Combinatorial Algorithms to Solve Network Interdiction and Scheduling Problems with Multiple Parameters

S.T. McCormick; GP Oriolo; B. Peis

Sauder School of Business, UBC; U. Rome Tor Vergata; Aachen

Combinatorial Algorithms to Solve Network Interdiction and Scheduling Problems with Multiple Parameters

S.T. McCormick; GP Oriolo; B. Peis

Sauder School of Business, UBC; U. Rome Tor Vergata; Aachen

S. Thomas McCormick

Sauder School of Business

University of British Columbia

Parametric Interdiction

Combinatorial Algorithms to Solve Network Interdiction and Scheduling Problems with Multiple Parameters

S.T. McCormick; GP Oriolo; B. Peis

Sauder School of Business, UBC; U. Rome Tor Vergata; Aachen

S. Thomas McCormick

Sauder School of Business **The best research b-school in Canada!** University of British Columbia

McCormick et al (UBC-Rome-Aachen)

Parametric Interdiction

- What is it?
- Interdiction curves

- What is it?
- Interdiction curves

2 LP Duality

Dual of interdiction

Network Interdiction

- What is it?
- Interdiction curves

2 LP Duality

- Dual of interdiction
- 3 Parametric Min Cut
 - Parametric curves

Network Interdiction

- What is it?
- Interdiction curves

2 LP Duality

- Dual of interdiction
- 3 Parametric Min Cut
 - Parametric curves

4 The Breakpoint Subproblem

- What is it?
- Algorithms
- Discrete Newton

Network Interdiction

- What is it?
- Interdiction curves

2 LP Duality

- Dual of interdiction
- 3 Parametric Min Cut
 - Parametric curves

4 The Breakpoint Subproblem

- What is it?
- Algorithms
- Discrete Newton
- **5** Multiple Parameters
 - What is it?
 - Scheduling problem
 - Multi-GGT

Network Interdiction

- What is it?
- Interdiction curves

2 LP Duality

• Dual of interdiction

3 Parametric Min Cut

Parametric curves

4 The Breakpoint Subproblem

- What is it?
- Algorithms
- Discrete Newton

5 Multiple Parameters

- What is it?
- Scheduling problem
- Multi-GGT

• We start with an ordinary max flow min cut network with source s, sink t, and capacities c. The capacity of cut S is $cap_c(S)$.

- We start with an ordinary max flow min cut network with source s, sink t, and capacities c. The capacity of cut S is $cap_c(S)$.
- We have a second non-negative datum on each arc: r_{ij} is the removal cost of destroying arc $i \rightarrow j$; we could spend, e.g., $r_{ij}/2$ to reduce the capacity of $i \rightarrow j$ to $c_{ij}/2$.

- We start with an ordinary max flow min cut network with source s, sink t, and capacities c. The capacity of cut S is $cap_c(S)$.
- We have a second non-negative datum on each arc: r_{ij} is the removal cost of destroying arc $i \rightarrow j$; we could spend, e.g., $r_{ij}/2$ to reduce the capacity of $i \rightarrow j$ to $c_{ij}/2$.
 - In Min Cut we assume that the removal cost of $i \rightarrow j$ is proportional to its capacity c_{ij} , but here removal cost is independent of c_{ij} .

- We start with an ordinary max flow min cut network with source s, sink t, and capacities c. The capacity of cut S is $cap_c(S)$.
- We have a second non-negative datum on each arc: r_{ij} is the removal cost of destroying arc $i \rightarrow j$; we could spend, e.g., $r_{ij}/2$ to reduce the capacity of $i \rightarrow j$ to $c_{ij}/2$.
 - In Min Cut we assume that the removal cost of $i \rightarrow j$ is proportional to its capacity c_{ii} , but here removal cost is independent of c_{ii} .
- Finally, we have a budget $B \ge 0$ to spend on destroying arcs. Our objective is to spend at most B (maybe fractionally) in a way that minimizes the value of the residual flow.

- We start with an ordinary max flow min cut network with source s, sink t, and capacities c. The capacity of cut S is $cap_c(S)$.
- We have a second non-negative datum on each arc: r_{ij} is the removal cost of destroying arc $i \rightarrow j$; we could spend, e.g., $r_{ij}/2$ to reduce the capacity of $i \rightarrow j$ to $c_{ij}/2$.
 - In Min Cut we assume that the removal cost of $i \rightarrow j$ is proportional to its capacity c_{ij} , but here removal cost is independent of c_{ij} .
- Finally, we have a budget $B \ge 0$ to spend on destroying arcs. Our objective is to spend at most B (maybe fractionally) in a way that minimizes the value of the residual flow.
 - In Min Cut we remove arcs until there is zero flow left, but here we remove only as much as we can under the budget.

What is it?

Removing arcs greedily

• Thus if B = 0, then the interdiction value is cap_c^* , the ordinary min cut value; for $B \ge \operatorname{cap}_r^*$, the interdiction value is 0.

- Thus if B = 0, then the interdiction value is cap_c^* , the ordinary min cut value; for $B \ge cap_r^*$, the interdiction value is 0.
- Some thought shows that it is always optimal to destroy arcs belonging to some cut S (that may depend on B).

What is it?

- Thus if B = 0, then the interdiction value is cap^{*}, the ordinary min cut value; for $B \ge \operatorname{cap}_r^*$, the interdiction value is 0.
- Some thought shows that it is always optimal to destroy arcs belonging to some cut S (that may depend on B).
 - Proof: if the removed arcs do not belong to a single cut, we could move an arc to a cut to remove more flow.

- Thus if B = 0, then the interdiction value is cap^{*}, the ordinary min cut value; for $B \ge \operatorname{cap}_r^*$, the interdiction value is 0.
- Some thought shows that it is always optimal to destroy arcs belonging to some cut S (that may depend on B).
 - Proof: if the removed arcs do not belong to a single cut, we could move an arc to a cut to remove more flow.
- Further thought reveals that we should destroy arcs of S greedily, from the max value of $ho_e=c_e/r_e$ down to the minimum value: "bang for the buck".

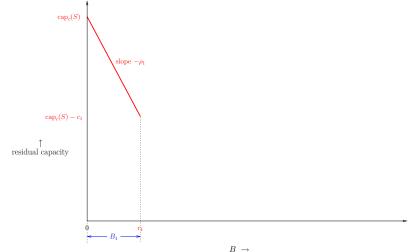
- Thus if B = 0, then the interdiction value is cap^{*}, the ordinary min cut value; for $B \ge \operatorname{cap}_r^*$, the interdiction value is 0.
- Some thought shows that it is always optimal to destroy arcs belonging to some cut S (that may depend on B).
 - Proof: if the removed arcs do not belong to a single cut, we could move an arc to a cut to remove more flow.
- Further thought reveals that we should destroy arcs of S greedily, from the max value of $\rho_e = c_e/r_e$ down to the minimum value: "bang for the buck".
 - Proof: again we could use a pairwise interchange argument.

- Thus if B = 0, then the interdiction value is cap^{*}, the ordinary min cut value; for $B \ge \operatorname{cap}_r^*$, the interdiction value is 0.
- Some thought shows that it is always optimal to destroy arcs belonging to some cut S (that may depend on B).
 - Proof: if the removed arcs do not belong to a single cut, we could move an arc to a cut to remove more flow.
- Further thought reveals that we should destroy arcs of S greedily, from the max value of $\rho_e = c_e/r_e$ down to the minimum value: "bang for the buck".
 - Proof: again we could use a pairwise interchange argument.
- So let's get some idea of how much flow we can remove by destroying arcs from a fixed cut S.

The interdiction curve for a fixed cut S

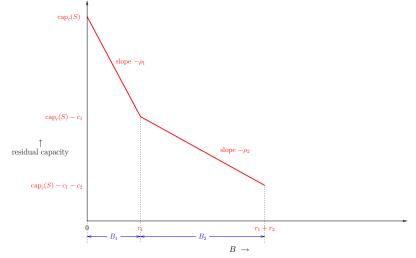
Interdiction curves

The interdiction curve for a fixed cut ${\cal S}$



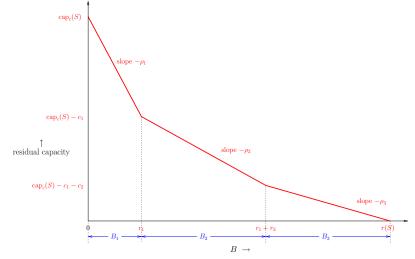
Interdiction curves

The interdiction curve for a fixed cut S

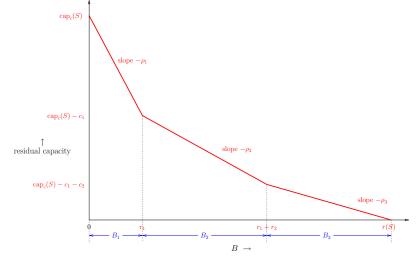


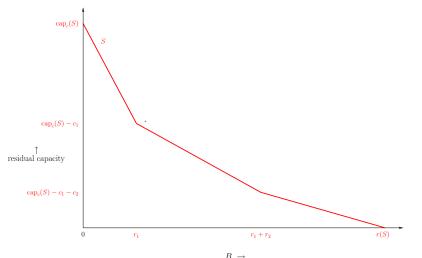
Interdiction curves

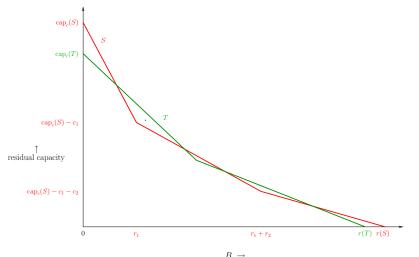
The interdiction curve for a fixed cut S

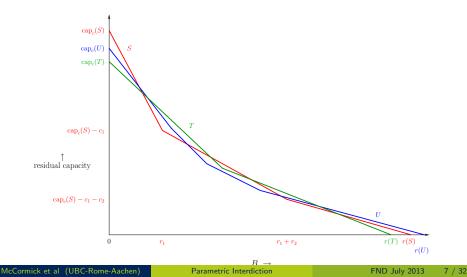


The interdiction curve for a fixed cut S

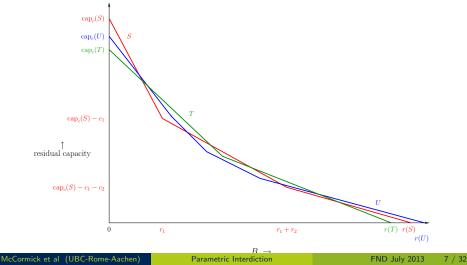




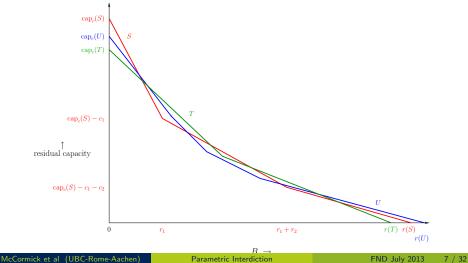




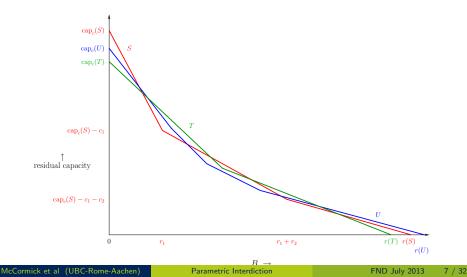
For a given value of B, we just select which S gives the minimum value at B, so the overall curve is the minimum of all the cut-wise curves.



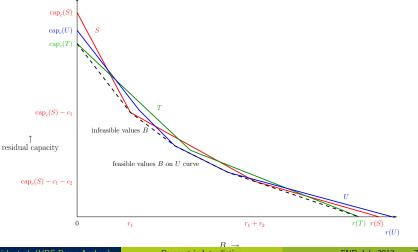
Unfortunately, the minimum of a bunch of convex curves is not in general convex.



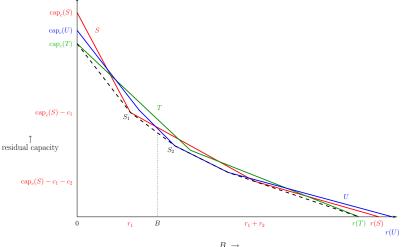
This is why Network Interdiction is NP Hard (Phillips '93; Wood '93).



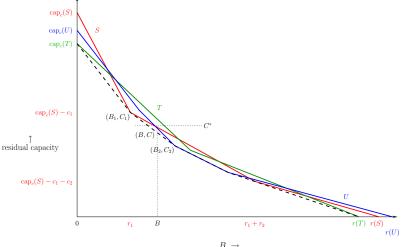
If we take the lower envelope, or convex hull, of the overall interdiction curve, we get something tractable, the B-profile.



Now budget B corresponds to a convex combination of points coming from the interdiction curves of (one or) two cuts, $S_1 = S$ and $S_2 = U$.



 S_1 corresponds to breakpoint (B_1, C_1) , S_2 to (B_2, C_2) , and we have λ s.t. $B = \lambda_1 B_1 + \lambda_2 B_2$; define $C = \lambda_1 C_1 + \lambda_2 C_2 \leq C^* =$ opt. resid. capacity.



Linearizing the overall curve: the *B*-profile

• Burch et al '02 show that we can use S_1 and S_2 to get a *pseudo-approximation* algorithm for Network Interdiction:

- Burch et al '02 show that we can use S_1 and S_2 to get a *pseudo-approximation* algorithm for Network Interdiction:
 - Choose some $\epsilon > 0$; then ...

- Burch et al '02 show that we can use S_1 and S_2 to get a *pseudo-approximation* algorithm for Network Interdiction:
 - Choose some $\epsilon > 0$; then . . .

•
$$\lambda_1 \left(\frac{B_1}{B} + \epsilon \frac{C_1}{C}\right) + \lambda_2 \left(\frac{B_2}{B} + \epsilon \frac{C_2}{C}\right) = \frac{\lambda_1 B_1 + \lambda_2 B_2}{B} + \epsilon \frac{\lambda_1 C_1 + \lambda_2 C_2}{C} \le 1 + \epsilon.$$

- Burch et al '02 show that we can use S_1 and S_2 to get a *pseudo-approximation* algorithm for Network Interdiction:
 - Choose some $\epsilon > 0$; then ...
 - $\lambda_1 \left(\frac{B_1}{B} + \epsilon \frac{C_1}{C}\right) + \lambda_2 \left(\frac{B_2}{B} + \epsilon \frac{C_2}{C}\right) = \frac{\lambda_1 B_1 + \lambda_2 B_2}{B} + \epsilon \frac{\lambda_1 C_1 + \lambda_2 C_2}{C} \le 1 + \epsilon.$
 - Thus either $\frac{B_1}{B} + \epsilon \frac{C_1}{C} \leq 1 + \epsilon$ or $\frac{B_2}{B} + \epsilon \frac{C_2}{C} \leq 1 + \epsilon$.

- Burch et al '02 show that we can use S_1 and S_2 to get a *pseudo-approximation* algorithm for Network Interdiction:
 - Choose some $\epsilon > 0$; then ...
 - $\lambda_1 \left(\frac{B_1}{B} + \epsilon \frac{C_1}{C}\right) + \lambda_2 \left(\frac{B_2}{B} + \epsilon \frac{C_2}{C}\right) = \frac{\lambda_1 B_1 + \lambda_2 B_2}{B} + \epsilon \frac{\lambda_1 C_1 + \lambda_2 C_2}{C} \le 1 + \epsilon.$
 - Thus either $\frac{B_1}{B_-} + \epsilon \frac{C_1}{C_-} \le 1 + \epsilon$ or $\frac{B_2}{B} + \epsilon \frac{C_2}{C} \le 1 + \epsilon$.
 - Suppose that $\frac{B_1}{B} + \epsilon \frac{C_1}{C} \leq 1 + \epsilon$. Then $B_1 \leq B$ and so $\epsilon \frac{C_1}{C} \leq 1 + \epsilon$, or $C_1 \leq (1 + 1/\epsilon)C \leq (1 + 1/\epsilon)C^*$.

- Burch et al '02 show that we can use S_1 and S_2 to get a *pseudo-approximation* algorithm for Network Interdiction:
 - Choose some $\epsilon > 0$; then . . .
 - $\lambda_1 \left(\frac{B_1}{B} + \epsilon \frac{C_1}{C}\right) + \lambda_2 \left(\frac{B_2}{B} + \epsilon \frac{C_2}{C}\right) = \frac{\lambda_1 B_1 + \lambda_2 B_2}{B} + \epsilon \frac{\lambda_1 C_1 + \lambda_2 C_2}{C} \le 1 + \epsilon.$
 - Thus either $\frac{B_1}{B_1} + \epsilon \frac{C_1}{C} \le 1 + \epsilon$ or $\frac{B_2}{B} + \epsilon \frac{C_2}{C} \le 1 + \epsilon$.
 - Suppose that $\frac{B_1}{B} + \epsilon \frac{C_1}{C} \le 1 + \epsilon$. Then $B_1 \le B$ and so $\epsilon \frac{C_1}{C} \le 1 + \epsilon$, or $C_1 \le (1 + 1/\epsilon)C \le (1 + 1/\epsilon)C^*$.
 - If instead $\frac{B_2}{B} + \epsilon \frac{C_2}{C} \le 1 + \epsilon$, then $C_2 \le C \le C^*$ and so $\frac{B_2}{B} \le 1 + \epsilon$, or $B_2 \le (1 + \epsilon)B$.

- Burch et al '02 show that we can use S_1 and S_2 to get a *pseudo-approximation* algorithm for Network Interdiction:
 - Choose some $\epsilon > 0$; then . . .
 - $\lambda_1 \left(\frac{B_1}{B} + \epsilon \frac{C_1}{C}\right) + \lambda_2 \left(\frac{B_2}{B} + \epsilon \frac{C_2}{C}\right) = \frac{\lambda_1 B_1 + \lambda_2 B_2}{B} + \epsilon \frac{\lambda_1 C_1 + \lambda_2 C_2}{C} \le 1 + \epsilon.$
 - Thus either $\frac{B_1}{B_1} + \epsilon \frac{C_1}{C} \le 1 + \epsilon$ or $\frac{B_2}{B} + \epsilon \frac{C_2}{C} \le 1 + \epsilon$.
 - Suppose that $\frac{B_1}{B} + \epsilon \frac{C_1}{C} \le 1 + \epsilon$. Then $B_1 \le B$ and so $\epsilon \frac{C_1}{C} \le 1 + \epsilon$, or $C_1 \le (1 + 1/\epsilon)C \le (1 + 1/\epsilon)C^*$.
 - If instead $\frac{B_2}{B} + \epsilon \frac{C_2}{C} \le 1 + \epsilon$, then $C_2 \le C \le C^*$ and so $\frac{B_2}{B} \le 1 + \epsilon$, or $B_2 \le (1 + \epsilon)B$.
 - Thus we can choose S_1 and under-use the budget but have a factor $1+1/\epsilon$ too much residual capacity, or choose S_2 and have less than C^* residual capacity, but overrun the budget by a factor of $1+\epsilon$.

- Burch et al '02 show that we can use S_1 and S_2 to get a *pseudo-approximation* algorithm for Network Interdiction:
 - Choose some $\epsilon > 0$; then . . .
 - $\lambda_1 \left(\frac{B_1}{B} + \epsilon \frac{C_1}{C}\right) + \lambda_2 \left(\frac{B_2}{B} + \epsilon \frac{C_2}{C}\right) = \frac{\lambda_1 B_1 + \lambda_2 B_2}{B} + \epsilon \frac{\lambda_1 C_1 + \lambda_2 C_2}{C} \le 1 + \epsilon.$
 - Thus either $\frac{B_1}{B_1} + \epsilon \frac{C_1}{C} \le 1 + \epsilon$ or $\frac{B_2}{B} + \epsilon \frac{C_2}{C} \le 1 + \epsilon$.
 - Suppose that $\frac{B_1}{B} + \epsilon \frac{C_1}{C} \le 1 + \epsilon$. Then $B_1 \le B$ and so $\epsilon \frac{C_1}{C} \le 1 + \epsilon$, or $C_1 \le (1 + 1/\epsilon)C \le (1 + 1/\epsilon)C^*$.
 - If instead $\frac{B_2}{B} + \epsilon \frac{C_2}{C} \le 1 + \epsilon$, then $C_2 \le C \le C^*$ and so $\frac{B_2}{B} \le 1 + \epsilon$, or $B_2 \le (1 + \epsilon)B$.
 - Thus we can choose S_1 and under-use the budget but have a factor $1+1/\epsilon$ too much residual capacity, or choose S_2 and have less than C^* residual capacity, but overrun the budget by a factor of $1+\epsilon$.
- The algorithmic question is then: Given B, how do we find S_1 and S_2 ? This shows that we also want B_1 , B_2 , C_1 and C_2 .

- Burch et al '02 show that we can use S_1 and S_2 to get a *pseudo-approximation* algorithm for Network Interdiction:
 - Choose some $\epsilon > 0$; then . . .
 - $\lambda_1 \left(\frac{B_1}{B} + \epsilon \frac{C_1}{C}\right) + \lambda_2 \left(\frac{B_2}{B} + \epsilon \frac{C_2}{C}\right) = \frac{\lambda_1 B_1 + \lambda_2 B_2}{B} + \epsilon \frac{\lambda_1 C_1 + \lambda_2 C_2}{C} \le 1 + \epsilon.$
 - Thus either $\frac{B_1}{B_1} + \epsilon \frac{C_1}{C} \le 1 + \epsilon$ or $\frac{B_2}{B} + \epsilon \frac{C_2}{C} \le 1 + \epsilon$.
 - Suppose that $\frac{B_1}{B} + \epsilon \frac{C_1}{C} \le 1 + \epsilon$. Then $B_1 \le B$ and so $\epsilon \frac{C_1}{C} \le 1 + \epsilon$, or $C_1 \le (1 + 1/\epsilon)C \le (1 + 1/\epsilon)C^*$.
 - If instead $\frac{B_2}{B} + \epsilon \frac{C_2}{C} \le 1 + \epsilon$, then $C_2 \le C \le C^*$ and so $\frac{B_2}{B} \le 1 + \epsilon$, or $B_2 \le (1 + \epsilon)B$.
 - Thus we can choose S_1 and under-use the budget but have a factor $1+1/\epsilon$ too much residual capacity, or choose S_2 and have less than C^* residual capacity, but overrun the budget by a factor of $1+\epsilon$.
- The algorithmic question is then: Given B, how do we find S_1 and S_2 ? This shows that we also want B_1 , B_2 , C_1 and C_2 .
- Burch et al write a linear program that can do it, but here we want a combinatorial algorithm to do it.

Outline

- Network Interdiction
 - What is it?
 - Interdiction curves

2 LP Duality

Dual of interdiction

3 Parametric Min Cut

Parametric curves

4 The Breakpoint Subproblem

- What is it?
- Algorithms
- Discrete Newton
- 5 Multiple Parameters
 - What is it?
 - Scheduling problem
 - Multi-GGT

• The normal min cut dual LP is

$$\begin{split} \min \sum_{u \to v} c_{uv} y_{uv} \\ \text{s.t. } d_u - d_v + y_{uv} &\geq 0 \quad \text{for } u \to v \neq t \to s, \\ d_t - d_s + y_{ts} &\geq 1 \\ y_{uv} &\geq 0 \quad \text{all } u \to v. \end{split}$$

• The normal min cut dual LP is

$$\begin{array}{ll} \min \sum_{u \to v} c_{uv} y_{uv} \\ \text{s.t. } d_u - d_v + y_{uv} & \geq & 0 \quad \text{for } u \to v \neq t \to s, \\ d_t - d_s + y_{ts} & \geq & 1 \\ y_{uv} & \geq & 0 \quad \text{all } u \to v. \end{array}$$

• To get an interdiction version, put a second dual variable z_{uv} on each $u \rightarrow v$ that represents what fraction of $u \rightarrow v$ we are going to destroy.

• The normal min cut dual LP is

$$\begin{split} \min \sum_{u \to v} c_{uv} y_{uv} \\ \text{s.t. } d_u - d_v + y_{uv} &\geq 0 \quad \text{for } u \to v \neq t \to s, \\ d_t - d_s + y_{ts} &\geq 1 \\ y_{uv} &\geq 0 \quad \text{all } u \to v. \end{split}$$

• To get an interdiction version, put a second dual variable z_{uv} on each $u \to v$ that represents what fraction of $u \to v$ we are going to destroy. • The new LP is then

$$\begin{array}{rll} \min \sum_{u \to v} c_{uv} y_{uv} \\ \text{s.t. } d_u - d_v + y_{uv} + z_{uv} & \geq & 0 & \text{ for } u \to v \neq t \to s, \\ d_t - d_s + y_{ts} & \geq & 1 \\ & \sum_{u \to v} r_{uv} z_{uv} & \leq & B \\ & y_{uv}, \ z_{uv} & \geq & 0 & \text{ all } u \to v. \end{array}$$

• The normal min cut dual LP is

$$\begin{array}{ll} \min \sum_{u \to v} c_{uv} y_{uv} \\ \text{s.t. } d_u - d_v + y_{uv} & \geq & 0 \quad \text{for } u \to v \neq t \to s, \\ d_t - d_s + y_{ts} & \geq & 1 \\ y_{uv} & \geq & 0 \quad \text{all } u \to v. \end{array}$$

To get an interdiction version, put a second dual variable z_{uv} on each u → v that represents what fraction of u → v we are going to destroy.
 The new LP is then

$$\begin{array}{rll} \min \sum_{u \to v} c_{uv} y_{uv} \\ \text{s.t. } d_u - d_v + y_{uv} + z_{uv} & \geq & 0 & \text{for } u \to v \neq t \to s, \\ d_t - d_s + y_{ts} & \geq & 1 \\ & \sum_{u \to v} r_{uv} z_{uv} & \leq & B \\ & y_{uv}, \ z_{uv} & \geq & 0 & \text{all } u \to v. \end{array}$$

• Prize-collecting with a budget in place of a penalty.

• Repeat the new LP with dual variables:

$$\begin{array}{rcl} \min \sum_{u \to v} c_{uv} y_{uv} \\ x_{uv} : & \text{s.t. } d_u - d_v + y_{uv} + z_{uv} & \geq & 0 & \text{ for } u \to v \neq t \to s, \\ x_{ts:} : & d_t - d_s + y_{ts} & \geq & 1 \\ \lambda : & \sum_{u \to v} r_{uv} z_{uv} & \leq & B \\ & y_{uv}, \ z_{uv} & \geq & 0 & \text{ all } u \to v. \end{array}$$

• Repeat the new LP with dual variables:

$$\begin{array}{rcl} \min \sum_{u \to v} c_{uv} y_{uv} \\ x_{uv} : & \text{s.t. } d_u - d_v + y_{uv} + z_{uv} & \geq & 0 & \text{ for } u \to v \neq t \to s, \\ x_{ts:} : & d_t - d_s + y_{ts} & \geq & 1 \\ \lambda : & \sum_{u \to v} r_{uv} z_{uv} & \leq & B \\ & y_{uv}, \ z_{uv} & \geq & 0 & \text{ all } u \to v. \end{array}$$

• When we "primalize" this interdiction dual LP we get new primal variable λ corresponding to the dual constraint $\sum_{u \to v} r_{uv} z_{uv} \leq B$, and the z_{uv} 's give us a second set of capacities.

• Repeat the new LP with dual variables:

$$\begin{array}{rcl} \min \sum_{u \to v} c_{uv} y_{uv} \\ x_{uv} : & \text{s.t. } d_u - d_v + y_{uv} + z_{uv} & \geq & 0 & \text{ for } u \to v \neq t \to s, \\ x_{ts:} : & d_t - d_s + y_{ts} & \geq & 1 \\ \lambda : & \sum_{u \to v} r_{uv} z_{uv} & \leq & B \\ & y_{uv}, \ z_{uv} & \geq & 0 & \text{ all } u \to v. \end{array}$$

- When we "primalize" this interdiction dual LP we get new primal variable λ corresponding to the dual constraint $\sum_{u \to v} r_{uv} z_{uv} \leq B$, and the z_{uv} 's give us a second set of capacities.
- The primal interdiction LP is

$$\begin{array}{rll} \max_{x,\lambda} (x_{ts} - B\lambda) \\ d: & \text{s.t. conservation} \\ y_{uv}: & 0 \leq x_{uv} \leq c_{uv} \\ z_{uv}: & x_{uv} - r_{uv}\lambda \leq 0. \end{array}$$

• Repeat the primal interdiction LP and highlight the two capacities:

$$\begin{array}{rl} \max_{x,\lambda} \ (x_{ts} - B\lambda) \\ \text{s.t. conservation} \\ 0 \leq x_{uv} &\leq c_{uv} \\ x_{uv} - r_{uv}\lambda &\leq 0. \end{array}$$

• Repeat the primal interdiction LP and highlight the two capacities:

$$\begin{array}{rl} \max_{x,\lambda} (x_{ts} - B\lambda) \\ \text{s.t. conservation} \\ 0 \leq x_{uv} &\leq c_{uv} \\ x_{uv} - r_{uv}\lambda &\leq 0. \end{array}$$

• The two capacity constraints simplify into

 $x_{uv} \le \min(c_{uv}, \lambda r_{uv}),$

a parametric capacity in the scalar parameter λ .

• Repeat the primal interdiction LP and highlight the two capacities:

$$\begin{array}{rl} \max_{x,\lambda} \ (x_{ts} - B\lambda) \\ \text{s.t. conservation} \\ 0 \leq x_{uv} & \leq \ c_{uv} \\ x_{uv} - r_{uv}\lambda & \leq \ 0. \end{array}$$

• The two capacity constraints simplify into

 $x_{uv} \le \min(c_{uv}, \lambda r_{uv}),$

- a parametric capacity in the scalar parameter λ .
- So let's investigate the behavior of this parametric min cut problem.

Outline

Network Interdiction

- What is it?
- Interdiction curves

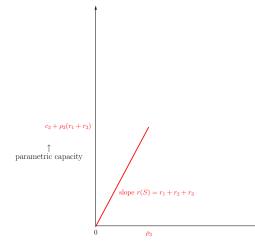
2 LP Duality

- Dual of interdiction
- 3 Parametric Min Cut
 - Parametric curves

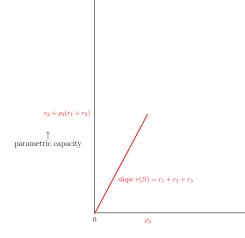
4 The Breakpoint Subproblem

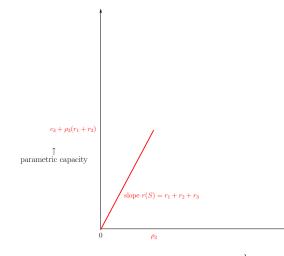
- What is it?
- Algorithms
- Discrete Newton
- 5 Multiple Parameters
 - What is it?
 - Scheduling problem
 - Multi-GGT

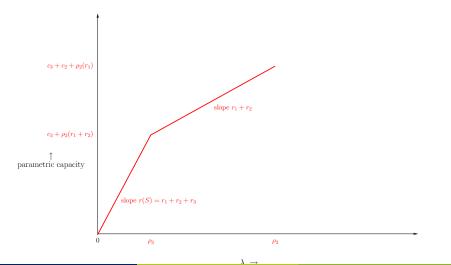
When λ is small, $\operatorname{cap}(S, \lambda) = \lambda \operatorname{cap}_r(S)$.

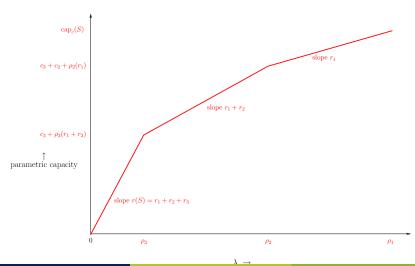


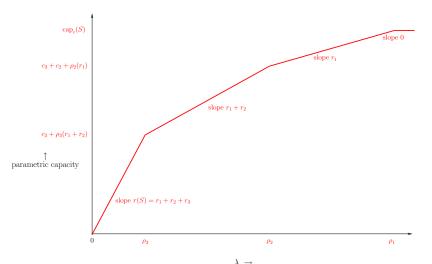
This continues as long as $\lambda r_{uv} \leq c_{uv}$ for all $u \to v \in \delta^+(S)$, or $\lambda \leq \rho_{uv}$.



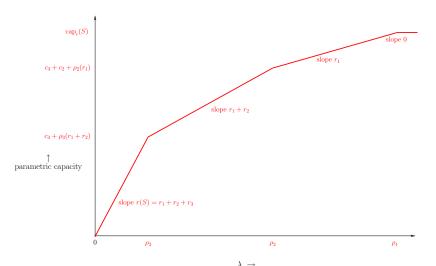








The parametric capacity curve for S is piecewise linear concave.



For a value λ' of λ we also get the local budget $B(S, \lambda')$ and local residual capacity $C(S, \lambda')$. $cap_{a}(S)$ slope 0 slope r_1 $c_3 + c_2 + \rho_2(r_1)$ $C(S, \lambda') = \frac{\lambda - \rho_3}{\rho_2 - \rho_3}c_2 +$ slope $r_1 + r_2 = B(S, \lambda')$ $c_3 + \rho_3(r_1 + r_2)$ parametric capacity slope $r(S) = r_1 + r_2 + r_3$ λ' ρ_3 ρ_2 ρ_1

• Both curves are piecewise linear; the interdiction curve (residual capacity curve) is convex, the parametric capacity curve is concave.

- Both curves are piecewise linear; the interdiction curve (residual capacity curve) is convex, the parametric capacity curve is concave.
- Index the arcs of $\delta^+(S)$ in descending order of ρ_e . Then the breakpoints of S's interdiction curve are 0, r_1 , $r_1 + r_2$, $r_1 + r_2 + r_3$, The slopes of S's parametric capacity curve are ..., $r_1 + r_2 + r_3$, $r_1 + r_2$, r_1 , 0.

- Both curves are piecewise linear; the interdiction curve (residual capacity curve) is convex, the parametric capacity curve is concave.
- Index the arcs of $\delta^+(S)$ in descending order of ρ_e . Then the breakpoints of S's interdiction curve are 0, r_1 , $r_1 + r_2$, $r_1 + r_2 + r_3$, The slopes of S's parametric capacity curve are ..., $r_1 + r_2 + r_3$, $r_1 + r_2$, r_1 , 0.
- The slopes of S's interdiction curve are -ρ₁, -ρ₂, The breakpoints of S's parametric capacity curve are ..., ρ₃, ρ₂, ρ₁.

- Both curves are piecewise linear; the interdiction curve (residual capacity curve) is convex, the parametric capacity curve is concave.
- Index the arcs of $\delta^+(S)$ in descending order of ρ_e . Then the breakpoints of S's interdiction curve are 0, r_1 , $r_1 + r_2$, $r_1 + r_2 + r_3$, The slopes of S's parametric capacity curve are ..., $r_1 + r_2 + r_3$, $r_1 + r_2$, r_1 , 0.
- The slopes of S's interdiction curve are -ρ₁, -ρ₂, The breakpoints of S's parametric capacity curve are ..., ρ₃, ρ₂, ρ₁.
- Thus breakpoints and slopes are interchanged between S's interdiction curve and its parametric capacity curve, though in reverse order and modulo a minus sign.

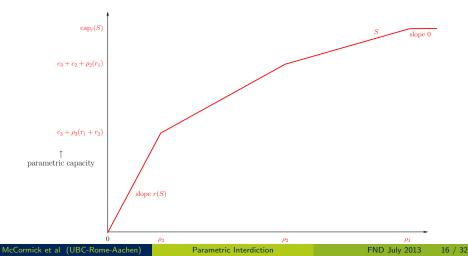
- Both curves are piecewise linear; the interdiction curve (residual capacity curve) is convex, the parametric capacity curve is concave.
- Index the arcs of $\delta^+(S)$ in descending order of ρ_e . Then the breakpoints of S's interdiction curve are 0, r_1 , $r_1 + r_2$, $r_1 + r_2 + r_3$, The slopes of S's parametric capacity curve are ..., $r_1 + r_2 + r_3$, $r_1 + r_2$, r_1 , 0.
- The slopes of S's interdiction curve are -ρ₁, -ρ₂, The breakpoints of S's parametric capacity curve are ..., ρ₃, ρ₂, ρ₁.
- Thus breakpoints and slopes are interchanged between S's interdiction curve and its parametric capacity curve, though in reverse order and modulo a minus sign.
- In the language of conjugate duality, this is equivalent to saying that the parametric capacity curve $\operatorname{cap}(S,\lambda)$ is the negative of the conjugate dual of the interdiction curve for S, evaluated at $-\lambda$.

The overall parametric capacity curve: the λ -profile

Now overlay the parametric capacity curves for all S.

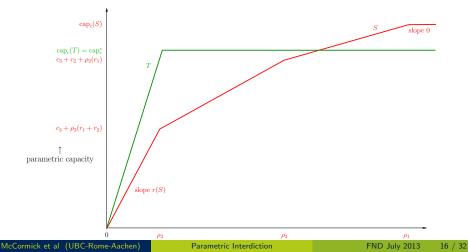
The overall parametric capacity curve: the λ -profile

Now overlay the parametric capacity curves for all S.

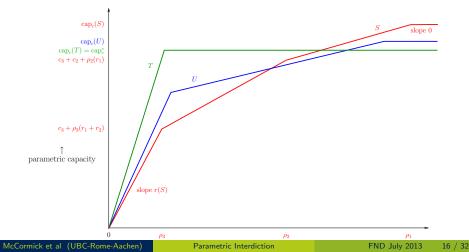


The overall parametric capacity curve: the λ -profile

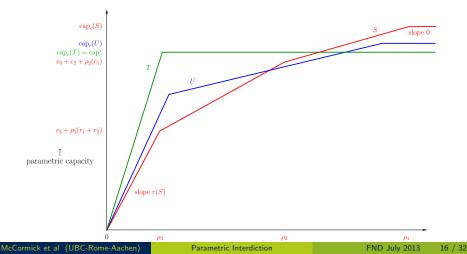
Now overlay the parametric capacity curves for all S.



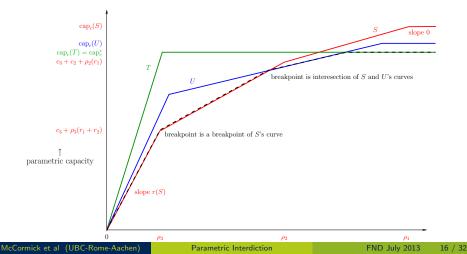
Now overlay the parametric capacity curves for all S.



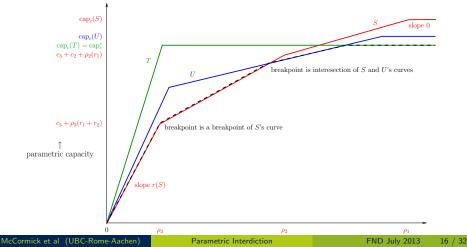
For a fixed value of λ , we want to find the S whose parametric capacity at λ is minimum, so we just want the pointwise minimum of all these curves.



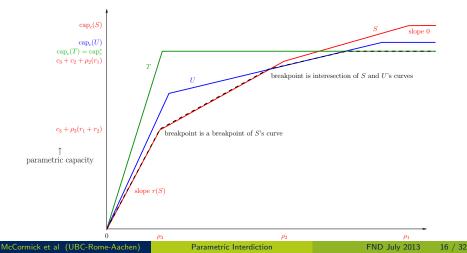
For a fixed value of λ , we want to find the S whose parametric capacity at λ is minimum, so we just want the pointwise minimum of all these curves.



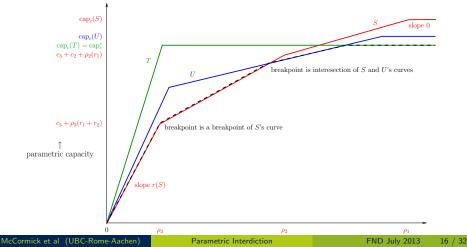
Since the minimum of a bunch of concave curves is again concave, this time we do not need to linearize. We call this overall parametric capacity curve the λ -profile.



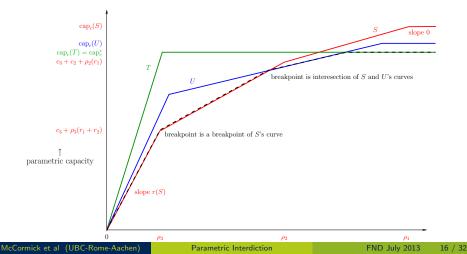
We can compute things like $\operatorname{cap}^*(\lambda)$ easily using parametric min cut technology.



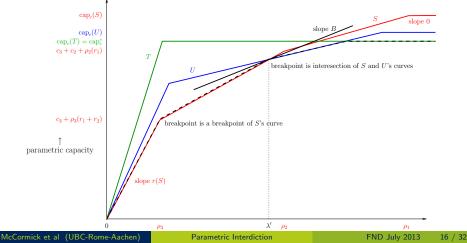
We can show that the conjugate duality between S's interdiction and parametric capacity curves carries over to conjugate duality between the Bprofile and the λ -profile.



Recall that to get our pseudo-approximation for a given B, we want to compute the two cuts S_1 and S_2 bracketing B on the B-profile.



Conjugate duality implies that this is equivalent to finding a breakpoint λ' on the λ -profile whose adjacent slopes bracket B, here S and U; we also get $B_1 = B(S_1, \lambda')$, $C_1 = C(S_1, \lambda')$, $B_2 = B(S_2, \lambda')$, and $C_2 = C(S_2, \lambda')$.



Outline

- What is it?
- Interdiction curves

- Dual of interdiction
- - Parametric curves

The Breakpoint Subproblem 4

- What is it?
- Algorithms
- Discrete Newton

- What is it?
- Scheduling problem
- Multi-GGT

Notice that any breakpoint λ̂ of the λ-profile is defined by the intersection of a segment to its left coming from cut S⁻(λ̂) with local slope sl⁻(λ̂), and a segment to its right coming from cut S⁺(λ̂) with local slope sl⁺(λ̂), with sl⁻(λ̂) > sl⁺(λ̂) by concavity.

- Notice that any breakpoint λ̂ of the λ-profile is defined by the intersection of a segment to its left coming from cut S⁻(λ̂) with local slope sl⁻(λ̂), and a segment to its right coming from cut S⁺(λ̂) with local slope sl⁺(λ̂), with sl⁻(λ̂) > sl⁺(λ̂) by concavity.
- The subproblem we now want to solve combinatorially: Given B, find breakpoint λ_B of the λ -profile such that $\mathrm{sl}^+(\lambda_B) \leq B \leq \mathrm{sl}^-(\lambda_B)$, along with the corresponding $S^-(\lambda_B)$ and $S^+(\lambda_B)$.

- Notice that any breakpoint $\hat{\lambda}$ of the λ -profile is defined by the intersection of a segment to its left coming from cut $S^{-}(\hat{\lambda})$ with local slope $sl^{-}(\hat{\lambda})$, and a segment to its right coming from cut $S^{+}(\hat{\lambda})$ with local slope $\mathrm{sl}^+(\hat{\lambda})$, with $\mathrm{sl}^-(\hat{\lambda}) > \mathrm{sl}^+(\hat{\lambda})$ by concavity.
- The subproblem we now want to solve combinatorially: Given B, find breakpoint λ_B of the λ -profile such that $\mathrm{sl}^+(\lambda_B) < B < \mathrm{sl}^-(\lambda_B)$, along with the corresponding $S^{-}(\lambda_B)$ and $S^{+}(\lambda_B)$.
- A technical detail: Suppose I give you λ_B . Can you then use it to compute $S^{-}(\lambda_{B})$ and $S^{+}(\lambda_{B})$?

- Notice that any breakpoint λ̂ of the λ-profile is defined by the intersection of a segment to its left coming from cut S⁻(λ̂) with local slope sl⁻(λ̂), and a segment to its right coming from cut S⁺(λ̂) with local slope sl⁺(λ̂), with sl⁻(λ̂) > sl⁺(λ̂) by concavity.
- The subproblem we now want to solve combinatorially: Given B, find breakpoint λ_B of the λ -profile such that $\mathrm{sl}^+(\lambda_B) \leq B \leq \mathrm{sl}^-(\lambda_B)$, along with the corresponding $S^-(\lambda_B)$ and $S^+(\lambda_B)$.
- A technical detail: Suppose I give you λ_B . Can you then use it to compute $S^-(\lambda_B)$ and $S^+(\lambda_B)$?
 - Yes: We can use a combination of Picard-Queyranne decomposition w.r.t. an optimal flow at λ_B , and min flow / max cut in the residual network to find them

- Notice that any breakpoint λ̂ of the λ-profile is defined by the intersection of a segment to its left coming from cut S⁻(λ̂) with local slope sl⁻(λ̂), and a segment to its right coming from cut S⁺(λ̂) with local slope sl⁺(λ̂), with sl⁻(λ̂) > sl⁺(λ̂) by concavity.
- The subproblem we now want to solve combinatorially: Given B, find breakpoint λ_B of the λ -profile such that $\mathrm{sl}^+(\lambda_B) \leq B \leq \mathrm{sl}^-(\lambda_B)$, along with the corresponding $S^-(\lambda_B)$ and $S^+(\lambda_B)$.
- A technical detail: Suppose I give you λ_B . Can you then use it to compute $S^-(\lambda_B)$ and $S^+(\lambda_B)$?
 - Yes: We can use a combination of Picard-Queyranne decomposition w.r.t. an optimal flow at λ_B , and min flow / max cut in the residual network to find them
- So let's just concentrate on finding λ_B .

Algorithms

Binary search solves it

• Set $\lambda_L = 0$ and $\lambda_R = \operatorname{cap}_r^*$; then all interesting values of λ are in $[\lambda_L, \lambda_R].$

- Set $\lambda_L = 0$ and $\lambda_R = \operatorname{cap}_r^*$; then all interesting values of λ are in $[\lambda_L, \lambda_R].$
- **2** Compute $\hat{\lambda} = (\lambda_L + \lambda_R)/2$, a max flow w.r.t. $\hat{\lambda}$, and $\mathrm{sl}^-(\hat{\lambda})$ and $\mathrm{sl}^+(\hat{\lambda}).$

- Set $\lambda_L = 0$ and $\lambda_R = \operatorname{cap}_r^*$; then all interesting values of λ are in $[\lambda_L, \lambda_R]$.
- $\textbf{O} \quad \textbf{Compute } \hat{\lambda} = (\lambda_L + \lambda_R)/2 \text{, a max flow w.r.t. } \hat{\lambda} \text{, and } \mathrm{sl}^-(\hat{\lambda}) \text{ and } \mathrm{sl}^+(\hat{\lambda}).$
- If $B \in [sl^+(\hat{\lambda}), sl^-(\hat{\lambda})]$, then $\lambda_B = \hat{\lambda}$ and we can stop.

- Set $\lambda_L = 0$ and $\lambda_R = \operatorname{cap}_r^*$; then all interesting values of λ are in $[\lambda_L, \lambda_R]$.
- **③** If $B \in [sl^+(\hat{\lambda}), sl^-(\hat{\lambda})]$, then $\lambda_B = \hat{\lambda}$ and we can stop.
- Otherwise, if $B < \mathrm{sl}^+(\hat{\lambda})$ then replace λ_L by $\hat{\lambda}$; else $(B > \mathrm{sl}^-(\hat{\lambda}))$ replace λ_R by $\hat{\lambda}$ and go to 2.

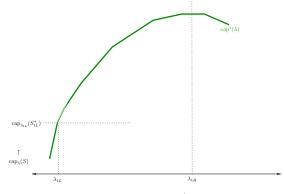
- Set $\lambda_L = 0$ and $\lambda_R = \operatorname{cap}_r^*$; then all interesting values of λ are in $[\lambda_L, \lambda_R]$.
- **③** If $B \in [sl^+(\hat{\lambda}), sl^-(\hat{\lambda})]$, then $\lambda_B = \hat{\lambda}$ and we can stop.
- Otherwise, if $B < \mathrm{sl}^+(\hat{\lambda})$ then replace λ_L by $\hat{\lambda}$; else $(B > \mathrm{sl}^-(\hat{\lambda}))$ replace λ_R by $\hat{\lambda}$ and go to 2.
 - This runs in something like $\Theta(\log(nD))$ time, where D is the size of the data.

- Set $\lambda_L = 0$ and $\lambda_R = \operatorname{cap}_r^*$; then all interesting values of λ are in $[\lambda_L, \lambda_R]$.
- **③** If $B \in [sl^+(\hat{\lambda}), sl^-(\hat{\lambda})]$, then $\lambda_B = \hat{\lambda}$ and we can stop.
- Otherwise, if $B < \mathrm{sl}^+(\hat{\lambda})$ then replace λ_L by $\hat{\lambda}$; else $(B > \mathrm{sl}^-(\hat{\lambda}))$ replace λ_R by $\hat{\lambda}$ and go to 2.
 - This runs in something like $\Theta(\log(nD))$ time, where D is the size of the data.
 - Can we do better?

Discrete Newton

Discrete Newton gives a better algorithm

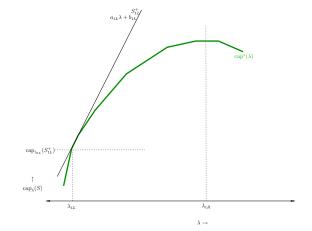
Set $\lambda_L = 0$ and $\lambda_R = \operatorname{cap}_r^*$ as before. Denote $\operatorname{sl}^+(\lambda_L)$ by sl_L^+ and $\operatorname{sl}^-(\lambda_R)$ by sl_B^- .



Discrete Newton

Discrete Newton gives a better algorithm

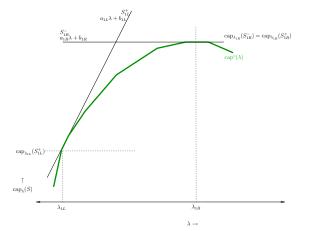
Set $\lambda_L = 0$ and $\lambda_R = \operatorname{cap}_r^*$ as before. Denote $\operatorname{sl}^+(\lambda_L)$ by sl_L^+ and $\operatorname{sl}^-(\lambda_R)$ by sl_B^- .



Discrete Newton

Discrete Newton gives a better algorithm

Set $\lambda_L = 0$ and $\lambda_R = \operatorname{cap}_r^*$ as before. Denote $\operatorname{sl}^+(\lambda_L)$ by sl_L^+ and $\operatorname{sl}^-(\lambda_R)$ by sl_B^- .



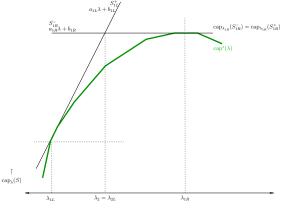
Discrete Newton gives a better algorithm

Compute $\hat{\lambda}$ as the intersection of the line of slope sl_L^+ through $(\lambda_L, \operatorname{cap}^*(\lambda_L))$, and the line of slope sl_R^- through $(\lambda_R, \operatorname{cap}^*(\lambda_R))$, a max flow w.r.t. $\hat{\lambda}$, and $\mathrm{sl}^{-}(\hat{\lambda})$ and $\mathrm{sl}^{+}(\hat{\lambda})$. $a_{1L}\lambda + b_{1L}$ S_{1R}^{-} $a_{1R}\lambda + b_{1R}$ $\operatorname{cap}_{\lambda_{1R}}(S_{1R}^-) = \operatorname{cap}_{\lambda_{1R}}(S_{1R}^+)$ $cap^*(\lambda)$ $cap_{\lambda}(S)$ $\lambda_2 = \lambda_{2I}$ λ_{1R} λ_{1I}

 $\lambda \rightarrow$

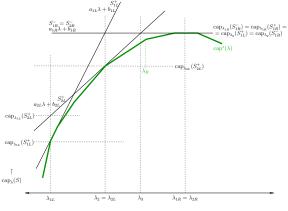
Discrete Newton gives a better algorithm

If $B \in [\mathrm{sl}^+(\hat{\lambda}), \mathrm{sl}^-(\hat{\lambda})]$, then $\lambda_B = \hat{\lambda}$ and we can stop.



Discrete Newton gives a better algorithm

Otherwise, if $B < sl^+(\hat{\lambda})$ then replace λ_L by $\hat{\lambda}$; else $(B > sl^-(\hat{\lambda}))$ replace λ_R by $\hat{\lambda}$ and go to 2.



• How can we analyze the running time of this Newton-B algorithm?

- How can we analyze the running time of this Newton-B algorithm?
- Let's think in terms of lines of slope B. Let L* denote the line of slope B through the (as-yet unknown) point (λ_B, cap*(λ_B)). This L* is the highest possible line of slope B through any point of the λ-profile.

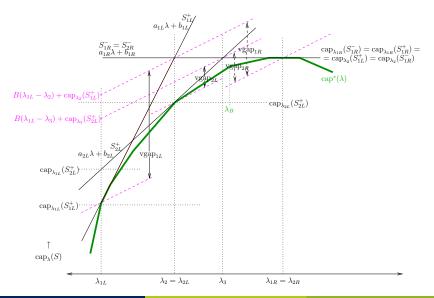
- How can we analyze the running time of this Newton-B algorithm?
- Let's think in terms of lines of slope B. Let L* denote the line of slope B through the (as-yet unknown) point (λ_B, cap*(λ_B)). This L* is the highest possible line of slope B through any point of the λ-profile.
- Thus the line of slope B through, e.g., $(\lambda_L, \operatorname{cap}^*(\lambda_L))$ lies below L^* .

- How can we analyze the running time of this Newton-B algorithm?
- Let's think in terms of lines of slope B. Let L* denote the line of slope B through the (as-yet unknown) point (λ_B, cap*(λ_B)). This L* is the highest possible line of slope B through any point of the λ-profile.
- Thus the line of slope B through, e.g., $(\lambda_L, \operatorname{cap}^*(\lambda_L))$ lies below L^* .
- Since the lines defining $\hat{\lambda}$ are tangents to the λ -profile, their intersection must lie above L^* , and so the line of slope B through this intersection point lies above L^* .

- How can we analyze the running time of this Newton-B algorithm?
- Let's think in terms of lines of slope B. Let L* denote the line of slope B through the (as-yet unknown) point (λ_B, cap*(λ_B)). This L* is the highest possible line of slope B through any point of the λ-profile.
- Thus the line of slope B through, e.g., $(\lambda_L, \operatorname{cap}^*(\lambda_L))$ lies below L^* .
- Since the lines defining $\hat{\lambda}$ are tangents to the λ -profile, their intersection must lie above L^* , and so the line of slope B through this intersection point lies above L^* .
- Define vgap_L to be the vertical distance between the line of slope B through the intersection point, and the line of slope B through $(\lambda_L, \operatorname{cap}^*(\lambda_L))$, and similarly for vgap_R .

- How can we analyze the running time of this Newton-B algorithm?
- Let's think in terms of lines of slope B. Let L* denote the line of slope B through the (as-yet unknown) point (λ_B, cap*(λ_B)). This L* is the highest possible line of slope B through any point of the λ-profile.
- Thus the line of slope B through, e.g., $(\lambda_L, \operatorname{cap}^*(\lambda_L))$ lies below L^* .
- Since the lines defining $\hat{\lambda}$ are tangents to the λ -profile, their intersection must lie above L^* , and so the line of slope B through this intersection point lies above L^* .
- Define vgap_L to be the vertical distance between the line of slope B through the intersection point, and the line of slope B through $(\lambda_L, \operatorname{cap}^*(\lambda_L))$, and similarly for vgap_R .
- Also define slgap_L to be $\operatorname{sl}_L^+ B$ and slgap_R to be $B \operatorname{sl}_R^-$.

vgap illustrated



McCormick et al (UBC-Rome-Aachen)

The key inequality

• We use primes to denote new values. When $\hat{\lambda}$ becomes the new λ_L then the key inequality is

$$\frac{\operatorname{vgap}_{L}'}{\operatorname{vgap}_{L}} + \frac{\operatorname{slgap}_{L}'}{\operatorname{slgap}_{L}} < 1$$
(1)

The key inequality

• We use primes to denote new values. When $\hat{\lambda}$ becomes the new λ_L then the key inequality is

$$\frac{\operatorname{vgap}_{L}'}{\operatorname{vgap}_{L}} + \frac{\operatorname{slgap}_{L}'}{\operatorname{slgap}_{L}} < 1$$
(1)

• This immediately implies that at each iteration, one of vgap_L, vgap_R, slgap_L, or slgap_R is cut down by a factor of at least 2. Thus Newton-*B* is never worse than Binary Search.

The key inequality

• We use primes to denote new values. When $\hat{\lambda}$ becomes the new λ_L then the key inequality is

$$\frac{\operatorname{vgap}_{L}'}{\operatorname{vgap}_{L}} + \frac{\operatorname{slgap}_{L}'}{\operatorname{slgap}_{L}} < 1$$
(1)

- This immediately implies that at each iteration, one of vgap_L, vgap_R, slgap_L, or slgap_R is cut down by a factor of at least 2. Thus Newton-*B* is never worse than Binary Search.
- (1) was originally proved in Mc+Ervolina '94. Then Rote, and Radzik '92-'98 showed that Newton-*B* is sometimes faster than Binary Search, and has a strongly polynomial bound.

The key inequality

• We use primes to denote new values. When $\hat{\lambda}$ becomes the new λ_L then the key inequality is

$$\frac{\operatorname{vgap}_{L}'}{\operatorname{vgap}_{L}} + \frac{\operatorname{slgap}_{L}'}{\operatorname{slgap}_{L}} < 1$$
(1)

- This immediately implies that at each iteration, one of vgap_L, vgap_R, slgap_L, or slgap_R is cut down by a factor of at least 2. Thus Newton-*B* is never worse than Binary Search.
- (1) was originally proved in Mc+Ervolina '94. Then Rote, and Radzik '92-'98 showed that Newton-*B* is sometimes faster than Binary Search, and has a strongly polynomial bound.
 - The better weakly polynomial bound is O(

is
$$O\left(\frac{\log(nD)}{1 + \log\log(nD) - \log\log n}\right)$$

The key inequality

• We use primes to denote new values. When $\hat{\lambda}$ becomes the new λ_L then the key inequality is

$$\frac{\operatorname{vgap}_{L}'}{\operatorname{vgap}_{L}} + \frac{\operatorname{slgap}_{L}'}{\operatorname{slgap}_{L}} < 1$$
(1)

- This immediately implies that at each iteration, one of vgap_L, vgap_R, slgap_L, or slgap_R is cut down by a factor of at least 2. Thus Newton-*B* is never worse than Binary Search.
- (1) was originally proved in Mc+Ervolina '94. Then Rote, and Radzik '92-'98 showed that Newton-*B* is sometimes faster than Binary Search, and has a strongly polynomial bound.
 - The better weakly polynomial bound is $O\left(\frac{\log(nD)}{1+\log\log(nD)-\log\log n}\right)$.
 - Sometimes there is an O(m) bound on the number of iterations.

• We didn't use much network structure in this analysis.

- We didn't use much network structure in this analysis.
- Thus we could define an interdiction version of any capacitated problem that can be formulated as an LP.

- We didn't use much network structure in this analysis.
- Thus we could define an interdiction version of any capacitated problem that can be formulated as an LP.
 - Primalizing the LP would give a conjugate dual parametric problem that we could then solve via Newton-*B*.

- We didn't use much network structure in this analysis.
- Thus we could define an interdiction version of any capacitated problem that can be formulated as an LP.
 - Primalizing the LP would give a conjugate dual parametric problem that we could then solve via Newton-*B*.
 - The Burch et al pseudo-approximation framework carries through also.

- We didn't use much network structure in this analysis.
- Thus we could define an interdiction version of any capacitated problem that can be formulated as an LP.
 - Primalizing the LP would give a conjugate dual parametric problem that we could then solve via Newton-*B*.
 - The Burch et al pseudo-approximation framework carries through also.
 - We are in the process of identifying other such problems.

- We didn't use much network structure in this analysis.
- Thus we could define an interdiction version of any capacitated problem that can be formulated as an LP.
 - Primalizing the LP would give a conjugate dual parametric problem that we could then solve via Newton-*B*.
 - The Burch et al pseudo-approximation framework carries through also.
 - We are in the process of identifying other such problems.
- Indeed, this Newton-*B* algorithm and its analysis works for any concave (or convex) function, even continuous ones.

Outline

1 Network Interdiction

- What is it?
- Interdiction curves

2 LP Duality

- Dual of interdiction
- 3 Parametric Min Cut
 - Parametric curves

4 The Breakpoint Subproblem

- What is it?
- Algorithms
- Discrete Newton

5 Multiple Parameters

- What is it?
- Scheduling problem
- Multi-GGT

What is it?

Multiple budgets equals multiple parameters

• A natural generalization is when there are multiple ways to destroy capacity, at different costs.

- A natural generalization is when there are multiple ways to destroy capacity, at different costs.
- It should be clear via duality that this would turn into a parametric min cut problem with multiple parameters.

- A natural generalization is when there are multiple ways to destroy capacity, at different costs.
- It should be clear via duality that this would turn into a parametric min cut problem with multiple parameters.
- Now we'd be trying to find a point on the parametric surface whose local derivatives bracket the given budgets in the coordinate directions.

- A natural generalization is when there are multiple ways to destroy capacity, at different costs.
- It should be clear via duality that this would turn into a parametric min cut problem with multiple parameters.
- Now we'd be trying to find a point on the parametric surface whose local derivatives bracket the given budgets in the coordinate directions.
- As before we could solve this via LP, but we'd prefer a combinatorial algorithm.

- A natural generalization is when there are multiple ways to destroy capacity, at different costs.
- It should be clear via duality that this would turn into a parametric min cut problem with multiple parameters.
- Now we'd be trying to find a point on the parametric surface whose local derivatives bracket the given budgets in the coordinate directions.
- As before we could solve this via LP, but we'd prefer a combinatorial algorithm.
- Interdiction already gets complicated with two parameters, so let's consider a simpler multiple parameter scheduling problem instead.

• We again start with a usual max flow network. We think of the nodes j such that $s \rightarrow j \in A$ as jobs, and we denote c_{sj} by p_j , the processing time of job j.

- We again start with a usual max flow network. We think of the nodes j such that $s \rightarrow j \in A$ as jobs, and we denote c_{sj} by p_j , the processing time of job j.
- If a max flow in the network saturates all of these job arcs, then we are happy and the problem goes away.

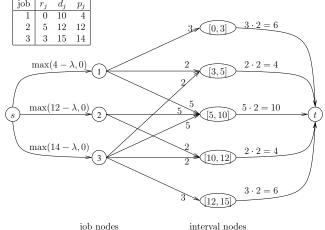
- We again start with a usual max flow network. We think of the nodes j such that $s \rightarrow j \in A$ as jobs, and we denote c_{sj} by p_j , the processing time of job j.
- If a max flow in the network saturates all of these job arcs, then we are happy and the problem goes away.
- So assume instead that there is some non-trivial min cut. We want to *outsource* some of the processing of jobs until there exists a max flow saturating the residual processing time of every job.

- We again start with a usual max flow network. We think of the nodes j such that $s \rightarrow j \in A$ as jobs, and we denote c_{sj} by p_j , the processing time of job j.
- If a max flow in the network saturates all of these job arcs, then we are happy and the problem goes away.
- So assume instead that there is some non-trivial min cut. We want to *outsource* some of the processing of jobs until there exists a max flow saturating the residual processing time of every job.
- Initially assume that if we pay λ , we reduce p_j to $\max(0, p_j a_j\lambda)$ (where $a_j \ge 0$ is given for each j).

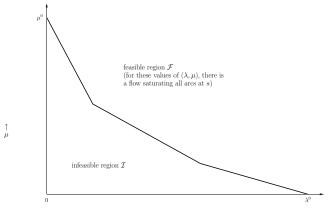
- We again start with a usual max flow network. We think of the nodes j such that $s \rightarrow j \in A$ as jobs, and we denote c_{sj} by p_j , the processing time of job j.
- If a max flow in the network saturates all of these job arcs, then we are happy and the problem goes away.
- So assume instead that there is some non-trivial min cut. We want to *outsource* some of the processing of jobs until there exists a max flow saturating the residual processing time of every job.
- Initially assume that if we pay λ , we reduce p_j to $\max(0, p_j a_j\lambda)$ (where $a_j \ge 0$ is given for each j).
- Now we want to minimize λ such that there exists a flow saturating all residual job arcs.

Chen's scheduling problem: example

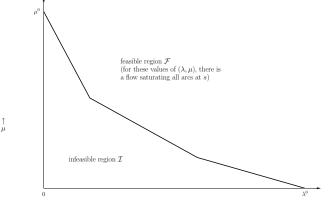
This single-parameter version can be solved using Gallo-Grigoriadis-Tarjan (GGT) '89 parametric min cut in O(1) max flow time.



Suppose now that there are two ways to outsource, λ and μ such that if we pay $\lambda + \mu$, we reduce p_j to $\max(0, p_j - a_j\lambda - b_j\mu)$. In the (λ, μ) plane there is a piecewise linear convex curve separating feasible points from infeasible ones.

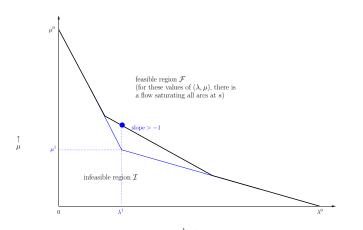


Suppose now that there are two ways to outsource, λ and μ such that if we pay $\lambda + \mu$, we reduce p_j to $\max(0, p_j - a_j\lambda - b_j\mu)$. For node subset S with $D \subseteq \delta^-(S) \cap \delta^+(\{s\})$, the constraints defining this region have the form $\lambda a(D) + \mu b(D) \ge p(D) - c(\delta^+(S))$.

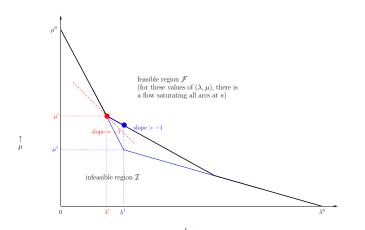


Suppose now that there are two ways to outsource, λ and μ such that if we pay $\lambda + \mu$, we reduce p_i to $\max(0, p_i - a_i\lambda - b_i\mu)$. We want to find a breakpoint of this curve whose local slopes bracket slope -1.feasible region \mathcal{F} (for these values of (λ, μ) , there is a flow saturating all arcs at s) μ infeasible region \mathcal{I} λ^0 0

Suppose now that there are two ways to outsource, λ and μ such that if we pay $\lambda + \mu$, we reduce p_j to $\max(0, p_j - a_j\lambda - b_j\mu)$. We know how to do this: Newton-B.



Suppose now that there are two ways to outsource, λ and μ such that if we pay $\lambda + \mu$, we reduce p_j to $\max(0, p_j - a_j\lambda - b_j\mu)$. We know how to do this: Newton-B.



• Suppose now that there are three ways to outsource, λ , μ , and ν such that if we pay $\lambda + \mu + \nu$, we reduce p_j to $\max(0, p_j - a_j\lambda - b_j\mu - d_j\nu)$.

- Suppose now that there are three ways to outsource, λ , μ , and ν such that if we pay $\lambda + \mu + \nu$, we reduce p_j to $\max(0, p_j a_j\lambda b_j\mu d_j\nu)$.
- For any fixed value of ν this is a 2-parameter problem we know how to solve.

- Suppose now that there are three ways to outsource, λ , μ , and ν such that if we pay $\lambda + \mu + \nu$, we reduce p_j to $\max(0, p_j a_j\lambda b_j\mu d_j\nu)$.
- For any fixed value of ν this is a 2-parameter problem we know how to solve.
- As we vary ν , these 2-parameter solutions trace out a piecewise linear curve in the ν direction.

- Suppose now that there are three ways to outsource, λ , μ , and ν such that if we pay $\lambda + \mu + \nu$, we reduce p_j to $\max(0, p_j a_j\lambda b_j\mu d_j\nu)$.
- For any fixed value of ν this is a 2-parameter problem we know how to solve.
- As we vary ν , these 2-parameter solutions trace out a piecewise linear curve in the ν direction.
- We want to find a breakpoint on this curve whose local slopes bracket -1.

- Suppose now that there are three ways to outsource, λ , μ , and ν such that if we pay $\lambda + \mu + \nu$, we reduce p_j to $\max(0, p_j a_j\lambda b_j\mu d_j\nu)$.
- For any fixed value of ν this is a 2-parameter problem we know how to solve.
- As we vary ν , these 2-parameter solutions trace out a piecewise linear curve in the ν direction.
- We want to find a breakpoint on this curve whose local slopes bracket -1.
- Again, we know how to do this via a recursive application of Newton-*B*.

- Suppose now that there are three ways to outsource, λ , μ , and ν such that if we pay $\lambda + \mu + \nu$, we reduce p_j to $\max(0, p_j a_j\lambda b_j\mu d_j\nu)$.
- For any fixed value of ν this is a 2-parameter problem we know how to solve.
- As we vary ν , these 2-parameter solutions trace out a piecewise linear curve in the ν direction.
- We want to find a breakpoint on this curve whose local slopes bracket -1.
- Again, we know how to do this via a recursive application of Newton-*B*.
- This generalizes to any fixed number of parameters.

- Suppose now that there are three ways to outsource, λ , μ , and ν such that if we pay $\lambda + \mu + \nu$, we reduce p_j to $\max(0, p_j a_j\lambda b_j\mu d_j\nu)$.
- For any fixed value of ν this is a 2-parameter problem we know how to solve.
- As we vary ν , these 2-parameter solutions trace out a piecewise linear curve in the ν direction.
- We want to find a breakpoint on this curve whose local slopes bracket -1.
- Again, we know how to do this via a recursive application of Newton-*B*.
- This generalizes to any fixed number of parameters.
- Open Question: LP is polynomial even when the number of parameters is not fixed. Can we get a combinatorial algorithm then?

Multi-GGT

Multi-parameter GGT

• Chen with ≥ 2 fits into a framework of Topkis '78 concerning parametric submodular optimization over a(n algebraic) lattice (here the lattice is \mathbb{R}^2_+ with \leq):

- Chen with ≥ 2 fits into a framework of Topkis '78 concerning parametric submodular optimization over a(n algebraic) lattice (here the lattice is \mathbb{R}^2_+ with \leq):
 - The objective $cap(S, \lambda, \mu)$ is submodular in S for each fixed (λ, μ) .

Multi-GGT

Multi-parameter GGT

- Chen with ≥ 2 fits into a framework of Topkis '78 concerning parametric submodular optimization over a(n algebraic) lattice (here the lattice is \mathbb{R}^2_+ with \leq):
 - The objective $cap(S, \lambda, \mu)$ is submodular in S for each fixed (λ, μ) .
 - It also satisfies Increasing Differences: for all $S \subseteq T$ and $(\lambda', \mu') > (\lambda, \mu),$

 $\operatorname{cap}(T,\lambda,\mu) - \operatorname{cap}(T,\lambda',\mu') \le \operatorname{cap}(S,\lambda,\mu) - \operatorname{cap}(S,\lambda',\mu').$

- Chen with ≥ 2 fits into a framework of Topkis '78 concerning parametric submodular optimization over a(n algebraic) lattice (here the lattice is \mathbb{R}^2_+ with \leq):
 - The objective $cap(S, \lambda, \mu)$ is submodular in S for each fixed (λ, μ) .
 - It also satisfies Increasing Differences: for all $S \subseteq T$ and $(\lambda', \mu') > (\lambda, \mu),$

 $\operatorname{cap}(T,\lambda,\mu) - \operatorname{cap}(T,\lambda',\mu') \le \operatorname{cap}(S,\lambda,\mu) - \operatorname{cap}(S,\lambda',\mu').$

• Thm (Topkis): With these two properties, if $(\lambda', \mu') \ge (\lambda, \mu)$ then $S^*(\lambda,\mu) \subseteq S^*(\lambda',\mu').$

- Chen with ≥ 2 fits into a framework of Topkis '78 concerning parametric submodular optimization over a(n algebraic) lattice (here the lattice is \mathbb{R}^2_+ with \leq):
 - The objective $cap(S, \lambda, \mu)$ is submodular in S for each fixed (λ, μ) .
 - It also satisfies Increasing Differences: for all $S \subseteq T$ and $(\lambda', \mu') > (\lambda, \mu),$

$$\operatorname{cap}(T,\lambda,\mu) - \operatorname{cap}(T,\lambda',\mu') \le \operatorname{cap}(S,\lambda,\mu) - \operatorname{cap}(S,\lambda',\mu').$$

- Thm (Topkis): With these two properties, if $(\lambda', \mu') > (\lambda, \mu)$ then $S^*(\lambda, \mu) \subseteq S^*(\lambda', \mu').$
- Corollary: Min cuts are increasing along any non-decreasing curve (chain) in \mathbb{R}^2_{\perp} .

- Chen with ≥ 2 fits into a framework of Topkis '78 concerning parametric submodular optimization over a(n algebraic) lattice (here the lattice is \mathbb{R}^2_+ with \leq):
 - The objective $cap(S, \lambda, \mu)$ is submodular in S for each fixed (λ, μ) .
 - It also satisfies Increasing Differences: for all $S \subseteq T$ and $(\lambda', \mu') > (\lambda, \mu),$

$$\operatorname{cap}(T,\lambda,\mu) - \operatorname{cap}(T,\lambda',\mu') \leq \operatorname{cap}(S,\lambda,\mu) - \operatorname{cap}(S,\lambda',\mu').$$

- Thm (Topkis): With these two properties, if $(\lambda', \mu') > (\lambda, \mu)$ then $S^*(\lambda, \mu) \subseteq S^*(\lambda', \mu').$
- Corollary: Min cuts are increasing along any non-decreasing curve (chain) in \mathbb{R}^2_{\perp} .
- Open Question: When capacities are (piecewise) linear, how many different min cuts can we have over all (λ, μ) ?

Questions?

Comments?

McCormick et al (UBC-Rome-Aachen)