
logic is to follow that classical ideas of first developing basic concepts
of means, medians, variances and function estimation and
understand the asymptotic behavior of the sample counterparts of
indices for location and spread, aiming at nonparametric inference.



Data on Stratified Spaces

Beside multivariate data, the most elementary example of data on
manifolds, other, less elementary example include directional data,
shape data, medical imaging data including DTI, protein data, visual
data for control of manufacturing processes, astronomy data, geology
data, spatial and temporal data, pattern recognition data, DNA data,
pretty much almost anything can be reduced to data analysis on
spaces with a manifold stratification.



Example of Digital Camera Image Data

Figure: Pictures of Boston Marathon bombings suspect taken prior to April
2013

Figure: Picture of Boston Marathon bombings suspect taken on site on April
13, 2013



Basic Example of Nonparametric Image Data Analysis

The x-coordinates of four linearly associated landmarks were
collected from each of the images in figures 3 and 4:

I x1-right corner of the right eye
I x2-left corner of the left eye
I x3-right corner of the left eye
I x4-left corner of the left eye

The cross ratio k = x1−x3

x2−x3 : x1−x4

x2−x4 , a projective invariant, was
computed for each of these images. A bootstrap 90% c. i. of the
mean of the cross-ratios of the test images in figure 3 was found
(1.466714,1.588492). This includes k0 = 1.544601, the null
hypothesis for the crossratio being from figure 4, thus we do not reject
at .1 level the possibility that the suspect in figure 1. is one and the
same with the individual in figure 2.



Acrosterigma Magnum Clamshell

See poster presented by Ruite Guo.
I One of the largest species from the Cardiidae bivalve family
I Large numbers washed ashore St George Island during

Deepwater Horizon oil spill in May 2010
I Bilateral Symmetry implies that a shape data analysis can be

performed based on any one of the two shells found
I one such live specimen is pictured in figure 21



Acrosterigma Magnum Clamshell



Compare Mean Reflection Shape Change

I Two samples: large shells and small shells
I Select landmarks consistently throughout the two samples
I Obtain Euclidean 3D similarity reconstructions using
I Compute Schoenberg (extrinsic) sample means
I Compare Schoenberg (extrinsic) population means
I The methodology is nonparametric nonpivotal bootstrap



Motivation - Binocular Vision
Without exception animals: insects, fish, mammals, reptiles, birds etc.
have two eyes on their heads, to understand the surrounding 3D
world.

Figure: Predatory animals capture a wide 3D scene in front of their eyes
using stereopsis.

Emulating animal vision, in absence of occlusions, the 3D projective
shape of a spatial scene can be recovered from a stereo pair of its
images.



Basic Projective Geometry

I A point in the outer space and its central projection via the
camera pinhole, determine a unique line in space, leading to the
definition of the real projective plane RP2 as space of all straight
lines going through the origin of R3.

I Consider a real vector space V , and let 0V be the zero of this
vector space. Two vectors x , y ∈ V\{0V} are equivalent if they
differ by a scalar multiple. The equivalence class of x ∈ V\{0V}
is labeled [x ], and the set of all such equivalence classes is the
projective space P(V ) associated with V ,
P(V ) = {[x ], x ∈ V\{0V}}. The real projective space in m
dimensions, RPm, is P(Rm+1). Another notation for a projective
point p = [x ] ∈ RPm, equivalence class of
x = (x1, . . . , xm+1) ∈ Rm+1, is p = [x1 : x2 : · · · : xm+1] featuring
the homogeneous coordinates of p.

I A projective transformation is a map π : P(V )→ P(V ), given
by π([x ]) = [Ax ],A ∈ GL(V ).



Image acquisition in ideal digital cameras.

I Ideal pinhole camera image acquisition can be thought of in terms of a central projection β from RP3\RP2 to RP2. In
homogeneous coordinates [x : y : z : w ], [u : v : t] the perspective map β is given by the matrix B ∈ M(3, 4; R) given by:

B =

f 0 0 0
0 f 0 0
0 0 1 0

 . (4)

I In addition to the projective map (4), image formation in digital cameras assumes a composition with matrices accounting for
camera internal calibration parameters, such as pixel aspect ratio, skew parameter, origin of image coordinates in the principal
plane ( principal point ) and for a change of coordinates between two camera positions involving a roto-translation
(R, T ) ∈ SO(3)× R3. The projective map of pinhole camera image acquisition π̃, in homogeneous coordinates has the matrix:

B̃ = KintBC =

ku kc u0
0 kv v0
0 0 1

f 0 0 0
0 f 0 0
0 0 1 0

( R T
0T
3 1

)
= KC, (5)

where ku and kv are scale factors of the image plane in units of the focal length f , and θ = cot−1 kc is the skew, and (u0, v0)

is the principal point. K for internal parameters and perspective (4), while E for external parameters. The matrix B̃ can be
decomposed into a 3 × 3 matrix P and a 3 × 1 vector p B̃ = ( P p ) , so that P = AR and p = AT .



Epipoles. Epipolar lines

Figure: Virtual point correspondences in two camera views. Epipoles.

The epipolar constraint For every point observed in the left image we know that its correspondence must lie along the corresponding
epipolar line in the right image For every epipolar line in the left image there is a corresponding epipolar line in the right image This
observation can substantially simplify the search for correspondences



Epipolar Geometry

Figure: T = ¯OO′ and R is the camera rotation.

T × Rx1 ⊥ epipolar plane.
x2 is on the epipolar plane, therefore xT

2 T × Rx1 = 0.



Essential and fundamental matrices

I The application x → T × x is linear. The matrix associated with
this linear function is labeled T×. The essential matrix
(Longuet-Higgins (1981)) is E = T×R. It turns out that we have

xT
2 Ex1 = 0. (6)

I In addition, due to internal camera parameter matrices K1,K2,
xa = Kaua,a = 1,2, and in pixel coordinates u1,u2 we have

uT
2 Fu1 = 0,F = K T

2 EK1. (7)

I F is the fundamental matrix. If only one camera is used,
F = K T EK . The camera is uncalibrated if K is unknown.



3D Reconstruction Problem.

The problem of the reconstruction of a configuration of points in 3D from two
ideal noncalibrated camera images with unknown camera parameters, is
equivalent to the following: given two camera images regarded as subsets in
RP2

1 ,RP2
2 of unknown relative position and internal camera parameters and

two matched sets of labeled points {pa,1, . . . , pa,k} ⊂ RP2
a , a = 1, 2, find all

the sets of points in space p1, . . . , pk in such that there exist two positions of
the planes RP2

1 ,RP2
2 and internal parameters of the two cameras ca, a = 1, 2

with the property that the ca-image of pj is pa,j ,∀a = 1, 2, j = 1, . . . , k .



Projective Ambiguity of the Reconstruction from pairs
of Uncalibrated Images.

The projective ambiguity of the reconstruction from uncalibrated
cameras is due to Faugeras(1992) and Hartley et. al. (1992)
leading to:
THEOREM(2006-Sughatadasa-Patrangenaru). In absence of
occlusions, the projective shape of a 3D configuration R
reconstructed from a pair of matched configurations in
noncalibrated cameras images of a 3D configuration C, and the
projective shape of C are the same.
Note that for any pair of 2D images, a landmark correspondence is
needed to obtain a 3D reconstruction



Planar pattern used for camera calibration



Two pictures of shell with landmarks



Reconstruction obtained from landmark
correspondences



Asymptotic nonparametric inference based on
Schoenberg means on

∑k
p,0

The manifold approach to reflection-shape analysis, including
Schoenberg embeddings and connections to multidimensional
scaling (MDS), was initiated by Bandulasiri and Patrangenaru (2005).
Two configurations of points have the same reflection shape if they
differ by a similarity of the ambient Euclidean space. The set of all
configurations having the same reflection shape as a given
configuration is said to be a reflection shape (see Dryden and Mardia
(1998)).



Asymptotic nonparametric inference based on
Schoenberg means on

∑k
p,0

Given a sample of reflection shapes xi = [ui ], i = 1, . . . ,n, their
sample Schoenberg mean reflection shape X̂R considered here is
based on the Schoenberg embedding in Bandulasiri et al. (2009a),
where the distances between configurations are chord distances in
the ambient space of matrices. Here X̂R = [û]R , where û ∈ M(p, k ;R)
is the unique minimizer of

u→ Tr(B̂ − uT u)2

which is determined up to an orthogonal transformation, satisfying
the constraints

u1k = 0

and
Tr(uT u) = 1.



Asymptotic nonparametric inference based on
Schoenberg means on

∑k
p,0

In general, given a random reflection shape X = [U], and the spectral
decomposition B =

∑k
i=1 λieieT

i of

B = E(UT U),

the Schoenberg mean reflection shape exists if and only if λp > λp+1.
If this is the case, then uT can be taken as the matrix
V = (v1v2 . . . vp), whose columns are orthogonal eigenvectors of B
corresponding to the largest eigenvalues λ1 ≥ . . . ≥ λp of B, with

(a)vT
j 1k = 0

and
(b)vT

j vj = λj +
1
p

(λp+1 + . . .+ λk ), ∀j = 1, . . . ,p.



Schoenberg sample mean computations for the 3D
data

We then have Ĉlarge = 1
8

∑
j={1,2,3,4,5,6,8,9} UT

j Uj

The eigenvalues of Ĉlarge satisfies λp > λp+1. So the extrinsic mean
µE reflection shape exists and µE = [u]R where uT can be taken as

V = (v1v2v3)

whose columns are orthogonal eigenvectors of Ĉlarge corresponding
to the largest eigenvalues λ1 ≥ λ2 ≥ λ3 of Ĉlarge, with

vT
j vj = λj +

1
3

(λ4 + . . .+ λk ), ∀j = 1,2,3.

The Schoenberg sample mean [ξ̂large]R reflection shape of the large
group is

[ξ̂large]R = {Aûlarge : A ∈ O(3)}



Schoenberg sample mean computations for the 3D
data

Similarly, Ĉsmall = 1
7

∑
j={10,11,12,14,17,18,21} UT

j Uj .

The eigenvalues of Ĉsmall satisfie λp > λp+1. So the Schoenberg
mean reflection shape µ̂E exists and µE = [u]R where uT can be taken
as

V = (v1v2v3)

whose columns are orthogonal eigenvectors of Ĉsmall corresponding
to the largest eigenvalues λ1 ≥ λ2 ≥ λ3 of Ĉsmall , with

vT
j vj = λj +

1
3

(λ4 + . . .+ λk ), ∀j = 1,2,3.

The Schoenberg sample mean [ξ̂large]R reflection shape of the small
group is

[ξ̂small ]R = {Aûsmall : A ∈ O(3)}



Schoenberg sample mean computations for the 3D
data

Figure: Icons of extrinsic mean shape for large shells sample(red) and small
shells sample(blue)



Schoenberg sample mean computations for the 3D
data

Figure: Distributions of bootstrapped extrinsic mean shape for large shells
sample(red) and small shells sample(blue).



Diffusion Tensor Imaging
D T I data is an M R I byproduct signaling the presence and direction
of water flow in the brain. At each voxel, the axis of an ellipsoid
pointing the directions and amounts of water flows are given. The
ellipsoid is described by the coefficients of the equation∑3

i,j=1 dijx ix j = 1

Figure: DTI slice intensity level of the d11 entry a control subject (left) and of a
dyslexia subject (right).



Diffusion Tensor Imaging Analysis
We compare the average DTI changes between clinically normal and
dyslexic kids (Osborne et al. (2013)) from two small samples (
sample size 6 ) of DTI outputs. Dyslexya is curable ( the cure seldom
consists in studying Math and Stat:)). Hint : two sample tests on
Sym+(3) via Cholesky decompositions.

Figure: Bootstrap distribution of our test statistics V : The images (1 - 3) in the
first row corresponds to the diagonal entries of the matrices V ∗: v11, v22, v33

and images (4 - 6) in the second row corresponds to the lower off-diagonal
entries of the matrices V ∗: v21, v31, v32



Why Object Data Analysis on Lie Groups?

(a) Statue A. (b) Statue B.

Figure: Statue Data.

Question: Could one tell from random views of two busts from Musei
Capitolini, Rome, Italy, if they might represent the same person?



Projective Shape Manifolds.

I In general, if a configuration of points contains a projective frame,
then the projective shape of that configuration, is determined by
the projective coordinates of the other points of this configuration
w.r.t. this projective frame.

I Let PΣk
m be the subset of P0Σk

m, of generic orbits of k-tuples in
RPm, such that the first m + 2 points in the k-tuple form a
projective frame. PΣk

m is a manifold diffeomorphic with
(RPm)k−m−2, leading to a multivariate axial data analysis
(Mardia and P., Ann. Statist., 2005)



Veronese-Whitney Embedding of PΣk
m.

Assume q = k −m − 2. Mardia and Patrangenaru (2005) considered
the diagonal equivariant embedding

J = jk : PΣk
m = (RPm)q → (S(m + 1))q

defined by
jk ([x1], ..., [xq]) = (j([x1]), ..., j([xq])), (8)

where xs ∈ Rm+1, xT
s xs = 1,∀s = 1, ...,q and j is the

Veronese-Whitney embedding

j([x ]) = xxT , xT x = 1. (9)



Mean projective shapes.

A random projective shape Y of a k -ad in RPm is given in axial
representation by the multivariate random axes

(Y 1, . . . ,Y q),Y s = [X s], (X s)T X s = 1,∀s = 1, . . . , q = k −m − 2. (10)

The extrinsic mean projective shape of (Y 1, . . . ,Y q) exists if ∀s = 1, . . . , q,
the largest eigenvalue of E(X s(X s)T ) is simple. In this case µjk is given by
µjk = ([γ1(m + 1)], ..., [γq(m + 1)]), where λs(a) and γs(a), a = 1, . . . ,m + 1
are the eigenvalues in increasing order and the corresponding unit
eigenvector of E(X s(X s)T ).
If Yr , r = 1, . . . , n are i.i.d.r.o.’s from a population of projective shapes, for
which the mean shape µjk exists, the extrinsic sample mean [Y ]jk ,n can be
obtained from Yr = ([X 1

r ], . . . , [X q
r ]), (X s

r )T X s
r = 1; s = 1, ..., q. Let Js as

follows: Js = n−1Σn
r=1X s

r (X s
r )T , s = 1, . . . , q, ds(a) and gs(a) are the

eigenvalues in increasing order and the corresponding unit eigenvectors of
Js, a = 1, . . . ,m + 1, then sample mean projective shape is given by

Y jk ,n = ([g1(m + 1)], . . . , [gq(m + 1)]). (11)



Large Sample Theory for Projective Shapes-1

Let Σ be the covariance matrix of jk (Y 1, . . . ,Y q) regarded as a random
vector in (S(m + 1))q , with respect to this standard basis, and let
P =: Pjk : (S(m + 1))q → jk ((RPm)q) be the projection on jk ((RPm)q).
Patrangenaru et. al. (2009) showed that with respect to a conveniently
selected orthonormal basis of Tµjk

(RPm)q , the extrinsic covariance matrix of
(Y 1, . . . ,Y q) is given by

Σjk =
[
e(s,a)(Pjk (µ)) · DµPjk (r eb

a)
]

(s=1,...,q),(a=1,...,m)
· Σ

·
[
e(s,a)(Pjk (µ)) · DµPjk (r eb

a)
]T

(s=1,...,q),(a=1,...,m)
. (12)



Large Sample Theory for Projective Shapes-2

Assume Y1, . . . , Yn is a random sample from a jk -nonfocal probability measure on (RPm)q and µjk
in (??) is the extrinsic mean of

Y1. The expression of the entries of the extrinsic sample covariance matrix G(jk , Y ) was also given in Patrangenaru et. al (2009). We
arrange the pairs of indices (s, a), s = 1, . . . , q; a = 1, . . . ,m, in their lexicographic order, then with respect to a convenient
orthonormal basis, the entries of G(jk , Y ) are given by

G(jk , Y )(s,a),(t,b) = n−1(ds (m + 1) − ds (a))−1(dt (m + 1) − dt (b))−1 ·

·
n∑

r=1
(gs (a)T Xs

r )(gt (b)T Xt
r )(gs (m + 1)T Xs

r )(gt (m + 1)T Xt
r ). (13)

From Bhattacharya and Patrangenaru (2005) it follows that G(jk , Y ) is a strongly consistent estimator of the population extrinsic
covariance matrix Σjk

. In preparation for an asymptotic distribution of Y jk ,n
we set

Ds = (gs (1) . . . gs (m)) ∈ M(m + 1,m; R), s = 1, . . . , q. (14)



Large Sample Theory for Projective Shapes-3

If µ = ([γ1], . . . , [γq]), where γs ∈ Rm+1, γT
s γs = 1, for s = 1, . . . ,q, we

define a Hotelling’s T 2 type-statistic

T (Y jk ,n;µ) = n(γT
1 D1, . . . , γ

T
q Dq)G−1

n (γT
1 D1, . . . , γ

T
q Dq)T . (15)



Large and Small Sample Theory for Projective Shapes

Assume (Yr )r=1,...,n are i.i.d.r.o.’s on (RPm)q , and Y1 is jk -nonfocal,
with ΣE > 0. Let λs(a) and γs(a) be the eigenvalues in increasing
order and corresponding unit eigenvectors of E [X a

1 (X a
1 )T ]. If

λs(1) > 0, for s = 1, . . . ,q, then T (Y jk ,n;µjk ) converges weakly to
χ2

mq .
For small samples, use Efron’s bootstrap.



A Lie Group Structure on a Manifold of 3D Projective
Shapes

I Note that unlike in other dimensions the projective shape manifold PΣk
3

has a Lie group structure.
I This Lie group is homeomorphic to M = (RP3)q , where q = k − 5.

Therefore with this identification, PΣk
3 ∼ (RP3)q inherits a Lie group

structure from the group structure p-quaternions RP3 given in (17) on
the next slide. The multiplication in (RP3)q is given by

([h1], . . . , [hq])·q([h′1], . . . , [h′q]) := ([h1]·[h′1], . . . , [hq]·[h′q]) = ([h1·h′1], . . . , [hq ·h′q]).
(16)

I The identity element is given by
1(RP3)q = ([0 : 0 : 0 : 1], . . . , [0 : 0 : 0 : 1]), and given a point
h = ([h1], . . . , [hq]) ∈ (RP3)q , from (18), its inverse is
h−1 = h = ([h̄1], . . . , [h̄q]).



Quaternions and P-Quaternions - detail
If a real number x is identified with (0, 0, 0, x) ∈ R4, and if we label the
quadruples (1, 0, 0, 0), (0, 1, 0, 0), respectively (0, 0, 1, 0) by

−→
i ,
−→
j ,

respectively
−→
k , then the multiplication table given by

·
−→
i

−→
j

−→
k

−→
i -1

−→
k −

−→
j

−→
j −

−→
k -1

−→
i

−→
k

−→
j −

−→
i -1

can be extended by linearity to a multiplication · of R4, and (R4,+, ·) has a
structure of a noncommutative field, the field of quaternions, usually labeled
by H, in honor of William Rowan Hamilton. Note that if h, h′ ∈ H, then
‖h · h′‖ = ‖h‖‖h′‖, therefore the three dimensional sphere inherits a group
structure, the group of quaternions of norm one.
Moreover since RP3 is the quotient S3/x ∼ −x

[x ] · [y ] =: [x · y ], (17)

is a well defined Lie group operator on RP3, called the group of
p-quaternions. Note that if h = t + x

−→
i + y

−→
j + z

−→
k , its conjugate is

h̄ = t − x
−→
i − y

−→
j − z

−→
k , and it turns out that the inverse of h is given by

h−1 = ‖h‖−2h̄, (18)



Quaternions and P-Quaternions - as Riemannian
Homogeneous Spaces

Note that RP3 is isomorphic with SO(3), and the Lie algebra so(3) is

[X1,X2] = X3, [X2,X3] = X1, [X3,X1] = X2, (19)

therefore the Left invariant dual Pfaff forms satisfy

dω1 + ω2 ∧ ω3 = 0,dω2 + ω3 ∧ ω1 = 0,dω3 + ω1 ∧ ω2 = 0 (20)

Using the Cartan triple method, Patrangenaru (1994) showed that any
homogeneous metric on SO(3) is isometric with a metric of the form

g = λ1(ω1)2 + λ2(ω1)2 + λ3(ω1)2, (21)

for some positive constants λj , j = 1,2,3. This space has constant
curvature (is a quotient of the round sphere S3), only if λ1 = λ2 = λ3.
The choice of equal lambdas in intrinsic projective shape analysis, is
meant only to ease computational aspects of the intrinsic data
analysis, which, even in this case, is slower than the VW analysis.



Two sample test for VW-mean 3D projective shapes
from stereo images.

I Testing the hypothesis H0 : µ1 = µ2 on a Lie group G is same as
testing H0 : µ = 1G, where µ = µ−1

2 µ1.

I From general considerations in large sample theory one should
first derive the asymptotic distribution of µ̂ = µ̂2

−1µ̂1, where µ̂a is
a consistent estimator of µa, under H0, via a delta method on
manifolds.

I In particular this distribution is determined in the case when
G = (RP3)q , with q = k − 5, and used to derive two sample tests
for independent populations of 3D projective shapes, based on
large samples.

I For small samples, we derive nonparametric bootstrap
confidence regions for µ above based on

(µ̂2
∗)−1µ̂1

∗ (22)

I This methodology will be applied to two a sample test for mean
3D projective shape from images of a face.



Half Bust Data

Figure: Epicurus bust images.



Landmarks

Figure: Landmarks of the bust.

I Goal: using only the right half-face of the bust, testing if the two
busts portrayed the same person?



Hypothesis Testing on the Projective Shape Space
I Set the data of the first 16 images as H1, the rest 8 images as

H2. The null and alternative hypothesis are

H0 : µ−1
1,9 � µ2,9 = 14. (23)

I Select landmarks 1, 4, 5, 6, 8 were to construct the projective
frame. For the confidence region, we compute 2,000,000
bootstrap V-W sample means, based on landmarks 2, 3, 7, 9 by
(??).

I (0,0,0)T is in the 4 boxes, which means we fail to reject the null;
the two busts portrayed the same person.

Figure: Simultaneous confidence regions for the statue data.



Shape of Contours Data

Shape of contours data is collected from digital images of 2D scenes, via
edge maps extractors, and smoothing. Consider an example for one sample
test for extrinsic mean shape is performed for sting ray contours. In this case,
the sample extrinsic mean shape for a sample of contours of n = 20 sting
rays is the shape shown on the left hand side in Fig. 16.

Figure: 95% bootstrap c.r. for the extrinsic mean shape based on 500 contour reps and 600
bootstrap resamples



3D virtual skull reconstructions from C T scans
Medical Imaging can be used for reconstructive plastic surgery of the
skull.

Figure: One ( out of twenty) 3D virtual skull reconstruction with midface
landmarks



3D mean size and shape of midface landmark
configurations from 3D virtual skull reconstructions

Figure: Simultaneous bootstrap c.r.’s for mean midface landmark
configurations



Stereo data of eye fundus - courtesy H. W. Thompson
(LSU-Biostatistics)

An L S U experiment for glaucomatous change detection using both
Heidelberg Retina Tomograph and regular stereo eye fundus data
was performed on a group of Rhesus monkey around Y2K. Increased
Internal Ocular Pressure (IOP) was induced in one treated eye, with
the other eye used as a control. All monkeys survived the experiment,
still they could not be moved in time when Katrina hit downtown New
Orleans. Stereo eye fundus data was recovered much later(2008),
given that the PI himself ( Claude Burgoyne ) relocated in Portland
after Katrina.).

Figure: Rhesus monkeys eye fundus stereo data



Glaucomatous projective shape change detection

Figure: Detection of 3D projective shape change in 9 anatomical landmarks
using 3D projective shape reconstructions from eye fundus stereo data, and
bootstrap on projective quaternion reps



Fréchet’s program for a Statistical Analysis of
Elements

I The question of studying random element ( nowadays called
random objects (r. o.’s)), other than random vectors, was first
raised by Maurice Fréchet (1948).

I As an example, Fréchet suggested to analyze the shape of a
contour of a closed curve, or the shape of an egg selected at
random from an wire egg basket.

I Fréchet’s approach to AOD consists in identifying an object with
a point in a metric space (M,d).

I Next, given a r.o. X on M, he defined what we call today the
Fréchet functions on M, given by Fd,q(p) = E(dq(X ,p)).

I A minimizer of Fd,2 above is a Cartan-Fréchet mean, and the
minimum value of Fd,2 is the Fréchet total variance.

I Ziezold (1977): the Cartan-Fréchet sample mean set is a
consistent estimator of the Cartan-Fréchet population mean
set.



Nonparametric Statistics on Manifolds, prior to AOD
program

I Function and density estimation on a manifold (Beran(1968),
Wellner, Gine, Henricks, Kim ) was the first target of data
analysis on manifolds

I Secondly the asymptotic behavior of Fréchet sample means on
manifold was possible, since manifold is locally modeled on its
tangent space H. The first results are due to Hendricks and
Landsman and Patrangenaru(dimH <∞), and to Ellingson,
Patrangenaru and Ruymgaart (2013)( dimH =∞)

Figure: Left: A 2D manifold - Klein bottle. Right: a tangent space at a point



Fréchet’s program - the case of Manifolds

I A manifold modeled on a Hilbert space H, is locally, but not
globally homeomorphic to H.

I If dimH <∞, manifold data, are a natural extension of
multivariate data.

I If dimH =∞, data on Hilbert manifolds are an extension of
functional data.

I Dimension reduction via geodesic PCA for HDLSS data on
certain Riemannian manifolds ( Huckemann, Hotz and Munk
(2010)).

I Extrinsic analysis on nonflat manifolds is computationally faster
then intrinsic analysis ( Bhattacharya, Crane, Ellingson, Liu and
Patrangenaru (2012)).



Nonparametric Statistics on Manifolds (NSSS 1.0)

I A manifold modeled on a Hilbert space H, is locally, but not
globally homeomorphic to H.

I If dimH <∞, manifold data, are a natural extension of
multivariate data.

I If dimH =∞, data on Hilbert manifolds are an extension of
functional data.

I Large sample theory of extrinsic sample means (d =j d , where
j : M → L is an embedding of M), are due to Hendricks and
Landsman(1996,1998) and Patrangenaru(1998). A CLT for
intrinsic sample means (d = dg , where g is a Riemannian tensor
on the manifold) was given in Bhattacharya and Patrangenaru
(2005).

I The multivariate normal asymptotic behavior of the Fréchet
sample means in the tangent space at the population Fréchet
mean, assuming the later exists, where also given in
Bhattacharya and Patrangenaru (2005).



Stratified Spaces
I A stratified space ( space with a manifold stratification ) is a

metric space M that admits a filtration
∅ = F−1 ⊆ F0 ⊆ F1 . . . ⊆ Fn ⊂ · · · = M = ∪∞i=0Fi , by closed
subspaces, such that for each i = 1, . . . ,Fi\Fi−1 is empty or is an
i-dimensional manifold, called the i − th stratum.

I The regular part of M is the highest dimensional stratum. At
each regular point the stratified space has a tangent space

I The dimension of the stratified space is m if M = Fm 6= Fm−1,
otherwise dimM =∞. All the strata of dimension lower than m
are singular: at each of their points, the stratified space does not
have a tangent point.

Figure: A 2D stratified space - T4, space of trees with four leafs



Phylogenetic Trees

I More recently the explosion of genetic data available through
molecular biology has made tree-building even more popular.
This presentation aims to give a motivation for working with
metric trees data.

I The data that biologists use, usually comes from one
homogenous sequence. When they talk about homogenous,
they talk about problems between gene trees and genes that are
made from one tree. The gene sequence might be about 200
base pairs long.

I One of the ideas that biologists believe in, is that the way
evolution works is that there would only be one species tree.
Different genes have different histories, so you get different gene
trees. Putting them together is a statistical problem that helps
understanding a possible evolutionary process



Example of Species Tree

Figure: Phylogenetic tree of cetaceans ( courtesy Susan Holmes)



The Space of Phylogenetic Trees with p Leaves
A phylogenetic tree with p leaves is an equivalence class based on a certain
equivalence, of a DNA-based connected directed graph of species with no
loops, having an unobserved root (common ancestor) and p observed leaves
(current observed species of a certain family of living creatures).



Length of Edges on a Phylogenetic Tree



Tree Spaces

Figure: Tree spaces T3, T4, T5.

I A tree with p leaves is a connected, simply connected graph , with a
distinguished vertex, labeled o, called the root, and p vertices of degree
1, called leaves, that are labeled from 1 to p. In addition, we assume
that with all interior edges have positive lengths. (An edge of a p-tree is
called interior if it is not connected to a leaf.) See Billera et. al.(2001).

I Now consider a tree T, with interior edges e1, . . . , er of lengths l1, . . . , lr
respectively. If T is binary, then r = p − 2, otherwise r < n − 2. The
vector (l1, . . . , lr )T specifies a point in the positive open orthant (0,∞)r .



Tree Spaces are Stratified Spaces

I An p-tree has the maximal possible number of interior edges
(namely p-2) and thus determines the largest possible
dimensional orthant, when it is a binary tree; in this case the
orthant is p − 2-dimensional. The orthant corresponding to each
tree which is not binary appears as a boundary face of the
orthants corresponding to at least three binary trees; in particular
the origin of each orthant corresponds to the (unique) tree with
no interior edges. We construct the space Tp by taking one
p − 2-dimensional orthant for each of the (2p − 3)!! possible
binary trees, and gluing them together along their common faces.

I Note that tree spaces are not manifolds. Singularities ( points
where the space does not have a tangent space) are present in
the tree space structure. For the stratification of the low
dimensional tree spaces, see figure 24.



AOD = Intro to Statistics on Stratified Spaces (SSS)

I Recall that the space of trees with 3 leaves is T3 = S3, a
3-spider, union of three line segments with a common end.

I For a probability measure on Sp, if none of the the “legs" of the
p-spider has a dominant probability mass, then the Fréchet mean
is the star tree, which was the motivation for studying the
asymptotics of Fréchet sample means of distributions on Tp.
(Basrak(2010) and Hotz et. al.(2013)).

I There is no clear biological interpretation though.
I In shape analysis, in 3D computational examples lead to the idea

of sticky sample mean, a new phenomenon.
I Computational examples from tree and shape data led to the

creation of the Working Group on Data Analysis on Sample
Spaces with a Manifold Stratification.

I One initial goal, was to understand the asymptotics of the
Fréchet means for distributions on such stratified spaces.



Probability measures on Spiders

I Xi , i = 1, . . . ,n i.i.d.r.o.’s on Sp, of legs La,a = 1, . . .p, and center
C.

I The Fréchet mean µX1,F exists
I The Fréchet variance is finite.
I Any probability measure Q on Sp decomposes uniquely as a

weighted sum of probability measures Qk on the legs Lk and a
probability measure Q0 is the atomic probability at C. More
precisely, there are nonnegative real numbers {wk}p

k=0 summing
to 1 such that, for any Borel set A ⊆ Sp, the measure Q takes the
value

Q(A) = w0Q0(A ∩ C) +

p∑
k=1

wk Qk (A ∩ Lk ).

I The nontrivial case at: al least of the moments
µa = E(Qa),a = 1, . . .p are positive.



CLT on Spiders (NSSS 2.1)

Hotz et. al. (2010).
I If 3 a ∈ 1, p such that µa >

∑
b 6=a µb then µX1,F ∈ La and X̄n,F ∈ La, and√

n(X̄n,F − µX1,F ) has asymptotically a normal distribution with finite
mean.

I If 3 a ∈ 1, p such that µa =
∑

b 6=a µb, then asymptotically, after folding
the legs Lb, b 6= a into one half line opposite to La,

√
n(X̄n,F ) has

asymptotically the distribution of the absolute value of a normal
distribution with finite mean.

I If ∀a ∈ 1, p, µa <
∑

b 6=a µb, µX1,F = C and there is n0 s.t.
∀n ≥ n0, X̄n,F = 0 a.s. ( this is the stickiness phenomenon).

The result above was recently extended to C. L. T. on open books (Hotz et. al
(2013)).



CLT on Trees (NSSS 2.s, s >1)

Basrak(2010) extended his result to distributions on binary metric
trees. The following are the final comments of that paper: Note that
the results and proofs above extend directly to arbitrary k-spiders and
locally finite nonbinary metric trees. The strong laws of large numbers
hold unaltered in these cases too. Limit theorems will need minor
adjustments, since on a general tree, the barycenter can split the tree
into more than three subtrees. Nevertheless, asymptotically, the
inductive mean will have one of the three types of behavior described
in Theorem 3. In particular, the phase transition in the limiting
behavior is still to be expected.



Πανδωρα’s box - CLT’s on a graph including cycles

Figure: Bicyclic graph

I Basrak(2010) comment on the previous slide does not extend to
graphs, since graphs usually have cycles.

I The key property of metric acyclic graphs (trees), is that they are
Cat(0), and a r.o. on a Cat(0) space with finite Fréchet variance,
has a Fréchet mean.

I There are r.o.’s on a circle having a Fréchet mean set with at
least two objects. In fact the intrinsic mean set may contain an
arbitrary number of points, or be even the entire circle.



Basrak’s sufficient condition for CLT’s on a graph
I Basrak(2010) condition for trees can be extended to the case of

graphs in some general cases even if the graph G has cycles
with positive mass on any arc of a cycle (Hendricks and
Patrangenaru (2014)).

I The case when µF is on an edge ( on the highest dimensional
cycle is obvious ).

I Assume µF is a vertex, and G\µF at least two connected
components of positive mass, and Q(ωa(µF , ε)) = 0, where
ωa(α, ε) is an ε - neighborhood of the farthest point to α on the
connected component Ca of G\α.

I Assume C1, . . . ,Cr are the connected components of G\µF .
I Let µa = E(Q̃a), where Q̃a is the probability measure obtained

from Qa by folding the legs or arcs of Ca.
Under the assumptions above if X1, . . .Xn are i.i.d.r.o.’s on G with
mean µF and finite total Fréchet variance. Then

I If 3 a ∈ 1,p such that µa >
∑

b 6=a µb then µX1,F ∈ Ca and
X̄n,F ∈ Ca, and

√
n(X̄n,F − µF ) has asymptotically a normal

distribution with finite mean.
I If ∀a ∈ 1,p, µa <

∑
b 6=a µb, then µX1,F = C and, almost surely, for

n large enough X̄n,F = C as well. This is the sticky sample mean
case



Example:Sticky and Regular Means on Bicyclic Graph

(Loading movie...)
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Drawbacks of an intrinsic analysis on tree spaces

I An analysis of a population of trees based on intrinsic means
may be uninformative if the intrinsic sample mean sticks to a
lower dimensional stratum of the tree space.

I On the other hand, an extrinsic analysis a population of trees
based on extrinsic mean sets is may be helpful, given the
consistency of the extrinsic sample mean sets. Each point in the
extrinsic sample mean set has asymptotically a multivariate
normal distribution around the point of the extrinsic population
mean set in the corresponding orthant.

I Similarly, the intrinsic sample mean might often time stick to a
vertex, thus making the data analysis on a graph difficult.

I There are no necessary and sufficient conditions for the
existence of the intrinsic mean on a non simply connected graph.

I On the other hand there are such conditions for the existence of
extrinsic means on graphs and tree spaces.



Sticky Mean on Tree Spaces

(Loading movie...)
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Embeddings of Open Books

5

4
321

Figure: Embeddings of open books : part of T4, hard book and paper back book

The extrinsic mean set of a distribution on a carton open book ( see
figure 83) is on the spine if and only the distribution is entirely
concentrated on the spine; such embeddings do not present the
stickiness phenomenon. On the other hand, paperback open books
present a stickiness phenomenon for a large family of distributions. In
general the CLT for an embedding of stratified spaces is now known
(see Bhattacharya et. al.(2013)).



Eukaryotes mean tree example
See Ellingson et. al.(2014) for details

Figure: DNA sequences Eukaryotes species

Figure: Yule speciation trees for Perkinsus DNA data

The HDLSS problem encountered was carefully avoided by using a
data driven orthant selection in T10 and a reduction to a T4
substratification.



Estimation of Means on Hilbert Manifolds - an
Introduction

Motivated by a lack of nonparametric methods for inference in high
level digital image analysis, we introduce a general extrinsic approach
for data analysis on Hilbert manifolds. By embedding a Hilbert
manifold into a Hilbert space, we can define extrinsic means and their
sample analogues. To perform inference on these means, we appeal
to the concept of neighborhood hypotheses from functional data
analysis and derive a one-sample test. We apply these methods to
the problem of estimating mean shapes of planar contours while
considering the computational restrictions faced when utilizing digital
imaging data. Comparisons of computational cost are provided to
another method for analyzing contours.



Hilbert Manifolds

Note that and Hilbert space is a Banach space. Therefore
differentiability in a Hilbert space is differentiability in the sense of
Banach spaces.
A chart on a separable metric space (M, ρ) is a one to one
homeomorphism ϕ : U → ϕ(U) defined on an open subset U ofM to
a Hilbert space H. A Hilbert manifold is a separable metric space
M, that admits an open covering by domain of charts, such that the
transition maps ϕV ◦ ϕ−1

U : ϕU(U ∩ V )→ ϕV (U ∩ V ) are differentiable.



Example - The projective space associated with a
Hilbert space

The projective space P(H) of a Hilbert space H, the space of all one
dimensional linear subspaces of H, has a natural structure of Hilbert
manifold modelled over H. Define the distance between two vector
lines as their angle, and, given a line L ⊂ H, a neighborhood UL of L
can be mapped via a homeomorphism ϕL onto an open
neighborhood of the orthocomplement L⊥ by using the
decomposition H = L⊕ L⊥. Then for two perpendicular lines L1 and
L2, it is easy to show that the transition maps ϕL1 ◦ ϕ

−1
L2

are
differentiable as maps between open subsets in L⊥1 , respectively in
L⊥2 . A countable orthobasis of H and the lines Ln,n ∈ N generated by
the vectors in this orthobasis is used to cover P(H) with the open sets
ULn ,n ∈ N. Finally, use the fact that for any line L,L⊥ and H are
isometric as Hilbert spaces. The line L spanned by a nonzero vector
γ ∈ H is usually denoted [γ] when regarded as a projective point on
P(H).



Embeddings of means on Hilbert manifolds
An embedding of a Hilbert manifoldM in a Hilbert space H is a
one-to-one differentiable function j :M→ H, such that for each
x ∈M, the differential dx j is one to one, and the range j(M) is a
closed subset of H and the topology ofM is induced via j by the
topology of H.
Example We embed P(H) in LHS = H⊗ H, the space of
Hilbert-Schmidt operators of H into itself, via the Veronese-Whitney
(VW) embedding j given by

j([γ]) =
1
‖γ‖2 γ ⊗ γ. (24)

If ‖γ‖ = 1, this definition can be reformulated as

j([γ]) = γ ⊗ γ. (25)

Given that γ∗(β) =< β, γ > equation (25) is equivalent to

j([γ])(β) =< β, γ > γ. (26)

The range of this embedding is the submanifoldM1 of rank one
Hilbert-Schmidt operators of H.



Extrinsic means on Hilbert manifolds

Consider a random object X on a Hilbert manifoldM embedded in a
Hilbert space, that has an extrinsic mean set. Then (i) j(X ) has a
mean vector µ and (ii) the extrinsic mean set is the set of all points
x ∈M, such that j(x) is at minimum distance from µ. (iii) In particular,
µE exists if there is a unique point on j(M) at minimum distance from
µ, the projection Pj (µ) of µ on j(M), and in this case µE = j−1(Pj (µ)).



Extrinsic analysis on Hilbert manifolds

Consider a random object X on a Hilbert manifoldM embedded in a
Hilbert space, that has an extrinsic mean set. Then (i) j(X ) has a
mean vector µ and (ii) the extrinsic mean set is the set of all points
x ∈M, such that j(x) is at minimum distance from µ. (iii) In particular,
µE exists if there is a unique point on j(M) at minimum distance from
µ, the projection Pj (µ) of µ on j(M), and in this case µE = j−1(Pj (µ)).
A random object X on a Hilbert manifoldM embedded in a Hilbert
space is j-nonfocal if there is a unique point p on j(M) at minimum
distance from E(j(X )).
Assume X = [Γ] is a random object in P(H). Then the VW mean of X
exists if and only if E( 1

‖Γ‖2 Γ⊗ Γ) has a simple largest eigenvalue, in
which case, the distribution is j-nonfocal. In this case the VW mean is
µE = [γ], where γ is an eigenvector for this eigenvalue.



A one-sample test of the neighborhood hypothesis
We can now define the neighborhood hypothesis procedure for tests
of extrinsic means. Assume Σj is the extrinsic covariance operator of
a random object X on the Hilbert manifoldM, with respect to the
embedding j :M→ H. Let M0 be a compact submanifold ofM. Let
ϕ0 :M→ R be the function

ϕ0(p) = min
p0∈M0

‖j(p)− j(p0)‖2, (27)

and let Mδ
0,Bδ0 be given respectively by

Mδ
0 = {p ∈M, ϕ0(p) ≤ δ2},

Bδ0 = {p ∈M, ϕ0(p) = δ2, }. (28)

Since ϕ0 is Fréchet differentiable and all small enough δ > 0 are
regular values of ϕ0, it follows that Bδ0 is a Hilbert submanifold of
codimension one inM. Let νp be the normal space at a points
p ∈ Bδ0, orthocomplement of the tangent space to Bδ0 at p. We define
Bδ,X0

Bδ,X0 = {p ∈ B0,Σj |νp is positive definite}. (29)
Definition The neighborhood hypothesis consists in the following two
alternative hypotheses:

H0 : µE ∈ Mδ
0 ∪ Bδ,X0 ,

H0 : µE ∈ (Mδ
0 )c ∩ (Bδ,X0 )c . (30)



Dimension reduction : from infinity to one
Here, we consider neighborhood hypothesis testing for the particular
situation in which the submanifold M0 consists of a point m0 onM.
We set ϕ0 = ϕm0 , and since Tm0{m0} = 0 we have the following
result. Theorem. If M0 = {m0}, the test statistic for the neighborhood
hypotheses has an asymptotically standard normal distribution and is
given by:

Tn =
√

n{ϕm0 (µ̂E )− δ2}/sn, (31)

where
s2

n = 4〈ν̂,SE,nν̂〉 (32)

and

SE,n =
1
n

n∑
i=1

(tan ˆ̃µ dj(X)n
Pj (j(Xi )− j(X )n))⊗

⊗(tan ˆ̃µ dj(X)n
Pj (j(Xi )− j(X )n)) (33)

is the extrinsic sample covariance operator for {Xi}n
i=1, and

ν̂ = (dµ̂E,n j)−1 t̂anj(µ̂E,n)(j(m0)− j(µ̂E,n)). (34)



THANK YOU !
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