Iterative rounding approximation algorithms for degree-bounded node-connectivity network design

Takuro Fukunaga

National Institute of Informatics, Japan JST, ERATO, Kawarabayashi Large Graph Project

Joint work with R. Ravi (CMU), Z. Nutov (Open University of Israel)

July 30, 2013 @ FND workshop

Survivable network design (SND)

Problem

Input:

- an undirected or directed graph G = (V, E)
- edge-cost $c: E \to \mathbb{Q}_+$
- terminal set $T \subseteq V$
- connectivity requirements $r : T \times T \rightarrow \mathbb{N}$

Solution: a minimum cost subgraph of G

Constraints: $\forall u, v \in T$: (connectivity between *u* and *v*) $\geq r(u, v)$

Connectivity

- edge-connectivity λ : max # of edge-disjoint paths
- element-connectivity λ_T :

max # of paths disjoint in edges and non-terminals

• node-connectivity κ: max # of paths disjoint in inner-nodes

$$\lambda(u, v) = 4$$

$$\lambda_T(u, v) = 3$$

$$\kappa(u, v) = 2$$
O non-terminal
• terminal

Many special cases are defined according to *r* (e.g., uniform req., rooted req., subset req.)

Degree-bounded SND

Degree bounds

• Undirected graphs: Given $B \subseteq V$ and $b : B \rightarrow \mathbb{N}$,

```
degree of \forall v \in B \leq b(v)
```

• Digraphs: Given $B^-, B^+ \subseteq V, b^- : B^- \to \mathbb{N}$ and $b^+ : B^+ \to \mathbb{N}$, in-degree of $\forall v \in B^- \leq b^-(v)$ out-degree of $\forall v \in B^+ < b^+(v)$

Feasible solutions of Degree-bounded SND are Hamiltonian paths

- connectivity requirements: an undirected connected graph
- degree bounds: B = V, and b(v) = 2 for $\forall v$
- → NP-hard to find a feasible solution

Multi-criteria approximation

Approximation for undirected degree-bounded SND

- $\alpha \in \mathbb{Q}$
- $\beta : \mathbb{N} \to \mathbb{N}$

An algorithm achieves (α, β) -approximation if it outputs $F \subseteq E$ such that

- $c(F) \leq \alpha OPT$ (edge-cost approx)
- degree of $v \leq \beta(b(v))$ for $\forall v \in B$ (degree bounds approx)

for each instance that has a feasible solution.

Key idea: iterative rounding

Iterative rounding is a powerful tool

- Jain '01: 2-approx algorithm for edge-connectivity SND
- Fleischer, Jain, Williamson '01: Extended [Jain '01] to element-connectivity SND and node-connectivity SND w/ k ≤ 2 (k := max_{u,v} r(u, v))
- Breakthrough around '07: Applied to degree-bounded spanning tree and degree-bounded SND w/ edge-connectivity req.

Key idea: iterative rounding

Iterative rounding is a powerful tool

- Jain '01: 2-approx algorithm for edge-connectivity SND
- Fleischer, Jain, Williamson '01: Extended [Jain '01] to element-connectivity SND and node-connectivity SND w/ k ≤ 2 (k := max_{u,v} r(u, v))
- Breakthrough around '07: Applied to degree-bounded spanning tree and degree-bounded SND w/ edge-connectivity req.

But, iterative rounding did NOT work well for

- element-connectivity SND w/ degree-bounds on arbitrary nodes
- node-connectivity SND even w/o degree-bounds if $k \ge 3$

Situation

Situation

Why were they difficult?

edge-connectivity SND → covering set functions by edges

$$\bigcup Z \geq R(U) := \max_{u \in U, v \notin U} r(u, v)$$

$$\bigcup \bigcup \bigcup U' \geq R(U, U') := \max_{u \in U, v \in U'} r(u, v)$$

There was no good analysis of iterative rounding for covering set-pair functions except a few restricted cases.

What did we do?

- We gave two definitions of laminarity for set-pairs
 - Laminarity of set-pairs
 - Strongly laminarity of set-pairs

What did we do?

- · We gave two definitions of laminarity for set-pairs
 - Laminarity of set-pairs
 - Strongly laminarity of set-pairs
- We characterized structure on tight set-pair families of element-connectivity and node-connectivity SND
 - $\circ~$ Iterative rounding was known to work
 - strongly laminar family (undirected graphs) or laminar family, one direction (directed graphs)
 - $\circ~$ Iterative rounding was NOT known to work
 - → laminar family (undirected graphs) or laminar family, both directions (directed graphs)

What did we do?

We gave a new analysis for

- laminar families (both in undirected and in directed graphs)
- strongly laminar families w/ degree-bounds
- no edge-cost case

Our ideas

- 1 New token counting method for laminar family of set-pairs
- ② Using two different counting methods according to # of tight set-pairs v.s. # of tight degree nodes

Set-pair

- set-pair (= biset): ordered pair ${ ilde U}=({\it U},{\it U}')$ of disjoint node sets
- *U* := tail, *U*' := head
- $\delta(\tilde{U}) := \{uv \in E : u \in U, v \in U'\}$
- $\Gamma(\tilde{U}) := V \setminus (U \cup U')$ (boundary)

LP relaxation

- $R(\tilde{U}) := \max_{u \in U, v \in U'} r(u, v) |\Gamma(\tilde{U})|$
- $R(\tilde{U}) > 0 \Rightarrow |\Gamma(\tilde{U})| < k$
- $\ensuremath{\mathcal{F}}$: a family of set-pairs defined depending on the connectivity

Set-pair relaxation for undirected graphs

$$\begin{array}{ll} \min & c^T x \\ \text{s.t.} & x(\delta(\tilde{U})) \geq R(\tilde{U}) & \forall \tilde{U} \in \mathcal{F} \\ & x(\delta(v)) \leq b(v) & \forall v \in B \\ & 0 \leq x(e) \leq 1 & \forall e \in E \end{array}$$

Laminarity of set-pairs

Laminar family of set-pairs

 $\ensuremath{\mathcal{L}}$ is a laminar family of set-pairs if

- $\{U: (U, U') \in \mathcal{L}\}$ is a laminar set family,
- $\forall (U, U'), (W, W') \in \mathcal{L} : U \subseteq W \Rightarrow W' \subseteq U'.$

Strongly laminar family of set-pairs

 ${\mathcal L}$ is a strongly laminar family of set-pairs if

• \mathcal{L} is a laminar family of set-pairs,

•
$$\forall \tilde{U} = (U, U'), \tilde{W} = (W, W') \in \mathcal{L} :$$

 $U \cap W = \emptyset \Rightarrow U \cap \Gamma(\tilde{W}) = \emptyset, \Gamma(\tilde{U}) \cap W = \emptyset$

Laminar NOT strongly laminar

1. Laminar, undirected $\rightarrow (O(k), O(k) \cdot b(v))$ -approx

- 1. Laminar, undirected $\rightarrow (O(k), O(k) \cdot b(v))$ -approx
- 2. Laminar, directed \rightarrow (2, k, 2b⁺(v) + O(k))-approx

- 1. Laminar, undirected $\rightarrow (O(k), O(k) \cdot b(v))$ -approx
- 2. Laminar, directed \rightarrow (2, k, 2b⁺(v) + O(k))-approx
- Strongly laminar w/ degree-bounds, undirected →
 (4,4b(v) + O(k))-approx

Approximation factors: SND w/o degree bounds

node-connectivity

$k \leq 2$	2-approx	[Fleischer et al. 06] iterative rounding
general	$O(k^3 \log n)$ -approx	[Chuzhoy, Khanna 09] decomposition
rooted	$O(k \log k)$ -approx	[Nutov 09] decomposition
subset	$O(k^2)$ -approx	[Nutov 09] decomposition
uniform	$O(\log^2 k)$ -approx	[Fakcharoenphol, Laekhanukit 08] [Nutov 09] decomposition
	$O(\sqrt{n/\epsilon})$ -approx	[Cheriyan et al. 06] iterative rounding
	$\Omega(\sqrt{k})$ -fractionality	[Aazami et al. 10] iterative rounding
uniform $(n > 3k - 3)$	O(k)-approx	This talk iterative rounding

Approximation factors: Edge- and element-connectivity SND w/ degree-bounds

edge-connectivity

	edge-cost	degree	
spanning tree	1	b(v) + 1	[Singh, Lau 07]
general	2	b(v) + O(k)	[Lau et al. 07]

element-connectivity

4	4b(v) + O(k)	4b(v) + O(k)	This talk
$O(\log k)$	$O(\log k \cdot b(v) + k)$	$O(2^k) \cdot b(v)$	[Nutov 12]
2	b(v) + O(k)	$+\infty$	[Lau et al. 07]
edge-cost	deg terminals	deg non-terminals	

Approximation factors: Node-connectivity SND w/ degree-bounds

node-connectivity, undirected graphs

edge-cost	degree	
$O(k^3 \log k \log T)$	$O(2^k k^3 \log T) \cdot b(v)$	[Nutov 12]
$O(k^3 \log T)$	$O(k^3 \log T) \cdot b(v)$	This talk
$O(k^2 \log k \log T)$	$O(2^k k^2 \log T) \cdot b(v)$	[Nutov 12]
$O(k \log k)$	$O(k \log k) \cdot b(v)$	This talk
$O(k^2 \log k \log T)$	$O(2^k k^2 \log T) \cdot b(v)$	[Nutov 12]
$O(k^2)$	$O(k^2)$	trivial
$O(k \log k)$	$O(k \log k) \cdot b(y)$	This talk
	edge-cost $O(k^{3} \log k \log T)$ $O(k^{3} \log T)$ $O(k^{2} \log k \log T)$ $O(k \log k)$ $O(k^{2} \log k \log T)$ $O(k^{2} \log k \log T)$ $O(k^{2})$	edge-costdegree $O(k^3 \log k \log T)$ $O(2^k k^3 \log T) \cdot b(v)$ $O(k^3 \log T)$ $O(2^k k^3 \log T) \cdot b(v)$ $O(k^2 \log k \log T)$ $O(2^k k^2 \log T) \cdot b(v)$ $O(k \log k)$ $O(k \log k) \cdot b(v)$ $O(k^2 \log k \log T)$ $O(2^k k^2 \log T) \cdot b(v)$ $O(k^2 \log k \log T)$ $O(2^k k^2 \log T) \cdot b(v)$ $O(k^2)$ $O(k^2)$ $O(k \log k)$ $O(k^2)$

Note: $(+\infty, 2^{\log^{1-\epsilon} n}b(v))$ -approx hardness is known for subset node-connectivity SND when *k* is large [Lau et al. 09]

Approximation factors: Degree-bounded SND for digraphs

node-connectivity, digraphs

	edge-cost	in-degree	out-degree	
out-conn	$O(\log k)$	$+\infty$	$O(2^k) \cdot b^+(v)$	[Nutov 12]
	2	k	$2b^+(v) + O(k)$	This talk
uniform	O(k)	$+\infty$	$O(2^k) \cdot b^+(v)$	[Nutov 12]
	O(k)	$O(k\sqrt{k})$	$2b^+(v) + O(k\sqrt{k})$	This talk

implications for undirected graphs

	edge-cost	degree	
out-conn	$O(\log k)$	$O(2^{\kappa}) \cdot b(v)$	[Nutov 12]
	4	2b(v) + O(k)	This talk
uniform	O(k)	$O(2^k) \cdot b(v)$	[Nutov 12]
	O(k)	$2b(v) + O(k\sqrt{k})$	This talk

Result 1

1. Laminar, undirected $\rightarrow (O(k), O(k) \cdot b(v))$ -approx

Laminar family of set-pairs defines a forest

(U, U') is the parent of (W, W') if $W \subset U$ or if W = U and $U' \subset W'$.

We prove

Theorem

If x^* is uniquely defined from the laminar family of tight set-pairs, one of the following holds:

• $\exists e \in E : x^*(e) = 0$

•
$$\exists e \in E : x^*(e) \ge 1/(4k-1)$$

•
$$\exists v \in B : |\delta(v)| \leq 4k - 1$$

Assume $0 < x^*(e) < 1/(4k-1)$ for $\forall e \in E$, and $|\delta(v)| \ge 4k$ for $\forall v \in B$.

- 1. We make each edge distributes at most 2 tokens to set-pairs.
- 2. We show each set-pair receives \geq 2 tokens, and the root receives \geq 4 tokens.

Initial distribution

Token distribution rule

For each e = uv and its end-node v, e gives a token to

- 1. minimal (U, U') s.t. $e \in \delta(U, U')$ and $v \in U$ if it exists,
- 2. minimal (U, U') s.t. $e \notin \delta(U, U')$ and $u \in U$ otherwise.

Theorem

of red tokens in the forest $< 4(k - 1) \times$ (# of leaves)

Theorem

of red tokens in the forest $< 4(k - 1) \times$ (# of leaves)

Theorem

of red tokens in the forest $< 4(k - 1) \times$ (# of leaves)

blue set remains in the boundary of the last setpair on the path #red set-pairs on the

path $\leq k - 1$

#red set-pairs in the forest $<2(k-1)\times$ #leaves

Result 3

3. Strongly laminar w/ degree-bounds, undirected \rightarrow (4, 4b(v) + O(k))-approx

Strongly laminar family of set-pairs with degree-bounds

Theorem

If x^* is defined from a strongly laminar family of tight set-pairs and tight

degree-bounds, then one of the following holds:

•
$$\exists e \in E : x^*(e) = 0$$

•
$$\exists e \in E : x^*(e) \ge 1/4$$

• $\exists v \in B : |\delta(v)| < 2.5k + 6.25$

Idea 2: Using two different counting methods

 $\mathcal{L} :=$ strongly laminar family of set-pairs $\mathcal{C} :=$ set of tight degree-bounded nodes

Case (i): *C* is small (i.e. $2|C| \le \#$ leaves)

A leaf gives tokens to nodes in C, and follow the 2-approx proof without C

```
Case (ii): C is large (i.e. 2|C| > \# leaves in \mathcal{L})
```

Nodes in *C* give tokens to leaves, and follow the proof for the laminar set-pair family in undirected graphs

When $2|C| \leq \#$ leaves of \mathcal{L}

- each leaf gives 2 tokens to a node in C
- nodes in C release their tokens

When $2|C| \ge \#$ leaves of \mathcal{L}

- each node in C keeps 2 tokens
- nodes in C give the other tokens to leaves of L

When 2 $|\mathcal{C}| \geq$ # leaves of \mathcal{L}

- each node in C keeps 2 tokens
- nodes in C give the other tokens to leaves of L

Conclusion

- Laminar, undirected \rightarrow ($O(k), O(k) \cdot b(v)$)-approx
- Laminar, directed \rightarrow (2, k, 2b⁺(v) + O(k))-approx
- Strongly laminar w/ degree-bounds, undirected →
 (4,4b(v) + O(k))-approx
- Laminar, undirected \rightarrow (+ ∞ , 6b(v) + $O(k^2)$)-approx
- Strongly laminar w/ degree-bounds, undirected → (+∞, 2b(v) + O(k²))-approx

Future works

- Narrow the gap between O(k) and Ω(√k) for uniform node-connectivity req. by iterative rounding
- Iterative rounding for other cases of node-connectivity