
A Constant Factor Approximation for Regret-Bounded
Vehicle Routing

Zachary Friggstad, Chaitanya Swamy

The University of Waterloo

Flexible Network Design, Toronto
July 29, 2013

Vehicle Routing

A typical Vehicle Routing Problem (VRP): Given one or more vehicles
located at some depots, find routes for them to visit some clients.

Travel distance often factors into the objective or constraints, e.g.
TSP, Orienteering, Distance-Constrained VRP, Capacitated VRP, . . .

Depot

However, this does not differentiate between clients close to the depot
and clients far from the depot.

Vehicle Routing

A typical Vehicle Routing Problem (VRP): Given one or more vehicles
located at some depots, find routes for them to visit some clients.

Travel distance often factors into the objective or constraints, e.g.
TSP, Orienteering, Distance-Constrained VRP, Capacitated VRP, . . .

Depot

However, this does not differentiate between clients close to the depot
and clients far from the depot.

A Client-Centric View

We consider a vehicle routing problem with a single depot node r .

For a path P starting at r and for some v ∈ P, define the regret of v
along P to be

dP(v)− d(r , v)

r
v

This is the distance along P to reach v in excess of the r − v
distance.

Since the r − v distance delay is inevitable, this is a natural way to
measure a client’s satisfaction.

A Client-Centric View

We consider a vehicle routing problem with a single depot node r .

For a path P starting at r and for some v ∈ P, define the regret of v
along P to be

dP(v)− d(r , v)

r
v

This is the distance along P to reach v in excess of the r − v
distance.

Since the r − v distance delay is inevitable, this is a natural way to
measure a client’s satisfaction.

The Regret-Bounded Vehicle Routing Problem

Input
• Locations V ∪ {r} with r being the root/depot.
• Symmetric metric distances d(u, v) between locations:

d(u, v) ≤ d(u,w) + d(w , v).

• A regret bound R ≥ 0.

Goal
Cover V with the fewest rooted paths (starting at r) so that no client
has regret more than R on their covering path.

r

The Regret-Bounded Vehicle Routing Problem

Input
• Locations V ∪ {r} with r being the root/depot.
• Symmetric metric distances d(u, v) between locations:

d(u, v) ≤ d(u,w) + d(w , v).

• A regret bound R ≥ 0.

Goal
Cover V with the fewest rooted paths (starting at r) so that no client
has regret more than R on their covering path.

r

Previous Work

Bock, Grant, Koenemann, and Sanita, 2011 - “School Bus Problem”
• Greedy Set Cover + Orienteering ⇒ O(log |V |)-approximation.
• A 3-approximation in tree metrics.

The notion of regret has been studied before. Approximations for
Minimum Excess Path lead to approximations for Orienteering. [Blum
et al., 2003; Nagarajan and Ravi, 2007; Chekuri, Korula, and Pál,
2008].

Related problem: Distance-Constrained VRP. Cover V using the
fewest rooted cycles, each having distance at most D ≥ 0.

Nagarajan and Ravi, 2008
• An O(min(log D, log |V |))-approximation in general.
• A 2-approximation in tree metrics.

Previous Work

Bock, Grant, Koenemann, and Sanita, 2011 - “School Bus Problem”
• Greedy Set Cover + Orienteering ⇒ O(log |V |)-approximation.
• A 3-approximation in tree metrics.

The notion of regret has been studied before. Approximations for
Minimum Excess Path lead to approximations for Orienteering. [Blum
et al., 2003; Nagarajan and Ravi, 2007; Chekuri, Korula, and Pál,
2008].

Related problem: Distance-Constrained VRP. Cover V using the
fewest rooted cycles, each having distance at most D ≥ 0.

Nagarajan and Ravi, 2008
• An O(min(log D, log |V |))-approximation in general.
• A 2-approximation in tree metrics.

Previous Work

Bock, Grant, Koenemann, and Sanita, 2011 - “School Bus Problem”
• Greedy Set Cover + Orienteering ⇒ O(log |V |)-approximation.
• A 3-approximation in tree metrics.

The notion of regret has been studied before. Approximations for
Minimum Excess Path lead to approximations for Orienteering. [Blum
et al., 2003; Nagarajan and Ravi, 2007; Chekuri, Korula, and Pál,
2008].

Related problem: Distance-Constrained VRP. Cover V using the
fewest rooted cycles, each having distance at most D ≥ 0.

Nagarajan and Ravi, 2008
• An O(min(log D, log |V |))-approximation in general.
• A 2-approximation in tree metrics.

Main Result

An Integrality Gap Bound

We consider a configuration-style of LP relaxation.

Theorem
Given an LP solution with value k∗ and polynomial support size, we
can efficiently an integral solution which uses at most
(7 + 4

√
3) · k∗ + 1 paths in polynomial time.

A Constant-Factor Approximation

Combining this with the (2 + ε)-approximation for solving the LP
yields a 28.36-approximation for Regret-Bounded VRP.

Main Result

An Integrality Gap Bound

We consider a configuration-style of LP relaxation.

Theorem
Given an LP solution with value k∗ and polynomial support size, we
can efficiently an integral solution which uses at most
(7 + 4

√
3) · k∗ + 1 paths in polynomial time.

A Constant-Factor Approximation

Combining this with the (2 + ε)-approximation for solving the LP
yields a 28.36-approximation for Regret-Bounded VRP.

Highlights

Highlights:

• The LP is an example of the set-partitioning model for VRP.
◦ Computationally, this approach has been observed to provide excellent

lower bounds in related problems (column generation techniques help
solve the LPs in practice) but few theoretical guarantees were known.

• New ideas to deal with regret/excess of a path and rounding
configuration LPs in VRP.

• Can be viewed as a special case of Distance-Constrained VRP in a
particular asymmetric metric (described soon).

An LP relaxation

Let CR = {rooted paths P : dv (P)− d(r , v) ≤ R for each v ∈ P}.

minimize :
∑
P∈CR

xP

subject to :
∑
P∈CR
v∈P

xP ≥ 1 ∀ v ∈ V

x ≥ 0

The dual separation problem is a Point-to-Point Orienteering problem.
This has a (2 + ε)-approximation [Chekuri, Korula, and Pál, 2008].

∴ we can solve the LP within a factor of 2 + ε.

An LP relaxation

Let CR = {rooted paths P : dv (P)− d(r , v) ≤ R for each v ∈ P}.

minimize :
∑
P∈CR

xP

subject to :
∑
P∈CR
v∈P

xP ≥ 1 ∀ v ∈ V

x ≥ 0

The dual separation problem is a Point-to-Point Orienteering problem.
This has a (2 + ε)-approximation [Chekuri, Korula, and Pál, 2008].

∴ we can solve the LP within a factor of 2 + ε.

Preliminary Observations

Define the regret metric d reg over V ∪ {r} by

d reg(u, v) := d(r , u) + d(u, v)− d(r , v)

u

v

r

Observations:

• d reg is an asymmetric metric.
• d reg(r , v) = 0 for any v ∈ V .
• The d reg-length of a rooted path P is the regret of its endpoint.
• The d-length and d reg-length of any cycle are equal.

Preliminary Observations

Define the regret metric d reg over V ∪ {r} by

d reg(u, v) := d(r , u) + d(u, v)− d(r , v)

u

v

r

Observations:

• d reg is an asymmetric metric.
• d reg(r , v) = 0 for any v ∈ V .
• The d reg-length of a rooted path P is the regret of its endpoint.
• The d-length and d reg-length of any cycle are equal.

Preliminary Observations

In particular

Regret-Bounded VRP in d ≡ Distance-Constrained VRP in d reg

Lemma
Given ≤ α · k∗ paths covering V with total d reg-cost ≤ β · k∗ · R, we
can efficiently find a feasible Regret-Bounded VRP solution using at
most (α + β) · k∗ paths.

Proof.

r

Preliminary Observations

In particular

Regret-Bounded VRP in d ≡ Distance-Constrained VRP in d reg

Lemma
Given ≤ α · k∗ paths covering V with total d reg-cost ≤ β · k∗ · R, we
can efficiently find a feasible Regret-Bounded VRP solution using at
most (α + β) · k∗ paths.

Proof.

r

Preliminary Observations

In particular

Regret-Bounded VRP in d ≡ Distance-Constrained VRP in d reg

Lemma
Given ≤ α · k∗ paths covering V with total d reg-cost ≤ β · k∗ · R, we
can efficiently find a feasible Regret-Bounded VRP solution using at
most (α + β) · k∗ paths.

Proof.

r

Preliminary Observations

In particular

Regret-Bounded VRP in d ≡ Distance-Constrained VRP in d reg

Lemma
Given ≤ α · k∗ paths covering V with total d reg-cost ≤ β · k∗ · R, we
can efficiently find a feasible Regret-Bounded VRP solution using at
most (α + β) · k∗ paths.

Proof.

r

Break each path into paths of d reg-length ≤ R and attach to r .

Preliminary Observations

In other words, it suffices to find O(k∗) paths with total d reg-cost
O(k∗ · R).

Side Note: We can now easily get an O(log |V |)-approximation for
asymmetric Regret-Bounded VRP using known approximations for
k-Person ATSP Path.

Also: α-approximation for asymmetric Regret-Bounded VRP
⇒ 2α-approximation for ATSP.

Preliminary Observations

In other words, it suffices to find O(k∗) paths with total d reg-cost
O(k∗ · R).

Side Note: We can now easily get an O(log |V |)-approximation for
asymmetric Regret-Bounded VRP using known approximations for
k-Person ATSP Path.

Also: α-approximation for asymmetric Regret-Bounded VRP
⇒ 2α-approximation for ATSP.

The Rounding

Suppose we have an LP solution x∗ with polynomial support size and
value k∗.

Recall k∗ ≤ (2 + ε) · OPT .

Easy case: The union of all directed edges used by supp(x∗) is acyclic.

r

The Rounding

Suppose we have an LP solution x∗ with polynomial support size and
value k∗.

Recall k∗ ≤ (2 + ε) · OPT .

Easy case: The union of all directed edges used by supp(x∗) is acyclic.

r

View x∗ as a path decomposition of a flow f .

r

t

0

0

0

Notice f has d reg-cost at most k∗ · R and satisfies

• f (δout(r)) ≤ dk∗e
• f (δin(v)) ≥ 1 for each v ∈ V

Integrality of flows + supp(f) being acyclic ⇒ Can efficiently find
≤ dk∗e paths with total regret at most k∗ · R which cover V .

Use the previous lemma to turn these into at most 2 · k∗ + 1 paths
covering V with maximum regret ≤ R.

View x∗ as a path decomposition of a flow f .

r

t

0

0

0

Notice f has d reg-cost at most k∗ · R and satisfies

• f (δout(r)) ≤ dk∗e
• f (δin(v)) ≥ 1 for each v ∈ V

Integrality of flows + supp(f) being acyclic ⇒ Can efficiently find
≤ dk∗e paths with total regret at most k∗ · R which cover V .

Use the previous lemma to turn these into at most 2 · k∗ + 1 paths
covering V with maximum regret ≤ R.

View x∗ as a path decomposition of a flow f .

r

t

0

0

0

Notice f has d reg-cost at most k∗ · R and satisfies

• f (δout(r)) ≤ dk∗e
• f (δin(v)) ≥ 1 for each v ∈ V

Integrality of flows + supp(f) being acyclic ⇒ Can efficiently find
≤ dk∗e paths with total regret at most k∗ · R which cover V .

Use the previous lemma to turn these into at most 2 · k∗ + 1 paths
covering V with maximum regret ≤ R.

The Rounding

Things are not so simple if the flow described by x∗ contains cycles!

High-Level Approach
1) Shortcut the paths P ∈ supp(x∗) past some clients to make their
union acyclic.

2) If a client v is removed from more than a 1
2 -fraction of their

covering paths, then they are discarded them outright. We will also
ensuring there is a cheap way to reintegrate them later.

3) Double the resulting acyclic flow and then round as before.

The Rounding

For a rooted path P, we define red and blue edges.

r

Distance from r

The cost of the red edges is at most 3
2 · d

reg(P) [Blum et al., 2003].

Deleting the blue edges naturally breaks P into red intervals (some
intervals may be singletons).

The Rounding

We now identify a forest F and discard all but one particularly chosen
node from each component.

Define a cut requirement function f : 2V → {0, 1} by:

• f (S) = 1 if every v ∈ S has ≥ 1
2 of its red intervals crossing S

• f (S) = 0 otherwise

r

v

r

v

The Rounding

Note:
• f is downward monotone: f (S) ≥ f (T) for every ∅ (S ⊆ T .
• Every cut S with f (S) = 1 is crossed by a 1

2 -fraction of red edges:∑
e∈δ(S)

∑
P:e is red on P

x∗P ≥
1

2

• The total fractional d-cost of the red edges is at most 3
2 · k

∗ · R.

Thus, there is a forest F with d-cost at most 6 · k∗ · R satisfying
f (C) = 0 for each component C [Goemans and Williamson, 1994].

Each component C has a node v where at least a 1
2 -fraction of v ’s

red intervals are contained in C .

Let W ⊆ V consist of one such node from each component.

The Rounding

Note:
• f is downward monotone: f (S) ≥ f (T) for every ∅ (S ⊆ T .
• Every cut S with f (S) = 1 is crossed by a 1

2 -fraction of red edges:∑
e∈δ(S)

∑
P:e is red on P

x∗P ≥
1

2

• The total fractional d-cost of the red edges is at most 3
2 · k

∗ · R.

Thus, there is a forest F with d-cost at most 6 · k∗ · R satisfying
f (C) = 0 for each component C [Goemans and Williamson, 1994].

Each component C has a node v where at least a 1
2 -fraction of v ’s

red intervals are contained in C .

Let W ⊆ V consist of one such node from each component.

The Rounding

Note:
• f is downward monotone: f (S) ≥ f (T) for every ∅ (S ⊆ T .
• Every cut S with f (S) = 1 is crossed by a 1

2 -fraction of red edges:∑
e∈δ(S)

∑
P:e is red on P

x∗P ≥
1

2

• The total fractional d-cost of the red edges is at most 3
2 · k

∗ · R.

Thus, there is a forest F with d-cost at most 6 · k∗ · R satisfying
f (C) = 0 for each component C [Goemans and Williamson, 1994].

Each component C has a node v where at least a 1
2 -fraction of v ’s

red intervals are contained in C .

Let W ⊆ V consist of one such node from each component.

Forest ⇒ Cycles

Standard TSP trick: convert each component of the forest to a cycle.

r

(White = W)

Forest ⇒ Cycles

Standard TSP trick: convert each component of the forest to a cycle.

r

(White = W)

Since d- and d reg-costs are equal for cycles, then the total d reg-cost
of these cycles is at most 12 · k∗ · R.

Shortcutting the Paths

For each P ∈ supp(x∗):

1) Mark each node in V −W for removal (the black nodes).

r

Shortcutting the Paths

2) If a red interval contains more than one W -node, then mark them
all for removal.

r

The dashed contours indicate components of the forest F including
these grey nodes.

Important: Each witness node v ∈W is marked for removal this way
in at most a 1

2 -fraction of its covering paths.

Shortcutting the Paths

2) If a red interval contains more than one W -node, then mark them
all for removal.

r

The dashed contours indicate components of the forest F including
these grey nodes.

Important: Each witness node v ∈W is marked for removal this way
in at most a 1

2 -fraction of its covering paths.

Shortcutting the Paths

3) Now shortcut P past all marked nodes.

r

After doing so for all P ∈ supp(x∗):

• The fractional number of paths k∗ does not change.

• The d reg-cost of each path does not increase.

• Each v ∈W lies on at least a 1
2 -fraction of the new paths.

• The union of the new paths is acyclic!

Shortcutting the Paths

3) Now shortcut P past all marked nodes.

r

After doing so for all P ∈ supp(x∗):

• The fractional number of paths k∗ does not change.

• The d reg-cost of each path does not increase.

• Each v ∈W lies on at least a 1
2 -fraction of the new paths.

• The union of the new paths is acyclic!

Wrap Up

Now we can round the acyclic flow described by 2x∗ to get at most
d2k∗e paths spanning W with total d reg-cost at most 2 · k∗ · R.

Incorporating the cycles via their witness nodes and shortcutting finds
d2k∗e paths spanning V with total d reg-cost at most 14 · k∗ · R.

r

Finally, applying the lemma finds at most 16 · k∗ + 1 paths of
maximum d reg-cost R spanning V : an O(1)-approximate solution!

Wrap Up

Now we can round the acyclic flow described by 2x∗ to get at most
d2k∗e paths spanning W with total d reg-cost at most 2 · k∗ · R.

Incorporating the cycles via their witness nodes and shortcutting finds
d2k∗e paths spanning V with total d reg-cost at most 14 · k∗ · R.

r

Finally, applying the lemma finds at most 16 · k∗ + 1 paths of
maximum d reg-cost R spanning V : an O(1)-approximate solution!

Wrap Up

Now we can round the acyclic flow described by 2x∗ to get at most
d2k∗e paths spanning W with total d reg-cost at most 2 · k∗ · R.

Incorporating the cycles via their witness nodes and shortcutting finds
d2k∗e paths spanning V with total d reg-cost at most 14 · k∗ · R.

r

Finally, applying the lemma finds at most 16 · k∗ + 1 paths of
maximum d reg-cost R spanning V : an O(1)-approximate solution!

Extensions

Optimizations:

• Choose a different cutoff than 1
2 in the definition of the cut

requirement function.

• Tweaks to the definition of the cut requirement function and how
we shortcut the paths to get the acyclic collection.

Consider the variant where we have k vehicles and we want to
minimize the maximum client regret.

• An O(k2)-approximation.

• An Ω(k) “integrality gap” lower bound for the feasibility LP based
on configurations.

Thank You!

Extensions

Optimizations:

• Choose a different cutoff than 1
2 in the definition of the cut

requirement function.

• Tweaks to the definition of the cut requirement function and how
we shortcut the paths to get the acyclic collection.

Consider the variant where we have k vehicles and we want to
minimize the maximum client regret.

• An O(k2)-approximation.

• An Ω(k) “integrality gap” lower bound for the feasibility LP based
on configurations.

Thank You!

Extensions

Optimizations:

• Choose a different cutoff than 1
2 in the definition of the cut

requirement function.

• Tweaks to the definition of the cut requirement function and how
we shortcut the paths to get the acyclic collection.

Consider the variant where we have k vehicles and we want to
minimize the maximum client regret.

• An O(k2)-approximation.

• An Ω(k) “integrality gap” lower bound for the feasibility LP based
on configurations.

Thank You!

