Nonuniform Models for Robust Network Design

David Adjiashvili

IFOR, ETH Zürich

Joint work with Sebastian Stiller and Rico Zenklusen

July 31, 2013

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Combinatorial Problems (Shortest Path, Spanning Tree...)
- Adversarial Failure Model ("Robust" Optimization)
- Covering Problems

• Nonuniform failure scenarios ? , ?

Complexity/Algorithms (exact, approximation)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Combinatorial Problems (Shortest Path, Spanning Tree...)

• Adversarial Failure Model ("Robust" Optimization)

Covering Problems

• Nonuniform failure scenarios ? , ?

Complexity/Algorithms (exact, approximation)

イロト イポト イヨト イヨト

• Combinatorial Problems (Shortest Path, Spanning Tree...)

- Adversarial Failure Model ("Robust" Optimization)
- Covering Problems

• Nonuniform failure scenarios ? , ?

Complexity/Algorithms (exact, approximation)

イロト イポト イヨト イヨト

- Combinatorial Problems (Shortest Path, Spanning Tree...)
- Adversarial Failure Model ("Robust" Optimization)
- Covering Problems

• Nonuniform failure scenarios 🦳 ? , ?

Complexity/Algorithms (exact, approximation)

- Combinatorial Problems (Shortest Path, Spanning Tree...)
- Adversarial Failure Model ("Robust" Optimization)
- Covering Problems

• Nonuniform failure scenarios ? , ?

Complexity/Algorithms (exact, approximation)

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

- Combinatorial Problems (Shortest Path, Spanning Tree...)
- Adversarial Failure Model ("Robust" Optimization)
- Covering Problems

• Nonuniform failure scenarios ? , ?

Complexity/Algorithms (exact, approximation)

- Combinatorial Problems (Shortest Path, Spanning Tree...)
- Adversarial Failure Model ("Robust" Optimization)
- Covering Problems

Nonuniform failure scenarios

Complexity/Algorithms (exact, approximation)

- Combinatorial Problems (Shortest Path, Spanning Tree...)
- Adversarial Failure Model ("Robust" Optimization)
- Covering Problems

• Nonuniform failure scenarios ?

Complexity/Algorithms (exact, approximation)

- Combinatorial Problems (Shortest Path, Spanning Tree...)
- Adversarial Failure Model ("Robust" Optimization)
- Covering Problems

• Nonuniform failure scenarios ? , ?

Complexity/Algorithms (exact, approximation)

イロト イポト イヨト イヨト

- Combinatorial Problems (Shortest Path, Spanning Tree...)
- Adversarial Failure Model ("Robust" Optimization)
- Covering Problems
 - Nonuniform failure scenarios ? , ?
- Complexity/Algorithms (exact, approximation)

イロン 不同 とくほう イロン

- Combinatorial Problems (Shortest Path, Spanning Tree...)
- Adversarial Failure Model ("Robust" Optimization)
- Covering Problems
 - Nonuniform failure scenarios ? , ?
- Complexity/Algorithms (exact, approximation)

・ロト ・ 同ト ・ ヨト ・ ヨト

What is the cause for failures? depends...

What does the network represent?

David Adjiashvili Nonuniform Models for Robust Network Design

(人間) (人) (人) (人) (人) (人)

What is the cause for failures? depends...

What does the network represent?

David Adjiashvili Nonuniform Models for Robust Network Design

(4 同) (4 日) (4 日)

What is the cause for failures? depends...

What does the network represent?

David Adjiashvili Nonuniform Models for Robust Network Design

・ 同 ト ・ ヨ ト ・ ヨ ト

 \parallel

What is the cause for failures? dependence

What does the network represent?

・ 同 ト ・ ヨ ト ・ ヨ ト

What is the cause for failures? depends...

 \parallel

What does the network represent?

伺 ト イヨト イヨト

What is the cause for failures? depends...

 \parallel

What does the network represent?

 \downarrow

/⊒ > < ∃ >

What is the cause for failures? depends...

 \parallel

What does the network represent?

 \downarrow

/⊒ > < ∃ >

Distributed Computer Systems

▲御▶ ▲理▶ ▲理▶

э

Distributed Computer Systems

- Many processes running on various physical machines, using various resources
- Faults: downtime of resources.

・ 同 ト ・ ヨ ト ・ ヨ ト

Distributed Computer Systems

- Many processes running on various physical machines, using various resources (databases, powerful machines etc.)
- Faults: downtime of resources.

Distributed Computer Systems

- Many processes running on various physical machines, using various resources (databases, powerful machines etc.)
- Faults: downtime of resources.

・ 同 ト ・ ヨ ト ・ ヨ ト

Distributed Computer Systems

- Many processes running on various physical machines, using various resources (databases, powerful machines etc.)
- Faults: downtime of resources.

.

Distributed Computer Systems

- Many processes running on various physical machines, using various resources (databases, powerful machines etc.)
- Faults: downtime of resources.

A B A A B A

Distributed Computer Systems

- Many processes running on various physical machines, using various resources (databases, powerful machines etc.)
- Faults: downtime of resources.

A B A A B A

Distributed Computer Systems

- Many processes running on various physical machines, using various resources (databases, powerful machines etc.)
- Faults: downtime of resources.

A B A A B A

Distributed Computer Systems

- Many processes running on various physical machines, using various resources (databases, powerful machines etc.)
- Faults: downtime of resources.

• • = • • = •

Distributed Computer Systems

- Many processes running on various physical machines, using various resources (databases, powerful machines etc.)
- Faults: downtime of resources.

Similar characteristics in networks representing

- Health care facilities
- Digitally controlled infrastructures
- Hierarchical organizations
- ...

イロン 不同 とくほう イロン

Financial Investment Networks

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Financial Investment Networks

- Many companies in a market with mutual dependencies
- Faults: bankruptcy of companies

イロト イポト イヨト イヨト

Financial Investment Networks

- Many companies in a market with mutual dependencies (investment, supply etc.)
- Faults: bankruptcy of companies

Financial Investment Networks

- Many companies in a market with mutual dependencies (investment, supply etc.)
- Faults: bankruptcy of companies

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Financial Investment Networks

- Many companies in a market with mutual dependencies (investment, supply etc.)
- Faults: bankruptcy of companies \Rightarrow Causes cascades!

・ 同 ト ・ ヨ ト ・ ヨ ト

Financial Investment Networks

- Many companies in a market with mutual dependencies (investment, supply etc.)
- Faults: bankruptcy of companies \Rightarrow Causes cascades!

直 と く ヨ と く ヨ と

Financial Investment Networks

- Many companies in a market with mutual dependencies (investment, supply etc.)
- Faults: bankruptcy of companies \Rightarrow Causes cascades!

直 と く ヨ と く ヨ と
Financial Investment Networks

- Many companies in a market with mutual dependencies (investment, supply etc.)
- Faults: bankruptcy of companies \Rightarrow Causes cascades!

直 と く ヨ と く ヨ と

Financial Investment Networks

- Many companies in a market with mutual dependencies (investment, supply etc.)
- Faults: bankruptcy of companies \Rightarrow Causes cascades!

・ 同 ト ・ ヨ ト ・ ヨ ト

Financial Investment Networks

- Many companies in a market with mutual dependencies (investment, supply etc.)
- Faults: bankruptcy of companies \Rightarrow Causes cascades!

同 ト イヨ ト イヨ ト

Financial Investment Networks

- Many companies in a market with mutual dependencies (investment, supply etc.)
- Faults: bankruptcy of companies \Rightarrow Causes cascades!

・ 同 ト ・ ヨ ト ・ ヨ ト

Financial Investment Networks

- Many companies in a market with mutual dependencies (investment, supply etc.)
- Faults: bankruptcy of companies \Rightarrow Causes cascades!
- Similar characteristics in networks representing
 - Electricity networks
 - Insurance networks
 - Social networks
 - ...

イロン 不同 とくほう イロン

- Simultaneous failure of variable-size parts of the network
- Failure of a single resource that causes failure of multiple network components
- Propagation effects

Certainly,

$\Omega \neq \{A \subset N : w(A) \leq k\} =$ "Uniform"

(1)

- Simultaneous failure of variable-size parts of the network
- Failure of a single resource that causes failure of multiple network components
- Propagation effects

Certainly,

$\Omega \neq \{A \subset N : w(A) \leq k\} =$ "Uniform"

(1)

- Simultaneous failure of variable-size parts of the network
- Failure of a single resource that causes failure of multiple network components
- Propagation effects

Certainly,

$\Omega \neq \{A \subset N : w(A) \leq k\} =$ "Uniform"

- Simultaneous failure of variable-size parts of the network
- Failure of a single resource that causes failure of multiple network components
- Propagation effects

Certainly,

$\Omega \neq \{A \subset N : w(A) \leq k\} =$ "Uniform"

イロト 不得 とくほ とくほう

- Simultaneous failure of variable-size parts of the network
- Failure of a single resource that causes failure of multiple network components
- Propagation effects

Certainly,

$\Omega \neq \{A \subset N : w(A) \leq k\} =$ "Uniform"

ヘロト ヘヨト ヘヨト

- Simultaneous failure of variable-size parts of the network
- Failure of a single resource that causes failure of multiple network components
- Propagation effects

Certainly,

$\Omega \neq \{A \subset N : w(A) \leq k\} =$ "Uniform"

- Simultaneous failure of variable-size parts of the network
- Failure of a single resource that causes failure of multiple network components
- Propagation effects

Certainly,

$\Omega \neq \{A \subset N : w(A) \leq k\} =$ "Uniform"

イロト 不得 トイヨト イヨト

- Simultaneous failure of variable-size parts of the network
- Failure of a single resource that causes failure of multiple network components
- Propagation effects

Certainly,

$\Omega \neq \{A \subset N : w(A) \leq k\} =$ "Uniform"

イロト 不得 トイヨト イヨト

Combinatorial (covering) problem P: $\min\{c(X) : X \in S\}$ $(S \subset 2^N$ feasible set, $c : N \to \mathbb{Z}_+)$

Scenario set:

 $\Omega = \{F_1, \cdots, F_m\} \quad (F_1, \cdots, F_m \subset N \text{ scenarios})$

Bulk-Robust counterpart Bulk(P): $\min\{c(X):X\setminus F_i\in\mathcal{S}\mid orall F_i\in\Omega\}$

イロト 不得 とくほとう ほうとう

Nonuniform Models - Bulk Robustness

Combinatorial (covering) problem P:

 $\min\{c(X): X \in S\}$ $(S \subset 2^N \text{ feasible set, } c: N \to \mathbb{Z}_+)$

Scenario set:

 $\Omega = \{F_1, \cdots, F_m\} \quad (F_1, \cdots, F_m \subset N \text{ scenarios})$

Bulk-Robust counterpart Bulk(P): $\min\{c(X):X\setminus F_i\in\mathcal{S} \mid orall F_i\in \mathcal{G}\}$

Combinatorial (covering) problem P:

 $\min\{c(X): X \in S\}$ $(S \subset 2^N \text{ feasible set, } c: N \to \mathbb{Z}_+)$

Scenario set:

 $\Omega = \{F_1, \cdots, F_m\} \quad (F_1, \cdots, F_m \subset N \text{ scenarios})$

Bulk-Robust counterpart Bulk(P): $\min\{c(X):X\setminus F_i\in \mathcal{S} \mid \forall F_i\in \Omega\}$

Combinatorial (covering) problem P:

 $\min\{c(X): X \in S\}$ $(S \subset 2^N \text{ feasible set, } c: N \to \mathbb{Z}_+)$

Scenario set:

 $\Omega = \{F_1, \cdots, F_m\} \quad (F_1, \cdots, F_m \subset N \text{ scenarios})$

Bulk-Robust counterpart Bulk(P):

 $\min\{c(X): X \setminus F_i \in \mathcal{S} \quad \forall F_i \in \Omega\}$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

$\min\{c(X): (V, X \setminus F_i) \text{ is connected } \forall F_i \in \Omega\}$

$\min\{c(X): (V, X \setminus F_i) \text{ is connected } \forall F_i \in \Omega\}$

- (同) (回) (回) - 回

 $\min\{c(X): (V, X \setminus F_i) \text{ is connected } \forall F_i \in \Omega\}$

・日・ ・日・

- ∢ ⊒ →

 $\min\{c(X): (V, X \setminus F_i) \text{ is connected } \forall F_i \in \Omega\}$

▲ 同 ▶ → 目 ▶

 $\bullet \; \Rightarrow$ e.g. edge-sets failures, vertex-sets failures...

- Bulk(P) instance feasible iff $N \setminus F \in S$ for all $F \in \Omega$.
- β -approximation for P implies a $|\Omega|\beta$ -approximation for Bulk(P):
 - Compute β -approximate solution X_F for relaxation

 $\min\{c(X): X \setminus F \in \mathcal{S}\}$

• Return $X = \bigcup_{F \in \Omega} X_F$

イロト イポト イヨト イヨト

 $\bullet \Rightarrow$ e.g. edge-sets failures, vertex-sets failures...

- Bulk(P) instance feasible iff $N \setminus F \in S$ for all $F \in \Omega$.
- β -approximation for P implies a $|\Omega|\beta$ -approximation for Bulk(P):
 - Compute β -approximate solution X_F for relaxation

 $\min\{c(X):X\setminus F\in \mathcal{S}\}$

• Return $X = \bigcup_{F \in \Omega} X_F$

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

 $\bullet \ \Rightarrow$ e.g. edge-sets failures, vertex-sets failures...

- Bulk(P) instance feasible iff $N \setminus F \in S$ for all $F \in \Omega$.
- β -approximation for P implies a $|\Omega|\beta$ -approximation for Bulk(P):
 - Compute β -approximate solution X_F for relaxation

 $\min\{c(X):X\setminus F\in \mathcal{S}\}$

• Return $X = \bigcup_{F \in \Omega} X_F$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

 $\bullet \ \Rightarrow$ e.g. edge-sets failures, vertex-sets failures...

- Bulk(P) instance feasible iff $N \setminus F \in S$ for all $F \in \Omega$.
- β -approximation for P implies a $|\Omega|\beta$ -approximation for Bulk(P):

• Compute β -approximate solution X_F for relaxation

 $\min\{c(X):X\setminus F\in \mathcal{S}\}$

• Return $X = \bigcup_{F \in \Omega} X_F$

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

 $\bullet \ \Rightarrow$ e.g. edge-sets failures, vertex-sets failures...

- Bulk(P) instance feasible iff $N \setminus F \in S$ for all $F \in \Omega$.
- β -approximation for P implies a $|\Omega|\beta$ -approximation for Bulk(P):

• Compute β -approximate solution X_F for relaxation

 $\min\{c(X):X\setminus F\in\mathcal{S}\}$

• Return $X = \bigcup_{F \in \Omega} X_F$

 $\bullet \ \Rightarrow$ e.g. edge-sets failures, vertex-sets failures...

- Bulk(P) instance feasible iff $N \setminus F \in S$ for all $F \in \Omega$.
- β -approximation for P implies a $|\Omega|\beta$ -approximation for Bulk(P):
 - Compute β -approximate solution X_F for relaxation

 $\min\{c(X): X \setminus F \in \mathcal{S}\}$

• Return $X = \bigcup_{F \in \Omega} X_F$

Let $N = \{1, \cdots, n\}$ and \mathbf{P}^U : $\min\{c(X) : X \subset N, |X| \ge 1\}$ $\Rightarrow \operatorname{Bulk}(\mathbf{P}^U) \equiv \operatorname{Set}$ Cover

⇒ Bulk(Spanning Tree), Bulk(Shortest Path), etc. unlikely to admit polynomial constant-factor approximation algorithms

(not better than $\ln |\Omega|$)

At the same time, e.g., Bulk(Set Cover) pprox Set Cover

Bulk(Shortest Path)? Bulk(Spanning Tree)?

イロト イポト イヨト イヨト

Let $N = \{1, \dots, n\}$ and P^U : $\min\{c(X) : X \subset N, |X| \ge 1\}$ \Rightarrow Bulk $(P^U) =$ Set Cover

⇒ Bulk(Spanning Tree), Bulk(Shortest Path), etc. unlikely to admit polynomial constant-factor approximation algorithms

(not better than $\ln |\Omega|$)

At the same time, e.g., Bulk(Set Cover) pprox Set Cover

Bulk(Shortest Path)? Bulk(Spanning Tree)?

イロト イポト イヨト イヨト

Bulk(P) and Set Cover

Let $N = \{1, \dots, n\}$ and P^U : $\min\{c(X) : X \subset N, |X| \ge 1\}$ $\Rightarrow \text{Bulk}(P^U) \equiv \text{Set Cover}$

⇒ Bulk(Spanning Tree), Bulk(Shortest Path), etc. unlikely to admit polynomial constant-factor approximation algorithms

(not better than $\ln |\Omega|$)

At the same time, e.g., Bulk(Set Cover) pprox Set Cover

Bulk(Shortest Path)? Bulk(Spanning Tree)?

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

Let $N = \{1, \dots, n\}$ and P^U : $\min\{c(X) : X \subset N, |X| \ge 1\}$ $\Rightarrow \operatorname{Bulk}(P^U) \equiv \operatorname{Set} \operatorname{Cover}$

 \Rightarrow Bulk(Spanning Tree), Bulk(Shortest Path), etc. unlikely to admit polynomial constant-factor approximation algorithms

(not better than $\ln |\Omega|$)

At the same time, e.g., Bulk(Set Cover) pprox Set Cover

Bulk(Shortest Path)? Bulk(Spanning Tree)?

Let $N = \{1, \dots, n\}$ and P^U : $\min\{c(X) : X \subset N, |X| \ge 1\}$ $\Rightarrow \operatorname{Bulk}(P^U) \equiv \operatorname{Set} \operatorname{Cover}$

 \Rightarrow Bulk(Spanning Tree), Bulk(Shortest Path), etc. unlikely to admit polynomial constant-factor approximation algorithms

(not better than $\ln |\Omega|$)

At the same time, e.g., Bulk(Set Cover) pprox Set Cover

Bulk(Shortest Path)? Bulk(Spanning Tree)?

イロト イポト イヨト イヨト

Let $N = \{1, \dots, n\}$ and P^U : $\min\{c(X) : X \subset N, |X| \ge 1\}$ $\Rightarrow \operatorname{Bulk}(P^U) \equiv \operatorname{Set} \operatorname{Cover}$

 \Rightarrow Bulk(Spanning Tree), Bulk(Shortest Path), etc. unlikely to admit polynomial constant-factor approximation algorithms

(not better than $\ln |\Omega|$)

At the same time, e.g., Bulk(Set Cover) \approx Set Cover

Bulk(Shortest Path)? Bulk(Spanning Tree)?

イロト 不得 トイヨト イヨト 二日

Let $N = \{1, \dots, n\}$ and P^U : $\min\{c(X) : X \subset N, |X| \ge 1\}$ $\Rightarrow \text{Bulk}(P^U) \equiv \text{Set Cover}$

 \Rightarrow Bulk(Spanning Tree), Bulk(Shortest Path), etc. unlikely to admit polynomial constant-factor approximation algorithms

(not better than $\ln |\Omega|$)

At the same time, e.g., Bulk(Set Cover) \approx Set Cover

Bulk(Shortest Path)? Bulk(Spanning Tree)?

Let $N = \{1, \dots, n\}$ and P^U : $\min\{c(X) : X \subset N, |X| \ge 1\}$ $\Rightarrow \text{Bulk}(P^U) \equiv \text{Set Cover}$

 \Rightarrow Bulk(Spanning Tree), Bulk(Shortest Path), etc. unlikely to admit polynomial constant-factor approximation algorithms

(not better than $\ln |\Omega|$)

At the same time, e.g., Bulk(Set Cover) \approx Set Cover

Bulk(Shortest Path)? Bulk(Spanning Tree)?

イロト 不得 トイヨト イヨト 二日

Theorem. There is a polynomial $(\log |\Omega| + \log r)$ -approximation algorithm for Bulk(Minimum Matroid Basis).

 $\Rightarrow (\log |\Omega| + \log |V|) \text{-approximation for Bulk(Spanning Tree)}.$

Proof sketch:

Let $r(\cdot)$ denote the rank function of the matroid \mathcal{M} . For $F \in \Omega$ define $r^F(X) = r(X \setminus F)$. \Rightarrow Submodular

Define:

$$f(X) = \sum_{F \in \Omega} r^F(X) \qquad \Rightarrow$$
Submodular

Note: $S \subset N$ feasible iff $f(S) = f(N) = r(\mathcal{M})|\Omega|$

イロト イポト イヨト イヨト
$\Rightarrow (\log |\Omega| + \log |V|) \text{-approximation for Bulk(Spanning Tree)}.$ Proof sketch: Let $r(\cdot)$ denote the rank function of the matroid \mathcal{M} . For $F \in \Omega$ define $r^F(X) = r(X \setminus F)$. \Rightarrow Submodular Define: $f(X) = \sum r^F(X) \Rightarrow$ Submodular

Note: $S \subset N$ feasible iff $f(S) = f(N) = r(\mathcal{M})|\Omega|$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\Rightarrow (\log |\Omega| + \log |V|)$ -approximation for Bulk(Spanning Tree).

Proof sketch: Let $r(\cdot)$ denote the rank function of the matroid \mathcal{M} . For $F \in \Omega$ define $r^F(X) = r(X \setminus F)$. \Rightarrow Submodular Define:

$$f(X) = \sum_{F \in \Omega} r^F(X) \qquad \Rightarrow \mathsf{Submodular}$$

Note: $S \subset N$ feasible iff $f(S) = f(N) = r(\mathcal{M})|\Omega|$

(a)

 $\Rightarrow (\log |\Omega| + \log |V|)$ -approximation for Bulk(Spanning Tree).

Proof sketch:

Let $r(\cdot)$ denote the rank function of the matroid \mathcal{M} . For $F \in \Omega$ define $r^F(X) = r(X \setminus F)$. \Rightarrow Submodular

Define:

$$f(X) = \sum_{F \in \Omega} r^F(X) \qquad \Rightarrow \mathsf{Submodular}$$

Note: $S \subset N$ feasible iff $f(S) = f(N) = r(\mathcal{M})|\Omega|$

(a)

 $\Rightarrow (\log |\Omega| + \log |V|)$ -approximation for Bulk(Spanning Tree).

Proof sketch:

Let $r(\cdot)$ denote the rank function of the matroid \mathcal{M} . For $F \in \Omega$ define $r^F(X) = r(X \setminus F)$. \Rightarrow Submodular Define:

$$f(X) = \sum_{F \in \Omega} r^F(X) \qquad \Rightarrow \text{Submodular}$$

Note: $S \subset N$ feasible iff $f(S) = f(N) = r(\mathcal{M})|\Omega|$

 $\Rightarrow (\log |\Omega| + \log |V|)$ -approximation for Bulk(Spanning Tree).

Proof sketch:

Let $r(\cdot)$ denote the rank function of the matroid \mathcal{M} . For $F \in \Omega$ define $r^F(X) = r(X \setminus F)$. \Rightarrow Submodular

Define:

 $f(X) = \sum_{F \in \Omega} r^F(X) \quad \Rightarrow$ Submodular

Note: $S \subset N$ feasible iff $f(S) = f(N) = r(\mathcal{M})|\Omega|$

< ロ > < 同 > < 回 > < 回 > < □ > <

 $\Rightarrow (\log |\Omega| + \log |V|)$ -approximation for Bulk(Spanning Tree).

Proof sketch:

Let $r(\cdot)$ denote the rank function of the matroid \mathcal{M} . For $F \in \Omega$ define $r^F(X) = r(X \setminus F)$. \Rightarrow Submodular

Define:

 $f(X) = \sum_{F \in \Omega} r^F(X) \quad \Rightarrow$ Submodular

Note: $S \subset N$ feasible iff $f(S) = f(N) = r(\mathcal{M})|\Omega|$

< ロ > < 同 > < 回 > < 回 > < □ > <

 $\Rightarrow (\log |\Omega| + \log |V|)$ -approximation for Bulk(Spanning Tree).

Proof sketch:

Let $r(\cdot)$ denote the rank function of the matroid \mathcal{M} . For $F \in \Omega$ define $r^F(X) = r(X \setminus F)$. \Rightarrow Submodular

Define:

$$f(X) = \sum_{F \in \Omega} r^F(X) \implies$$
Submodular

Note: $S \subset N$ feasible iff $f(S) = f(N) = r(\mathcal{M})|\Omega|$

イロン 不同 とくほう イロン

 $\Rightarrow (\log |\Omega| + \log |V|)$ -approximation for Bulk(Spanning Tree).

Proof sketch:

Let $r(\cdot)$ denote the rank function of the matroid \mathcal{M} . For $F \in \Omega$ define $r^F(X) = r(X \setminus F)$. \Rightarrow Submodular

Define:

$$f(X) = \sum_{F \in \Omega} r^F(X) \qquad \Rightarrow \text{Submodular}$$

Note: $S \subset N$ feasible iff $f(S) = f(N) = r(\mathcal{M})|\Omega|$

イロン 不同 とくほう イロン

 $\Rightarrow (\log |\Omega| + \log |V|)$ -approximation for Bulk(Spanning Tree).

Proof sketch:

Let $r(\cdot)$ denote the rank function of the matroid \mathcal{M} . For $F \in \Omega$ define $r^F(X) = r(X \setminus F)$. \Rightarrow Submodular

Define:

$$f(X) = \sum_{F \in \Omega} r^F(X) \quad \Rightarrow \text{Submodular}$$

Note: $S \subset N$ feasible iff $f(S) = f(N) = r(\mathcal{M})|\Omega|$

Proof sketch (cont.): $f(X) = \sum_{F \in \Omega} r^F(X) = \sum_{F \in \Omega} r(X \setminus F)$

Try to maximize *f* without paying more than *OPT*.

 $\max\{f(X): c(X) \le OPT\}$

 \Rightarrow Submodular Function maximization with knapsack constraint

NP-hard, but constant-factor approximations exist e.g. $1 - \frac{1}{e} - \epsilon$ [Kulik, Shachnai, Tamir 10']

 \Rightarrow Obtain a set Y_1 with

• $f(Y_1) \ge (1 - \alpha)r(\mathcal{M})|\Omega|$ for some $\alpha \in (0, 1)$ • $c(Y_1) \le OPT$

Iterate...

Proof sketch (cont.): $f(X) = \sum_{F \in \Omega} r^F(X) = \sum_{F \in \Omega} r(X \setminus F)$

Try to maximize f without paying more than OPT.

 $\max\{f(X): c(X) \le OPT\}$

 \Rightarrow Submodular Function maximization with knapsack constraint

NP-hard, but constant-factor approximations exist e.g. $1 - \frac{1}{e} - \epsilon$ [Kulik, Shachnai, Tamir 10']

 \Rightarrow Obtain a set Y_1 with

• $f(Y_1) \ge (1 - \alpha)r(\mathcal{M})|\Omega|$ for some $\alpha \in (0, 1)$ • $c(Y_1) \le OPT$

Iterate...

イロン 不同 とくほう イロン

Proof sketch (cont.): $f(X) = \sum_{F \in \Omega} r^F(X) = \sum_{F \in \Omega} r(X \setminus F)$

Try to maximize f without paying more than OPT.

 $\max\{f(X): c(X) \le OPT\}$

 \Rightarrow Submodular Function maximization with knapsack constraint

NP-hard, but constant-factor approximations exist e.g. $1 - \frac{1}{e} - \epsilon$ [Kulik, Shachnai, Tamir 10']

 \Rightarrow Obtain a set Y_1 with

• $f(Y_1) \ge (1 - \alpha)r(\mathcal{M})|\Omega|$ for some $\alpha \in (0, 1)$ • $c(Y_1) \le OPT$

Iterate...

Proof sketch (cont.): $f(X) = \sum_{F \in \Omega} r^F(X) = \sum_{F \in \Omega} r(X \setminus F)$

Try to maximize f without paying more than OPT.

 $\max\{f(X): c(X) \le OPT\}$

\Rightarrow Submodular Function maximization with knapsack constraint

NP-hard, but constant-factor approximations exist e.g. $1 - rac{1}{e} - \epsilon$ [Kulik, Shachnai, Tamir 10']

 \Rightarrow Obtain a set Y_1 with

• $f(Y_1) \ge (1 - \alpha)r(\mathcal{M})|\Omega|$ for some $\alpha \in (0, 1)$ • $c(Y_1) \le OPT$

Iterate...

Proof sketch (cont.): $f(X) = \sum_{F \in \Omega} r^F(X) = \sum_{F \in \Omega} r(X \setminus F)$

Try to maximize f without paying more than OPT.

 $\max\{f(X): c(X) \le OPT\}$

\Rightarrow Submodular Function maximization with knapsack constraint

NP-hard, but constant-factor approximations exist e.g. $1 - \frac{1}{\epsilon} - \epsilon$ [Kulik, Shachnai, Tamir 10']

 \Rightarrow Obtain a set Y_1 with

• $f(Y_1) \ge (1 - \alpha)r(\mathcal{M})|\Omega|$ for some $\alpha \in (0, 1)$ • $c(Y_1) \le OPT$

Iterate...

Proof sketch (cont.): $f(X) = \sum_{F \in \Omega} r^F(X) = \sum_{F \in \Omega} r(X \setminus F)$

Try to maximize f without paying more than OPT.

 $\max\{f(X): c(X) \le OPT\}$

 \Rightarrow Submodular Function maximization with knapsack constraint

NP-hard, but constant-factor approximations exist e.g. $1 - \frac{1}{e} - \epsilon$ [Kulik, Shachnai, Tamir 10']

 $\begin{array}{l} \Rightarrow \ \mathsf{Obtain} \ \mathsf{a} \ \mathsf{set} \ Y_1 \ \mathsf{with} \\ \bullet \ f(Y_1) \geq (1-\alpha) r(\mathcal{M}) |\Omega| \ \mathsf{for} \ \mathsf{some} \ \alpha \in (0,1) \\ \bullet \ c(Y_1) \leq OPT \end{array}$

Iterate...

Proof sketch (cont.): $f(X) = \sum_{F \in \Omega} r^F(X) = \sum_{F \in \Omega} r(X \setminus F)$

Try to maximize f without paying more than OPT.

 $\max\{f(X): c(X) \le OPT\}$

 \Rightarrow Submodular Function maximization with knapsack constraint

NP-hard, but constant-factor approximations exist e.g. $1 - \frac{1}{e} - \epsilon$ [Kulik, Shachnai, Tamir 10']

 \Rightarrow Obtain a set Y_1 with

• $f(Y_1) \ge (1 - \alpha)r(\mathcal{M})|\Omega|$ for some $\alpha \in (0, 1)$ • $c(Y_1) \le OPT$

Iterate...

Proof sketch (cont.): $f(X) = \sum_{F \in \Omega} r^F(X) = \sum_{F \in \Omega} r(X \setminus F)$

Try to maximize f without paying more than OPT.

 $\max\{f(X): c(X) \le OPT\}$

 \Rightarrow Submodular Function maximization with knapsack constraint

NP-hard, but constant-factor approximations exist e.g. $1 - \frac{1}{e} - \epsilon$ [Kulik, Shachnai, Tamir 10']

 \Rightarrow Obtain a set Y_1 with

• $f(Y_1) \ge (1 - \alpha)r(\mathcal{M})|\Omega|$ for some $\alpha \in (0, 1)$ • $c(Y_1) \le OPT$

Iterate...

Proof sketch (cont.): $f(X) = \sum_{F \in \Omega} r^F(X) = \sum_{F \in \Omega} r(X \setminus F)$

Try to maximize f without paying more than OPT.

 $\max\{f(X): c(X) \le OPT\}$

 \Rightarrow Submodular Function maximization with knapsack constraint

NP-hard, but constant-factor approximations exist e.g. $1 - \frac{1}{e} - \epsilon$ [Kulik, Shachnai, Tamir 10']

 \Rightarrow Obtain a set Y_1 with

• $f(Y_1) \ge (1 - \alpha)r(\mathcal{M})|\Omega|$ for some $\alpha \in (0, 1)$

• $c(Y_1) \leq OPT$

lterate...

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Proof sketch (cont.): $f(X) = \sum_{F \in \Omega} r^F(X) = \sum_{F \in \Omega} r(X \setminus F)$

Try to maximize f without paying more than OPT.

 $\max\{f(X): c(X) \le OPT\}$

 \Rightarrow Submodular Function maximization with knapsack constraint

NP-hard, but constant-factor approximations exist e.g. $1 - \frac{1}{e} - \epsilon$ [Kulik, Shachnai, Tamir 10']

 \Rightarrow Obtain a set Y_1 with

- $f(Y_1) \ge (1 \alpha)r(\mathcal{M})|\Omega|$ for some $\alpha \in (0, 1)$
- $c(Y_1) \leq OPT$

Iterate...

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Proof sketch (cont.):

- Update N: $N' = N \setminus Y_1$
- Update $f: \quad f'(X) = \sum_{F \in \Omega} \left[r^F(X \cup Y_1) r^F(Y_1) \right]$

(Contraction operation...)

⇒ Resolve approximately SFM problem to obtain Y_2 with • $f(Y_1 \cup Y_2) \ge (1 - \alpha^2) r(\mathcal{M}) |\Omega|$

• $c(Y_1 \cup Y_2) \leq 20PT$.

... after $O(\log r(\mathcal{M})|\Omega|)$ iterations the solution is feasible!

OPT can be replaced with any $T \leq OPT$ (binary search)

イロト イポト イヨト イヨト

Proof sketch (cont.):

Update N: $N' = N \setminus Y_1$

Update f: $f'(X) = \sum_{F \in \Omega} \left[r^F(X \cup Y_1) - r^F(Y_1) \right]$

(Contraction operation...)

⇒ Resolve approximately SFM problem to obtain Y_2 with • $f(Y_1 \cup Y_2) \ge (1 - \alpha^2) r(\mathcal{M}) |\Omega|$

... after $O(\log r(\mathcal{M})|\Omega|)$ iterations the solution is feasible!

OPT can be replaced with any $T \leq OPT$ (binary search)

イロト イポト イヨト イヨト

Proof sketch (cont.):

Update N: $N' = N \setminus Y_1$

Update $f: \quad f'(X) = \sum_{F \in \Omega} \left[r^F(X \cup Y_1) - r^F(Y_1) \right]$

(Contraction operation...)

⇒ Resolve approximately SFM problem to obtain Y_2 with • $f(Y_1 \cup Y_2) \ge (1 - \alpha^2) r(\mathcal{M}) |\Omega|$

... after $O(\log r(\mathcal{M})|\Omega|)$ iterations the solution is feasible!

OPT can be replaced with any $T \leq OPT$ (binary search)

イロン 不同 とくほう イロン

Proof sketch (cont.):

Update N: $N' = N \setminus Y_1$

Update $f: f'(X) = \sum_{F \in \Omega} [r^F(X \cup Y_1) - r^F(Y_1)]$

(Contraction operation...)

⇒ Resolve approximately SFM problem to obtain Y_2 with • $f(Y_1 \cup Y_2) \ge (1 - \alpha^2)r(\mathcal{M})|\Omega|$ • $c(Y_1 \cup Y_2) \le 2OPT$.

... after $O(\log r(\mathcal{M})|\Omega|)$ iterations the solution is feasible!

OPT can be replaced with any $T \leq OPT$ (binary search)

イロト イポト イヨト イヨト

Proof sketch (cont.):

Update N: $N' = N \setminus Y_1$

Update $f: f'(X) = \sum_{F \in \Omega} \left[r^F(X \cup Y_1) - r^F(Y_1) \right]$

(Contraction operation...)

⇒ Resolve approximately SFM problem to obtain Y₂ with
f(Y₁ ∪ Y₂) ≥ (1 − α²)r(M)|Ω|
c(Y₁ ∪ Y₂) < 20PT.

... after $O(\log r(\mathcal{M})|\Omega|)$ iterations the solution is feasible!

OPT can be replaced with any *T* ≤ *OPT* (binary search)

Proof sketch (cont.):

Update N: $N' = N \setminus Y_1$

Update $f: f'(X) = \sum_{F \in \Omega} \left[r^F(X \cup Y_1) - r^F(Y_1) \right]$

(Contraction operation...)

⇒ Resolve approximately SFM problem to obtain Y₂ with
 f(Y₁ ∪ Y₂) ≥ (1 − α²)r(M)|Ω|
 c(Y₁ ∪ Y₂) < 20PT.

... after $O(\log r(\mathcal{M})|\Omega|)$ iterations the solution is feasible!

OPT can be replaced with any *T* ≤ *OPT* (binary search)

イロン 不同 とくほう イロン

Proof sketch (cont.):

Update N: $N' = N \setminus Y_1$

Update $f: f'(X) = \sum_{F \in \Omega} \left[r^F(X \cup Y_1) - r^F(Y_1) \right]$

(Contraction operation...)

⇒ Resolve approximately SFM problem to obtain Y₂ with
f(Y₁ ∪ Y₂) ≥ (1 − α²)r(M)|Ω|
c(Y₁ ∪ Y₂) ≤ 2OPT.
... after O(log r(M)|Ω|) iterations the solution is feasible!

OPT can be replaced with any $T \leq OPT$ (binary search)

Proof sketch (cont.):

Update N: $N' = N \setminus Y_1$

Update $f: f'(X) = \sum_{F \in \Omega} \left[r^F(X \cup Y_1) - r^F(Y_1) \right]$

(Contraction operation...)

⇒ Resolve approximately SFM problem to obtain Y_2 with • $f(Y_1 \cup Y_2) \ge (1 - \alpha^2) r(\mathcal{M}) |\Omega|$

... after $O(\log r(\mathcal{M})|\Omega|)$ iterations the solution is feasible!

OPT can be replaced with any $T \leq OPT$ (binary search)

Proof sketch (cont.):

Update N: $N' = N \setminus Y_1$

Update $f: f'(X) = \sum_{F \in \Omega} \left[r^F(X \cup Y_1) - r^F(Y_1) \right]$

(Contraction operation...)

 \Rightarrow Resolve approximately SFM problem to obtain Y_2 with

- $f(Y_1 \cup Y_2) \ge (1 \alpha^2) r(\mathcal{M}) |\Omega|$
- $c(Y_1 \cup Y_2) \leq 2OPT$.

... after $O(\log r(\mathcal{M})|\Omega|)$ iterations the solution is feasible!

OPT can be replaced with any $T \leq OPT$ (binary search)

Proof sketch (cont.):

Update N: $N' = N \setminus Y_1$

Update $f: f'(X) = \sum_{F \in \Omega} \left[r^F(X \cup Y_1) - r^F(Y_1) \right]$

(Contraction operation...)

 \Rightarrow Resolve approximately SFM problem to obtain \emph{Y}_2 with

- $f(Y_1 \cup Y_2) \ge (1 \alpha^2) r(\mathcal{M}) |\Omega|$
- $c(Y_1 \cup Y_2) \le 2OPT$.

... after $O(\log r(\mathcal{M})|\Omega|)$ iterations the solution is feasible!

OPT can be replaced with any $T \leq OPT$ (binary search)

Proof sketch (cont.):

Update N: $N' = N \setminus Y_1$

Update $f: f'(X) = \sum_{F \in \Omega} \left[r^F(X \cup Y_1) - r^F(Y_1) \right]$

(Contraction operation...)

 \Rightarrow Resolve approximately SFM problem to obtain Y_2 with

- $f(Y_1 \cup Y_2) \ge (1 \alpha^2)r(\mathcal{M})|\Omega|$
- $c(Y_1 \cup Y_2) \leq 2OPT$.

... after $O(\log r(\mathcal{M})|\Omega|)$ iterations the solution is feasible!

OPT can be replaced with any $T \leq OPT$ (binary search)

Proof sketch (cont.):

Update N: $N' = N \setminus Y_1$

Update $f: f'(X) = \sum_{F \in \Omega} \left[r^F(X \cup Y_1) - r^F(Y_1) \right]$

(Contraction operation...)

 \Rightarrow Resolve approximately SFM problem to obtain Y_2 with

- $f(Y_1 \cup Y_2) \ge (1 \alpha^2)r(\mathcal{M})|\Omega|$
- $c(Y_1 \cup Y_2) \leq 2OPT$.

... after $O(\log r(\mathcal{M})|\Omega|)$ iterations the solution is feasible!

OPT can be replaced with any $T \leq OPT$ (binary search)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Proof sketch (cont.):

Update N: $N' = N \setminus Y_1$

Update $f: f'(X) = \sum_{F \in \Omega} \left[r^F(X \cup Y_1) - r^F(Y_1) \right]$

(Contraction operation...)

 \Rightarrow Resolve approximately SFM problem to obtain Y_2 with

- $f(Y_1 \cup Y_2) \ge (1 \alpha^2)r(\mathcal{M})|\Omega|$
- $c(Y_1 \cup Y_2) \leq 2OPT$.

... after $O(\log r(\mathcal{M})|\Omega|)$ iterations the solution is feasible!

OPT can be replaced with any $T \leq OPT$ (binary search)

Proof sketch (cont.):

Update N: $N' = N \setminus Y_1$

Update $f: f'(X) = \sum_{F \in \Omega} \left[r^F(X \cup Y_1) - r^F(Y_1) \right]$

(Contraction operation...)

 \Rightarrow Resolve approximately SFM problem to obtain Y_2 with

- $f(Y_1 \cup Y_2) \ge (1 \alpha^2)r(\mathcal{M})|\Omega|$
- $c(Y_1 \cup Y_2) \leq 2OPT$.

... after $O(\log r(\mathcal{M})|\Omega|)$ iterations the solution is feasible!

OPT can be replaced with any $T \leq OPT$ (binary search)

Bulk(Shortest Path) can be even harder:

Steiner Forest can be modeled as Bulk(Shortest Path)

 \Rightarrow No $O(2^{\log^{1-\epsilon}|V|})$ -approximations for directed graphs.

However: when $k = \max_{F \in \Omega} |F|$ bounded

Theorem. Bulk(Shortest Path) is

polynomial when $k \leq 1$.

APX-complete when k = 2.

 $O(k \log |\Omega|)$ -approximable when $k = O(\log |V|)$ (Undir.).

< ロ > < 同 > < 回 > < 回 >

Bulk(Shortest Path)

Bulk(Shortest Path) can be even harder:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Bulk(Shortest Path) can be even harder:

Steiner Forest can be modeled as Bulk(Shortest Path)

 \Rightarrow No $O(2^{\log^{1-\epsilon}|V|})$ -approximations for directed graphs.

However: when $k = \max_{F \in \Omega} |F|$ bounded

Theorem. Bulk(Shortest Path) is

polynomial when $k \leq 1$.

APX-complete when k = 2.

 $O(k \log |\Omega|)$ -approximable when $k = O(\log |V|)$ (Undir.).

(1)
Steiner Forest can be modeled as Bulk(Shortest Path)

 \Rightarrow No $O(2^{\log^{1-\epsilon}|V|})$ -approximations for directed graphs.

However: when $k = \max_{F \in \Omega} |F|$ bounded

Theorem. Bulk(Shortest Path) is

polynomial when $k \leq 1$.

APX-complete when k = 2.

 $O(k \log |\Omega|)$ -approximable when $k = O(\log |V|)$ (Undir.).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Steiner Forest can be modeled as Bulk(Shortest Path)

 \Rightarrow No $O(2^{\log^{1-\epsilon}|V|})$ -approximations for directed graphs.

However: when $\mathbf{k} = \max_{F \in \Omega} |F|$ bounded

Theorem. Bulk(Shortest Path) is polynomial when $k \le 1$. APX-complete when k = 2. $O(k \log |\Omega|)$ -approximable when $k = O(\log |V|)$ (Undir.).

イロト 不得 とくほ とくほう

Steiner Forest can be modeled as Bulk(Shortest Path)

 \Rightarrow No $O(2^{\log^{1-\epsilon}|V|})$ -approximations for directed graphs.

However: when $k = \max_{F \in \Omega} |F|$ bounded

Theorem. Bulk(Shortest Path) is polynomial when $k \leq 1$. APX-complete when k = 2. $O(k \log |\Omega|)$ -approximable when $k = O(\log |V|)$ (Undir.).

イロト 不得 トイヨト イヨト

Steiner Forest can be modeled as Bulk(Shortest Path)

 \Rightarrow No $O(2^{\log^{1-\epsilon}|V|})$ -approximations for directed graphs.

However: when $\mathbf{k} = \max_{\mathbf{F} \in \Omega} |\mathbf{F}|$ bounded

Theorem. Bulk(Shortest Path) is

polynomial when $k \leq 1$.

APX-complete when k = 2.

 $O(k \log |\Omega|)$ -approximable when $k = O(\log |V|)$ (Undir.).

・ロト ・ 一下・ ・ ヨト ・ ヨト

Steiner Forest can be modeled as Bulk(Shortest Path)

 \Rightarrow No $O(2^{\log^{1-\epsilon}|V|})$ -approximations for directed graphs.

However: when $\mathbf{k} = \max_{\mathbf{F} \in \Omega} |\mathbf{F}|$ bounded

Theorem. Bulk(Shortest Path) is polynomial when $k \le 1$. APX-complete when k = 2. $O(k \log |\Omega|)$ -approximable when $k = O(\log |V|)$ (Undir.).

Theorem. Bulk(Shortest Path) is

APX-complete when k = 2.

- (目) - (目) - (目)

э

Theorem. Bulk(Shortest Path)

admits a polynomial 13-apx when k = 2.

3

Proof sketch.

- 4 回 2 - 4 □ 2 - 4 □

æ

Proof sketch. (*G undirected*)

・ロト ・回ト ・ヨト ・ヨト

æ

Proof sketch. (G undirected)

Lemma 1. When k = 1 a minimal feasible solution is a "simple" union of two *s*-*t* paths.

< ロ > < 同 > < 回 > < 回 > < □ > <

3

Proof sketch. (*G undirected*)

Lemma 1. When k = 1 a minimal feasible solution is a "simple" union of two *s*-*t* paths.

< 回 > < 回 > < 回 >

Proof sketch. (*G undirected*)

Lemma 1. When k = 1 a minimal feasible solution is a "simple" union of two *s*-*t* paths.

Step 1: Solve for $\Omega_1 = \{\{e\} \subset E : \exists F \in \Omega : e \in F\}$

(人間) ト く ヨ ト く ヨ ト

Proof sketch. (*G undirected*)

Lemma 1. When k = 1 a minimal feasible solution is a "simple" union of two *s*-*t* paths.

Step 1: Solve for $\Omega_1 = \{\{e\} \subset E : \exists F \in \Omega : e \in F\} \Rightarrow S_1$

- 4 同 6 4 日 6 4 日 6

Proof sketch. (*G undirected*)

Lemma 1. When k = 1 a minimal feasible solution is a "simple" union of two *s*-*t* paths.

Step 1: Solve for $\Omega_1 = \{\{e\} \subset E : \exists F \in \Omega : e \in F\} \Rightarrow S_1$ $\Rightarrow c(S_1) \leq OPT$

- 4 同 6 4 日 6 4 日 6

Proof sketch. (*G undirected*)

Lemma 1. When k = 1 a minimal feasible solution is a "simple" union of two *s*-*t* paths.

Step 1: Solve for $\Omega_1 = \{\{e\} \subset E : \exists F \in \Omega : e \in F\} \Rightarrow S_1$ $\Rightarrow c(S_1) \leq OPT$

 \Rightarrow If $F \in \Omega$ is an *s*-*t* in *S*₁ then *F* is contained in a simple cycle.

(日) (同) (三) (三)

Proof sketch (cont.)

- 4 回 > - 4 回 > - 4 回 >

æ

Proof sketch (cont.)

Lemma 2. Minimal X such that $X \cup S_1$ is feasible is a forest.

・ロト ・回ト ・ヨト ・ヨト

3

Proof sketch (cont.)

Lemma 2. Minimal X such that $X \cup S_1$ is feasible is a forest.

(Call such X an *augmenting set*)

・ 同 ト ・ ヨ ト ・ ヨ ト

Lemma 2. Minimal X such that $X \cup S_1$ is feasible is a forest.

(Call such X an *augmenting set*)

Lemma 3. Let X be an augmenting set. There exist paths $P_1, \dots, P_k \subset E$ such that

- $\forall F \in \Omega \exists i \in [k]$ such that F is not an s-t cut in $S_1 \cup P_i$.
- $c(P_1) + \cdots + c(P_k) \leq 2c(X)$.

イロン 不同 とくほう イロン

Lemma 2. Minimal X such that $X \cup S_1$ is feasible is a forest.

(Call such X an *augmenting set*)

Lemma 3. Let X be an augmenting set. There exist paths $P_1, \dots, P_k \subset E$ such that

- $\forall F \in \Omega \ \exists i \in [k]$ such that F is not an s-t cut in $S_1 \cup P_i$.
- $c(P_1) + \cdots + c(P_k) \leq 2c(X)$.

Furthermore, P_i can be replaced by any shortest path between its endpoints.

イロン 不同 とくほう イロン

Lemma 2. Minimal X such that $X \cup S_1$ is feasible is a forest.

(Call such X an *augmenting set*)

Lemma 3. Let X be an augmenting set. There exist paths $P_1, \dots, P_k \subset E$ such that

- $\forall F \in \Omega \ \exists i \in [k]$ such that F is not an s-t cut in $S_1 \cup P_i$.
- $c(P_1) + \cdots + c(P_k) \leq 2c(X)$.

Furthermore, P_i can be replaced by any shortest path between its endpoints.

Step 2: Compute shortest paths $Q_{u,v}$ for all $u, v \in V[S_1]$

< ロ > < 同 > < 回 > < 回 > < □ > <

Lemma 2. Minimal X such that $X \cup S_1$ is feasible is a forest.

(Call such X an *augmenting set*)

Lemma 3. Let X be an augmenting set. There exist paths $P_1, \dots, P_k \subset E$ such that

- $\forall F \in \Omega \exists i \in [k]$ such that F is not an s-t cut in $S_1 \cup P_i$.
- $c(P_1) + \cdots + c(P_k) \leq 2c(X)$.

Furthermore, P_i can be replaced by any shortest path between its endpoints.

Step 2: Compute shortest paths $Q_{u,v}$ for all $u, v \in V[S_1]$

 \Rightarrow Solve Set Cover problem

Lemma 2. Minimal X such that $X \cup S_1$ is feasible is a forest.

(Call such X an *augmenting set*)

Lemma 3. Let X be an augmenting set. There exist paths $P_1, \dots, P_k \subset E$ such that

- $\forall F \in \Omega \exists i \in [k]$ such that F is not an s-t cut in $S_1 \cup P_i$.
- $c(P_1) + \cdots + c(P_k) \leq 2c(X)$.

Furthermore, P_i can be replaced by any shortest path between its endpoints.

Step 2: Compute shortest paths $Q_{u,v}$ for all $u, v \in V[S_1]$

 \Rightarrow Solve Set Cover problem ($\Rightarrow O(\log n)$ -apx)

< ロ > < 同 > < 回 > < 回 > < □ > <

Proof sketch (cont.)

- 4 回 > - 4 回 > - 4 回 >

æ

Proof sketch (cont.)

 \Rightarrow Want a O(1)-apx for that Set Cover problem

3

Proof sketch (cont.)

 \Rightarrow Want a O(1)-apx for that Set Cover problem

Step 3: "Unfold" S_1 into two disjoint paths.

イロト イポト イヨト イヨト

3

Proof sketch (cont.)

 \Rightarrow Want a O(1)-apx for that Set Cover problem

Step 3: "Unfold" S_1 into two disjoint paths.

A 10

3 N

Proof sketch (cont.)

 \Rightarrow Want a O(1)-apx for that Set Cover problem

Step 3: "Unfold" S_1 into two disjoint paths.

 $F = \{f_1, f_2\}$

▲ □ ▶ ▲ □ ▶

Proof sketch (cont.)

 \Rightarrow Want a O(1)-apx for that Set Cover problem

Step 3: "Unfold" S_1 into two disjoint paths.

イロト 不得 トイヨト イヨト 二日

Proof sketch (cont.)

 \Rightarrow Want a O(1)-apx for that Set Cover problem

Step 3: "Unfold" S_1 into two disjoint paths.

Proof sketch (cont.)

- 4 回 > - 4 回 > - 4 回 >

æ

Proof sketch (cont.)

Every path in S_1 defines an ordering of Ω ,

э

Proof sketch (cont.)

Every path in S_1 defines an ordering of Ω , but...

(4 同) (4 日) (4 日)

Proof sketch (cont.)

Every path in S_1 defines an ordering of Ω , but...

Restricted to such paths Q - Interval cover!

直 ト イヨ ト イヨ ト

Proof sketch (cont.)

Every path in S_1 defines an ordering of Ω , but...

(4 同) (4 日) (4 日)

Proof sketch (cont.)

Every path in S_1 defines an ordering of Ω , but...

Restricted to such paths Q...

- **→** → **→**
Proof sketch (cont.)

Every path in S_1 defines an ordering of Ω , but...

Restricted to such paths Q... also Interval cover!

- **→** → **→**

Proof sketch (cont.)

Every path in S_1 defines an ordering of Ω , but...

Which scenarios F to cover with which paths?

- **→** → **→**

Proof sketch (cont.)

Every path in S_1 defines an ordering of Ω , but...

Which scenarios *F* to cover with which paths? Ask the LP!

- 4 周 ト 4 戸 ト 4 戸 ト

Proof sketch (cont.)

- 4 回 > - 4 回 > - 4 回 >

æ

Proof sketch (cont.)

Step 4: Solve

 $\min\left\{\sum_{u,v\in V} c(Q_{u,v}) x_{u,v} \ : \ \sum_{F\times (u,v)} x_{u,v} \ge 1 \ \forall F \in \Omega\right\}$

イロン 不同 とくほう イロン

Proof sketch (cont.)

Step 4: Solve

 $\min\left\{\sum_{u,v\in V} c(Q_{u,v}) x_{u,v} \ : \ \sum_{F\times (u,v)} x_{u,v} \ge 1 \ \forall F \in \Omega\right\}$

 $\Rightarrow x^*$

イロン 不同 とくほう イロン

Proof sketch (cont.)

Step 4: Solve

 $\min\left\{\sum_{u,v\in V} c(Q_{u,v}) x_{u,v} : \sum_{F\times(u,v)} x_{u,v} \ge 1 \ \forall F \in \Omega\right\}$ $\Rightarrow x^* \qquad (\text{Lemma 3:} \quad c(x^*) \le 2OPT)$

イロト 不得 トイヨト イヨト 二日

Proof sketch (cont.)

Step 4: Solve

 $\min\left\{\sum_{u,v\in V} c(Q_{u,v}) x_{u,v} \ : \ \sum_{F\times (u,v)} x_{u,v} \ge 1 \ \forall F \in \Omega\right\}$

イロン 不同 とくほう イロン

Proof sketch (cont.)

Step 4: Solve

 $\min\left\{\sum_{u,v\in V} c(Q_{u,v}) x_{u,v} \ : \ \sum_{F\times (u,v)} x_{u,v} \geq 1 \ \forall F \in \Omega\right\}$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Proof sketch (cont.)

Step 4: Solve

 $\min\left\{\sum_{u,v\in V} c(Q_{u,v}) x_{u,v} \ : \ \sum_{F\times (u,v)} x_{u,v} \ge 1 \ \forall F \in \Omega\right\}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof sketch (cont.)

Step 4: Solve

 $\min\left\{\sum_{u,v\in V} c(Q_{u,v}) x_{u,v} \ : \ \sum_{F\times (u,v)} x_{u,v} \geq 1 \ \forall F \in \Omega\right\}$

type(F) = 3

(人間) ト く ヨ ト く ヨ ト

Proof sketch (cont.)

Step 4: Solve

 $\min\left\{\sum_{u,v\in V} c(Q_{u,v}) x_{u,v} \ : \ \sum_{F\times (u,v)} x_{u,v} \ge 1 \ \forall F \in \Omega\right\}$

(人間) ト く ヨ ト く ヨ ト

Partition Ω by type $\Rightarrow \Omega_1, \cdots, \Omega_4$.

・ロト ・回ト ・ヨト ・ヨト

Partition Ω by type $\Rightarrow \Omega_1, \cdots, \Omega_4$.

 Ω_i is fractionally covered by $6x^*$ for i = 1, 2, and

イロン 不同 とくほう イロン

Partition Ω by type $\Rightarrow \Omega_1, \cdots, \Omega_4$.

 Ω_i is fractionally covered by $6x^*$ for i = 1, 2, and

 Ω_i is fractionally covered by $3x^*$ for i = 3, 4.

イロト イポト イヨト イヨト

Partition Ω by type $\Rightarrow \Omega_1, \cdots, \Omega_4$.

 Ω_i is fractionally covered by $6x^*$ for i = 1, 2, and

 Ω_i is fractionally covered by $3x^*$ for i = 3, 4.

Step 5: Remove redundant scenarios for types 3,4

イロン 不同 とくほう イロン

Partition Ω by type $\Rightarrow \Omega_1, \cdots, \Omega_4$.

 Ω_i is fractionally covered by $6x^*$ for i = 1, 2, and

 Ω_i is fractionally covered by $3x^*$ for i = 3, 4.

Step 5: Remove redundant scenarios for types 3,4

Step 6: Solve Interval Cover problems \Rightarrow T_1 , \cdots , T_4

- Partition Ω by type $\Rightarrow \Omega_1, \cdots, \Omega_4$.
- Ω_i is fractionally covered by $6x^*$ for i = 1, 2, and
- Ω_i is fractionally covered by $3x^*$ for i = 3, 4.

Step 5: Remove redundant scenarios for types 3,4

- **Step 6:** Solve Interval Cover problems \Rightarrow T_1 , \cdots , T_4
- **Step 6:** Return $S_1 \cup T_1 \cup \cdots \cup T_4$

- Partition Ω by type $\Rightarrow \Omega_1, \cdots, \Omega_4$.
- Ω_i is fractionally covered by $6x^*$ for i = 1, 2, and
- Ω_i is fractionally covered by $3x^*$ for i = 3, 4.

Step 5: Remove redundant scenarios for types 3,4

- **Step 6:** Solve Interval Cover problems \Rightarrow T_1 , \cdots , T_4
- **Step 6:** Return $S_1 \cup T_1 \cup \cdots \cup T_4$

Partitioning of x* plus integrality of Interval Cover

• Given $\Omega = \{F_1, \cdots, F_m\}$ and $k \in \mathbb{N}$ find, the scenario set is

$$\Omega^k = \left\{ Y = \bigcup_{F \in \Omega'} F \; : \; \Omega' \subset \Omega, \; |\Omega'| \leq k
ight\}$$

Perhaps more importantly: reliability analysis (interdiction) • Find $\Omega' \subset \Omega^k$ such that C = [1] = -E

Interdiction in networks with a diffusion dynamic

(Threshold model, Cascade model...)

- 4 同 2 4 日 2 4 日 2

• Given $\Omega = \{F_1, \cdots, F_m\}$ and $k \in \mathbb{N}$ find, the scenario set is

$$\Omega^k = \left\{ Y = \bigcup_{F \in \Omega'} F \; : \; \Omega' \subset \Omega, \; |\Omega'| \leq k
ight\}$$

Perhaps more importantly: reliability analysis (interdiction) • Find $\Omega' \subset \Omega^k$ such that $G = \bigcup_{n \in \Omega} F_n$

• Interdiction in networks with a diffusion dynamics

(Threshold model, Cascade model...)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Given $\Omega = \{F_1, \cdots, F_m\}$ and $k \in \mathbb{N}$ find, the scenario set is

$$\Omega^{\boldsymbol{k}} = \left\{ \boldsymbol{Y} = \bigcup_{\boldsymbol{F} \in \Omega'} \boldsymbol{F} : \ \Omega' \subset \Omega, \ |\Omega'| \leq \boldsymbol{k} \right\}$$

Perhaps more importantly: reliability analysis (interdiction)
 Find Ω' ⊂ Ω^k such that G − U_{F∈Ω'} F...

• Interdiction in networks with a diffusion dynamics

(Threshold model, Cascade model...)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Given $\Omega = \{F_1, \cdots, F_m\}$ and $k \in \mathbb{N}$ find, the scenario set is

$$\Omega^{\boldsymbol{k}} = \left\{ \boldsymbol{Y} = \bigcup_{\boldsymbol{F} \in \Omega'} \boldsymbol{F} : \ \Omega' \subset \Omega, \ |\Omega'| \leq \boldsymbol{k} \right\}$$

Perhaps more importantly: reliability analysis (interdiction)

- Find $\Omega' \subset \Omega^k$ such that $G \bigcup_{F \in \Omega'} F$...
- Interdiction in networks with a diffusion dynamics

(Threshold model, Cascade model...)

• Given $\Omega = \{F_1, \cdots, F_m\}$ and $k \in \mathbb{N}$ find, the scenario set is

$$\Omega^{\boldsymbol{k}} = \left\{ \boldsymbol{Y} = \bigcup_{\boldsymbol{F} \in \Omega'} \boldsymbol{F} : \ \Omega' \subset \Omega, \ |\Omega'| \leq \boldsymbol{k} \right\}$$

Perhaps more importantly: reliability analysis (interdiction)

- Find $\Omega' \subset \Omega^k$ such that $G \bigcup_{F \in \Omega'} F$...
- Interdiction in networks with a diffusion dynamics

(Threshold model, Cascade model...)

• Given $\Omega = \{F_1, \cdots, F_m\}$ and $k \in \mathbb{N}$ find, the scenario set is

$$\Omega^{\boldsymbol{k}} = \left\{ \boldsymbol{Y} = \bigcup_{\boldsymbol{F} \in \Omega'} \boldsymbol{F} \; : \; \Omega' \subset \Omega, \; |\Omega'| \leq \boldsymbol{k} \right\}$$

Perhaps more importantly: reliability analysis (interdiction)

• Find $\Omega' \subset \Omega^k$ such that $G - \bigcup_{F \in \Omega'} F$...

Interdiction in networks with a diffusion dynamics

(Threshold model, Cascade model...)

イロン 不同 とくほう イロン

• Given $\Omega = \{F_1, \cdots, F_m\}$ and $k \in \mathbb{N}$ find, the scenario set is

$$\Omega^{\pmb{k}} = \left\{ Y = \bigcup_{F \in \Omega'} F \; : \; \Omega' \subset \Omega, \; |\Omega'| \le \pmb{k} \right\}$$

Perhaps more importantly: reliability analysis (interdiction)

- Find $\Omega' \subset \Omega^k$ such that $G \bigcup_{F \in \Omega'} F$...
- Interdiction in networks with a diffusion dynamics

(Threshold model, Cascade model...)

• Given $\Omega = \{F_1, \cdots, F_m\}$ and $k \in \mathbb{N}$ find, the scenario set is

$$\Omega^{\pmb{k}} = \left\{ Y = \bigcup_{F \in \Omega'} F \; : \; \Omega' \subset \Omega, \; |\Omega'| \le \pmb{k} \right\}$$

Perhaps more importantly: reliability analysis (interdiction)

- Find $\Omega' \subset \Omega^k$ such that $G \bigcup_{F \in \Omega'} F$...
- Interdiction in networks with a diffusion dynamics

(Threshold model, Cascade model...)

イロト 不得 トイヨト イヨト 二日

Nonuniform...

$\mathsf{T} H \mathsf{A} \mathsf{N} \mathsf{K} \mathsf{Y} \mathsf{O} \mathsf{U}$

・ロン ・四 と ・ ヨ と ・ ヨ と

æ