Network Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs

Marcin Pilipczuk Michał Pilipczuk Piotr Sankowski Erik Jan van Leeuwen

30th July 2013

Outline

Introduction and background

- Parameterized complexity and kernelization
- Planar graphs and bidimensionality

Our contribution

- Our results
- Our techniques

Outline

Introduction and background

• Parameterized complexity and kernelization

• Planar graphs and bidimensionality

Our contribution

- Our results
- Our techniques

Preprocessing

Preprocessing

Preprocessing

Parameterized complexity and kernelization Planar graphs and bidimensionality

Preprocessing theoretically

• Very useful in practice.

Parameterized complexity and kernelization Planar graphs and bidimensionality

Preprocessing theoretically

- Very useful in practice.
- Not obvious how to analyze from theoretical point of view.

Preprocessing theoretically

- Very useful in practice.
- Not obvious how to analyze from theoretical point of view.
- Fast algorithm \Rightarrow Polynomial-time algorithm.

Preprocessing theoretically

- Very useful in practice.
- Not obvious how to analyze from theoretical point of view.
- Fast algorithm \Rightarrow Polynomial-time algorithm.
- How to measure how well the instance is preprocessed?

Parameterized complexity and kernelization Planar graphs and bidimensionality

Parameterized complexity

instance of NP-hard problem

• Multidimensional analysis.

Parameterized complexity and kernelization Planar graphs and bidimensionality

Parameterized complexity

- Multidimensional analysis.
- Specify parameter.

Parameterized complexity and kernelization Planar graphs and bidimensionality

Parameterized complexity

- Multidimensional analysis.
- Specify parameter.
- \bullet Instead of VERTEX COVER , we have

Parameterized complexity and kernelization Planar graphs and bidimensionality

Parameterized complexity

- Multidimensional analysis.
- Specify parameter.
- \bullet Instead of Vertex Cover , we have
- VERTEX COVER / SOL. SIZE

Parameterized complexity and kernelization Planar graphs and bidimensionality

Parameterized complexity

- Multidimensional analysis.
- Specify parameter.
- \bullet Instead of Vertex Cover , we have
- VERTEX COVER / SOL. SIZE
- VERTEX COVER / TREEWIDTH

Parameterized complexity

instance of NP-hard problem

- Multidimensional analysis.
- Specify parameter.
- \bullet Instead of Vertex Cover , we have
- VERTEX COVER / SOL. SIZE
- VERTEX COVER / TREEWIDTH
- VERTEX COVER / EDITION DISTANCE TO CLUSTER GRAPHS

Parameterized complexity

- Multidimensional analysis.
- Specify parameter.
- \bullet Instead of Vertex Cover , we have
- VERTEX COVER / SOL. SIZE
- VERTEX COVER / TREEWIDTH
- VERTEX COVER / EDITION DISTANCE TO CLUSTER GRAPHS
- VERTEX COVER / PATHWIDTH AND MAXIMUM DEGREE

Parameterized complexity

instance of NP-hard problem

- Multidimensional analysis.
- Specify parameter.
- $\bullet\,$ Instead of ${\rm VERTEX}\,\,{\rm COVER},$ we have
- VERTEX COVER / SOL. SIZE
- VERTEX COVER / TREEWIDTH
- VERTEX COVER / EDITION DISTANCE TO CLUSTER GRAPHS
- VERTEX COVER / PATHWIDTH AND MAXIMUM DEGREE

Goal: Do something clever when the parameter is small.

Kernelization

Kernelization

Kernelization

Kernelization

poly time

 \longrightarrow

Kernelization

Kernelization

Kernelization

Outline

Introduction and background

- Parameterized complexity and kernelization
- Planar graphs and bidimensionality

Our contribution

- Our results
- Our techniques

• Planar graphs have cool algorithmic properties.

- Planar graphs have cool algorithmic properties.
- Many tools are reincarnations of Lipton-Tarjan separation theorem.

- Planar graphs have cool algorithmic properties.
- Many tools are reincarnations of Lipton-Tarjan separation theorem.

Theorem (Grid minor theorem for planar graphs)

- Planar graphs have cool algorithmic properties.
- Many tools are reincarnations of Lipton-Tarjan separation theorem.

Theorem (Grid minor theorem for planar graphs)

A planar graph without a $k \times k$ grid as a minor has treewidth $\mathcal{O}(k)$.

• Basic algorithmic usage:

- Planar graphs have cool algorithmic properties.
- Many tools are reincarnations of Lipton-Tarjan separation theorem.

Theorem (Grid minor theorem for planar graphs)

- Basic algorithmic usage:
 - VERTEX COVER < k

- Planar graphs have cool algorithmic properties.
- Many tools are reincarnations of Lipton-Tarjan separation theorem.

Theorem (Grid minor theorem for planar graphs)

- Basic algorithmic usage:
 - VERTEX COVER < k
 - \Rightarrow no $\sqrt{2k} \times \sqrt{2k}$ grid as a minor

- Planar graphs have cool algorithmic properties.
- Many tools are reincarnations of Lipton-Tarjan separation theorem.

Theorem (Grid minor theorem for planar graphs)

- Basic algorithmic usage:
 - VERTEX COVER < k
 - \Rightarrow no $\sqrt{2k} \times \sqrt{2k}$ grid as a minor
 - \Rightarrow treewidth $\in \mathcal{O}(\sqrt{k})$

- Planar graphs have cool algorithmic properties.
- Many tools are reincarnations of Lipton-Tarjan separation theorem.

Theorem (Grid minor theorem for planar graphs)

A planar graph without a $k \times k$ grid as a minor has treewidth $\mathcal{O}(k)$.

• Basic algorithmic usage:

- VERTEX COVER < k
- \Rightarrow no $\sqrt{2k} \times \sqrt{2k}$ grid as a minor
- \Rightarrow treewidth $\in \mathcal{O}(\sqrt{k})$
- \Rightarrow subexponential (in k) algorithm.

Parameterized complexity and kernelization Planar graphs and bidimensionality

Bidimesionality framework

Bidimensionality framework

Bidimesionality framework

Bidimensionality framework

• applies to a variety of problems, e.g.,
- applies to a variety of problems, e.g.,
 - VERTEX COVER,

- applies to a variety of problems, e.g.,
 - VERTEX COVER,
 - Dominating Set,

- applies to a variety of problems, e.g.,
 - VERTEX COVER,
 - Dominating Set,
 - FEEDBACK VERTEX SET,

- applies to a variety of problems, e.g.,
 - VERTEX COVER,
 - Dominating Set,
 - FEEDBACK VERTEX SET,
 - Connected Vertex Cover, ...

- applies to a variety of problems, e.g.,
 - VERTEX COVER,
 - Dominating Set,
 - FEEDBACK VERTEX SET,
 - Connected Vertex Cover, ...
- in sparse graph classes, such as

- applies to a variety of problems, e.g.,
 - VERTEX COVER,
 - Dominating Set,
 - FEEDBACK VERTEX SET,
 - Connected Vertex Cover, ...
- in sparse graph classes, such as
 - planar graphs,

- applies to a variety of problems, e.g.,
 - VERTEX COVER,
 - Dominating Set,
 - FEEDBACK VERTEX SET,
 - Connected Vertex Cover, ...
- in sparse graph classes, such as
 - planar graphs,
 - bounded-genus graphs,

- applies to a variety of problems, e.g.,
 - VERTEX COVER,
 - Dominating Set,
 - FEEDBACK VERTEX SET,
 - Connected Vertex Cover, ...
- in sparse graph classes, such as
 - planar graphs,
 - bounded-genus graphs,
 - graphs with a fixed excluded minor,

- applies to a variety of problems, e.g.,
 - VERTEX COVER,
 - Dominating Set,
 - FEEDBACK VERTEX SET,
 - Connected Vertex Cover, ...
- in sparse graph classes, such as
 - planar graphs,
 - bounded-genus graphs,
 - graphs with a fixed excluded minor,
 - excluded topological minor, bounded expansion, ...

- applies to a variety of problems, e.g.,
 - VERTEX COVER,
 - Dominating Set,
 - FEEDBACK VERTEX SET,
 - Connected Vertex Cover, ...
- in sparse graph classes, such as
 - planar graphs,
 - bounded-genus graphs,
 - graphs with a fixed excluded minor,
 - excluded topological minor, bounded expansion, ...
- and provides

- applies to a variety of problems, e.g.,
 - VERTEX COVER,
 - Dominating Set,
 - FEEDBACK VERTEX SET,
 - Connected Vertex Cover, ...
- in sparse graph classes, such as
 - planar graphs,
 - bounded-genus graphs,
 - graphs with a fixed excluded minor,
 - excluded topological minor, bounded expansion, ...
- and provides
 - subexponential fixed-parameter algorithms,

- applies to a variety of problems, e.g.,
 - VERTEX COVER,
 - Dominating Set,
 - FEEDBACK VERTEX SET,
 - Connected Vertex Cover, ...
- in sparse graph classes, such as
 - planar graphs,
 - bounded-genus graphs,
 - graphs with a fixed excluded minor,
 - excluded topological minor, bounded expansion, ...
- and provides
 - subexponential fixed-parameter algorithms,
 - linear kernels,

- applies to a variety of problems, e.g.,
 - VERTEX COVER,
 - Dominating Set,
 - FEEDBACK VERTEX SET,
 - Connected Vertex Cover, ...
- in sparse graph classes, such as
 - planar graphs,
 - bounded-genus graphs,
 - graphs with a fixed excluded minor,
 - excluded topological minor, bounded expansion, ...
- and provides
 - subexponential fixed-parameter algorithms,
 - linear kernels,
 - EPTASes.

• Recent years: many efforts to generalize in terms of graph class:

- Recent years: many efforts to generalize in terms of graph class:
 - fixed excluded minor, fixed excluded topological minor, bounded expansion, ...

- Recent years: many efforts to generalize in terms of graph class:
 - fixed excluded minor, fixed excluded topological minor, bounded expansion, . . .
- But they are important problems not covered at all.

- Recent years: many efforts to generalize in terms of graph class:
 - fixed excluded minor, fixed excluded topological minor, bounded expansion, . . .
- But they are important problems not covered at all.
 - recall: VERTEX COVER $\langle k \Rightarrow$ no $\sqrt{2k} \times \sqrt{2k}$ grid as a minor;

- Recent years: many efforts to generalize in terms of graph class:
 - fixed excluded minor, fixed excluded topological minor, bounded expansion, ...
- But they are important problems not covered at all.
 - recall: VERTEX COVER $\langle k \Rightarrow$ no $\sqrt{2k} \times \sqrt{2k}$ grid as a minor;
 - fails for e.g. STEINER TREE / NUMBER OF EDGES OF THE TREE,

- Recent years: many efforts to generalize in terms of graph class:
 - fixed excluded minor, fixed excluded topological minor, bounded expansion, ...
- But they are important problems not covered at all.
 - recall: VERTEX COVER $\langle k \Rightarrow$ no $\sqrt{2k} \times \sqrt{2k}$ grid as a minor;
 - \bullet fails for e.g. Steiner Tree / number of edges of the tree,
 - (and many problems in directed graphs).

- Recent years: many efforts to generalize in terms of graph class:
 - fixed excluded minor, fixed excluded topological minor, bounded expansion, ...
- But they are important problems not covered at all.
 - recall: VERTEX COVER $\langle k \Rightarrow$ no $\sqrt{2k} \times \sqrt{2k}$ grid as a minor;
 - $\bullet\,$ fails for e.g. Steiner Tree / number of edges of the tree,
 - (and many problems in directed graphs).
- Subexponential algorithms? Polynomial or linear kernels?

Outline

Introduction and background

- Parameterized complexity and kernelization
- Planar graphs and bidimensionality

Our contribution

- Our results
- Our techniques

Theorem (Polynomial kernel for Planar Steiner Tree)

STEINER TREE in planar graphs, parameterized by the number of edges in the solution, has a kernel of size $O(k^{142})$.

Theorem (Polynomial kernel for Steiner Tree and Steiner Forest)

STEINER TREE and STEINER FOREST in bounded-genus graphs, parameterized by the number of edges in the solution, have polynomial kernels.

Theorem (Polynomial kernel for Steiner Tree and Steiner Forest)

STEINER TREE and STEINER FOREST in bounded-genus graphs, parameterized by the number of edges in the solution, have polynomial kernels.

Theorem (Polynomial kernel for Planar Edge Multiway Cut)

EDGE MULTIWAY CUT in planar graphs, parameterized by the size of the solution, has a polynomial kernel.

Theorem (Polynomial kernel for Steiner Tree and Steiner Forest)

STEINER TREE and STEINER FOREST in bounded-genus graphs, parameterized by the number of edges in the solution, have polynomial kernels.

Theorem (Polynomial kernel for Planar Edge Multiway Cut)

EDGE MULTIWAY CUT in planar graphs, parameterized by the size of the solution, has a polynomial kernel.

Corollary (Subexponential algorithms)

STEINER TREE in bounded-genus graphs and EDGE MULTIWAY CUT in planar graphs admit subexponential algorithms.

Outline

1 Introduction and background

- Parameterized complexity and kernelization
- Planar graphs and bidimensionality

Our contribution

- Our results
- Our techniques

Backbone theorem

Statement that stands behind:

Our results Our techniques

Backbone theorem

Statement that stands behind:

Definition

A <u>brick</u> is a connected plane graph G with outer face surrounded by a simple cycle ∂G , called the perimeter of the brick.

Our results Our techniques

Backbone theorem

Statement that stands behind:

Definition

A <u>brick</u> is a connected plane graph G with outer face surrounded by a simple cycle ∂G , called the <u>perimeter</u> of the brick.

Theorem (Steiner Tree in bricks)

Given a brick G with perimeter ∂G of length k,

Our results Our techniques

Backbone theorem

Statement that stands behind:

Definition

A <u>brick</u> is a connected plane graph G with outer face surrounded by a simple cycle ∂G , called the <u>perimeter</u> of the brick.

Theorem (Steiner Tree in bricks)

Given a brick G with perimeter ∂G of length k, one can in time $\mathcal{O}(k^{142}|G|)$

Our results Our techniques

Backbone theorem

Statement that stands behind:

Definition

A <u>brick</u> is a connected plane graph G with outer face surrounded by a simple cycle ∂G , called the <u>perimeter</u> of the brick.

Theorem (Steiner Tree in bricks)

Given a brick G with perimeter ∂G of length k, one can in time $\mathcal{O}(k^{142}|G|)$ find a set F of edges in G

Our results Our techniques

Backbone theorem

Statement that stands behind:

Definition

A <u>brick</u> is a connected plane graph G with outer face surrounded by a simple cycle ∂G , called the <u>perimeter</u> of the brick.

Theorem (Steiner Tree in bricks)

Given a brick G with perimeter ∂G of length k, one can in time $\mathcal{O}(k^{142}|G|)$ find a set F of edges in G of size $\mathcal{O}(k^{142})$

Our results Our techniques

Backbone theorem

Statement that stands behind:

Definition

A <u>brick</u> is a connected plane graph G with outer face surrounded by a simple cycle ∂G , called the <u>perimeter</u> of the brick.

Theorem (Steiner Tree in bricks)

Given a brick G with perimeter ∂G of length k, one can in time $\mathcal{O}(k^{142}|G|)$ find **a set** F of edges in G of size $\mathcal{O}(k^{142})$ such that for any **set of terminals** $S \subseteq \partial G$

Our results Our techniques

Backbone theorem

Statement that stands behind:

Definition

A <u>brick</u> is a connected plane graph G with outer face surrounded by a simple cycle ∂G , called the <u>perimeter</u> of the brick.

Theorem (Steiner Tree in bricks)

Given a brick G with perimeter ∂G of length k, one can in time $\mathcal{O}(k^{142}|G|)$ find a set F of edges in G of size $\mathcal{O}(k^{142})$ such that for any set of terminals $S \subseteq \partial G$ there exists a Steiner tree connecting S

Our results Our techniques

Backbone theorem

Statement that stands behind:

Definition

A <u>brick</u> is a connected plane graph G with outer face surrounded by a simple cycle ∂G , called the <u>perimeter</u> of the brick.

Theorem (Steiner Tree in bricks)

Given a brick G with perimeter ∂G of length k, one can in time $\mathcal{O}(k^{142}|G|)$ find a set F of edges in G of size $\mathcal{O}(k^{142})$ such that for any set of terminals $S \subseteq \partial G$ there exists a Steiner tree connecting S that is contained in F

Our results Our techniques

Backbone theorem

Statement that stands behind:

Definition

A <u>brick</u> is a connected plane graph G with outer face surrounded by a simple cycle ∂G , called the <u>perimeter</u> of the brick.

Theorem (Steiner Tree in bricks)

Given a brick G with perimeter ∂G of length k, one can in time $\mathcal{O}(k^{142}|G|)$ find **a set** F of edges in G of size $\mathcal{O}(k^{142})$ such that for any **set of terminals** $S \subseteq \partial G$ there exists **a Steiner tree connecting** S that is contained in F and optimal in the entire G.

[Borradaile, Klein, Mathieu, 2009] Bricks are cool!

[Borradaile, Klein, Mathieu, 2009] Bricks are cool!

Our results Our techniques

Polynomial bound

Define: $F := \bigcup_i F_i$

Our results Our techniques

Polynomial bound

Define: $F := \bigcup_i F_i$ **Want:** $|F| \le poly(|\partial G|)$

Our results Our techniques

Polynomial bound

Define: $F := \bigcup_i F_i$ **Want:** $|F| \le \text{poly}(|\partial G|)$ **Idea:** $|\partial G|$ is an excellent potential

Our results Our techniques

Polynomial bound

Define: $F := \bigcup_i F_i$ **Want:** $|F| \le poly(|\partial G|)$ **Idea:** $|\partial G|$ is an excellent potential

Need:

Our results Our techniques

Polynomial bound

Define: $F := \bigcup_i F_i$ **Want:** $|F| \le \operatorname{poly}(|\partial G|)$ **Idea:** $|\partial G|$ is an excellent potential **Need:** (i) $\sum_i |\partial G_i| \le C |\partial G|$ for some *C*,

Our results Our techniques

Polynomial bound

Define: $F := \bigcup_i F_i$ **Want:** $|F| \le \operatorname{poly}(|\partial G|)$ **Idea:** $|\partial G|$ is an excellent potential **Need:** (i) $\sum_i |\partial G_i| \le C |\partial G|$ for some C, (ii) $\forall_i |\partial G_i| \le (1 - \varepsilon) |\partial G|$ for some $\varepsilon > 0$.

Our results Our techniques

Steiner tree as a separator

(i)
$$\sum_{i} |\partial G_{i}| \leq C |\partial G|$$
,
(ii) $\forall_{i} |\partial G_{i}| \leq (1 - \varepsilon) |\partial G|$.

Our results Our techniques

Steiner tree as a separator

(i) $\sum_{i} |\partial G_{i}| \leq C |\partial G|$, (ii) $\forall_{i} |\partial G_{i}| \leq (1 - \varepsilon) |\partial G|$.

Crucial observation:

Our results Our techniques

Steiner tree as a separator

(i) $\sum_{i} |\partial G_{i}| \leq C |\partial G|$, (ii) $\forall_{i} |\partial G_{i}| \leq (1 - \varepsilon) |\partial G|$.

Crucial observation:

An optimal Steiner tree is usually a good separator!

Our results Our techniques

Steiner tree as a separator

(i) $\sum_{i} |\partial G_{i}| \leq C |\partial G|$, (ii) $\forall_{i} |\partial G_{i}| \leq (1 - \varepsilon) |\partial G|$.

Crucial observation: An optimal Steiner tree is usually a good separator!

Cond. (i) is for free with C = 3

Our results Our techniques

Steiner tree as a separator

(i) $\sum_{i} |\partial G_{i}| \leq C |\partial G|$, (ii) $\forall_{i} |\partial G_{i}| \leq (1 - \varepsilon) |\partial G|$.

Crucial observation: An optimal Steiner tree is usually a good separator!

Cond. (i) is for free with C = 3**Proof:**

Our results Our techniques

Steiner tree as a separator

(i) $\sum_{i} |\partial G_{i}| \leq C |\partial G|$, (ii) $\forall_{i} |\partial G_{i}| \leq (1 - \varepsilon) |\partial G|$.

Crucial observation: An optimal Steiner tree is usually a good separator!

Cond. (i) is for free with C = 3

Proof:

 ∂G is an excellent Steiner tree

Our results Our techniques

Steiner tree as a separator

(i) $\sum_{i} |\partial G_{i}| \leq C |\partial G|$, (ii) $\forall_{i} |\partial G_{i}| \leq (1 - \varepsilon) |\partial G|$.

Crucial observation: An optimal Steiner tree is usually a good separator!

Cond. (i) is for free with C = 3

Proof:

 ∂G is an excellent Steiner tree $\Rightarrow |T| \le |\partial G|$

Our results Our techniques

Steiner tree as a separator

(i) $\sum_{i} |\partial G_{i}| \leq C |\partial G|$, (ii) $\forall_{i} |\partial G_{i}| \leq (1 - \varepsilon) |\partial G|$.

Crucial observation: An optimal Steiner tree is usually a good separator!

Cond. (i) is for free with C = 3

Proof:

 ∂G is an excellent Steiner tree $\Rightarrow |T| \le |\partial G|$ $\Rightarrow \sum_{i} |\partial G_{i}|$

Our results Our techniques

Steiner tree as a separator

(i) $\sum_{i} |\partial G_{i}| \leq C |\partial G|$, (ii) $\forall_{i} |\partial G_{i}| \leq (1 - \varepsilon) |\partial G|$.

Crucial observation: An optimal Steiner tree is usually a good separator!

Cond. (i) is for free with C = 3

Proof:

 ∂G is an excellent Steiner tree

$$\Rightarrow |T| \leq |\partial G| \Rightarrow \sum_{i} |\partial G_{i}| = |\partial G| + 2|T|$$

Our results Our techniques

Steiner tree as a separator

(i) $\sum_{i} |\partial G_{i}| \leq C |\partial G|$, (ii) $\forall_{i} |\partial G_{i}| \leq (1 - \varepsilon) |\partial G|$.

Crucial observation: An optimal Steiner tree is usually a good separator!

Cond. (i) is for free with C = 3

Proof:

 $\partial {\it G}$ is an excellent Steiner tree

$$\Rightarrow |T| \le |\partial G|$$

$$\Rightarrow \sum_{i} |\partial G_{i}|$$

$$= |\partial G| + 2|T|$$

$$\le 3|\partial G|$$

Our results Our techniques

Steiner tree as a separator

(i) $\sum_{i} |\partial G_{i}| \leq C |\partial G|$, (ii) $\forall_{i} |\partial G_{i}| \leq (1 - \varepsilon) |\partial G|$.

Our results Our techniques

Steiner tree as a separator

(i) $\sum_{i} |\partial G_{i}| \leq C |\partial G|$, (ii) $\forall_{i} |\partial G_{i}| \leq (1 - \varepsilon) |\partial G|$.

 $\partial G[a, b]$ is an excellent tree

Our results Our techniques

Steiner tree as a separator

(i) $\sum_{i} |\partial G_{i}| \leq C |\partial G|$, (ii) $\forall_{i} |\partial G_{i}| \leq (1 - \varepsilon) |\partial G|$.

 $\partial G[a, b]$ is an excellent tree $\Rightarrow |T| \le |\partial G[a, b]|$

Our results Our techniques

Steiner tree as a separator

(i) $\sum_{i} |\partial G_{i}| \leq C |\partial G|$, (ii) $\forall_{i} |\partial G_{i}| \leq (1 - \varepsilon) |\partial G|$.

 $\partial G[a, b]$ is an excellent tree $\Rightarrow |T| \le |\partial G[a, b]|$ $\Rightarrow |\partial G| - |\partial G_6|$
Our results Our techniques

Steiner tree as a separator

(i) $\sum_{i} |\partial G_{i}| \leq C |\partial G|$, (ii) $\forall_{i} |\partial G_{i}| \leq (1 - \varepsilon) |\partial G|$.

Our results Our techniques

Steiner tree as a separator

(i) $\sum_{i} |\partial G_{i}| \leq C |\partial G|$, (ii) $\forall_{i} |\partial G_{i}| \leq (1 - \varepsilon) |\partial G|$.

Our results Our techniques

Steiner tree as a separator

(i)
$$\sum_{i} |\partial G_{i}| \leq C |\partial G|,$$

(ii) $\forall_{i} |\partial G_{i}| \leq (1 - \varepsilon) |\partial G|.$

$$\begin{array}{l} \partial G[a,b] \text{ is an excellent tree} \\ \Rightarrow |T| \leq |\partial G[a,b]| \\ \Rightarrow |\partial G| - |\partial G_6| \\ &= |\partial G[a,b]| - |T \cap \partial G_6| \\ \geq |T| - |T \cap \partial G_6| \\ &= |T \setminus \partial G_6| \end{array}$$

Our results Our techniques

Our results Our techniques

Our results Our techniques

Definition (Mountain)

M = (L, R) is a mountain if

Definition (Mountain)

M = (L, R) is a mountain if (i) L is a shortest $\ell - R$ path inside M, and

Definition (Mountain)

M = (L, R) is a mountain if (i) L is a shortest $\ell - R$ path inside M, and (ii) R is a shortest r - L path inside M.

Our results Our techniques

Mountain range theorem

Theorem (Mountain range theorem)

For fixed $\delta < 1/2$ and endpoints ℓ and r,

Our results Our techniques

Mountain range theorem

Theorem (Mountain range theorem)

For fixed $\delta < 1/2$ and endpoints ℓ and r, all maximal mountains of length at most $\delta |\partial G|$,

Our results Our techniques

Mountain range theorem

Theorem (Mountain range theorem)

For fixed $\delta < 1/2$ and endpoints ℓ and r, all maximal mountains of length at most $\delta |\partial G|$, look like on the figure

Our results Our techniques

Mountain range theorem

Theorem (Mountain range theorem)

For fixed $\delta < 1/2$ and endpoints ℓ and r, all maximal mountains of length at most $\delta |\partial G|$, look like on the figure and have total perimeter at most $3|\partial G[\ell, r]|$.

Our results Our techniques

All mountain ranges

Our results Our techniques

All mountain ranges

• bound on the perimeter of a mountain range $\Rightarrow |C| = O(|\partial G|)$

Our results Our techniques

All mountain ranges

• bound on the perimeter of a mountain range $\Rightarrow |C| = O(|\partial G|)$

Our results Our techniques

All mountain ranges

- bound on the perimeter of a mountain range $\Rightarrow |C| = O(|\partial G|)$
- inside C mark only shortest paths between points on the perimeter.

• If $|\partial G| = O(1)$, do brute-force.

ntroduction and background Our contribution Our techniques

- If $|\partial G| = \mathcal{O}(1)$, do brute-force.
- If there exists an optimal Steiner tree T that is a good separator, split with T and recurse.

ntroduction and background Our re Our contribution Our te

Our results Our techniques

- If $|\partial G| = \mathcal{O}(1)$, do brute-force.
- If there exists an optimal Steiner tree T that is a good separator, split with T and recurse.
 - Finding such T is a technical, but natural DP.

Our results Our techniques

- If $|\partial G| = \mathcal{O}(1)$, do brute-force.
- If there exists an optimal Steiner tree T that is a good separator, split with T and recurse.
 - Finding such T is a technical, but natural DP.
 - Fix $\varepsilon = 1/36$.

Our results Our techniques

Recap

- If $|\partial G| = \mathcal{O}(1)$, do brute-force.
- If there exists an optimal Steiner tree T that is a good separator, split with T and recurse.
 - Finding such T is a technical, but natural DP.

 Otherwise, compute the union of O(1/ε²) mountain ranges and the cycle C. Perform decomposition of the second type and recurse.

Our results Our techniques

- If $|\partial G| = \mathcal{O}(1)$, do brute-force.
- If there exists an optimal Steiner tree T that is a good separator, split with T and recurse.
 - Finding such T is a technical, but natural DP.

- Otherwise, compute the union of O(1/ε²) mountain ranges and the cycle C. Perform decomposition of the second type and recurse.
 - Some technical massage to cope with the second bad case.

Our results Our techniques

Recap

- If $|\partial G| = \mathcal{O}(1)$, do brute-force.
- If there exists an optimal Steiner tree T that is a good separator, split with T and recurse.
 - Finding such T is a technical, but natural DP.

- Otherwise, compute the union of O(1/ε²) mountain ranges and the cycle C. Perform decomposition of the second type and recurse.
 - Some technical massage to cope with the second bad case.

• Big exponent due to small ε and large C in the decomposition of the second type.

Some open problems:

• Get better exponent!

- Get better exponent!
 - For the brick theorem, a grid yields an $\Omega(k^2)$ lower bound.

- Get better exponent!
 - For the brick theorem, a grid yields an $\Omega(k^2)$ lower bound.
- What about parameter number of terminals?

- Get better exponent!
 - For the brick theorem, a grid yields an $\Omega(k^2)$ lower bound.
- What about parameter number of terminals?
- \bullet What about problems with vertex-based measures, such as NODE MULTIWAY CUT?

- Get better exponent!
 - For the brick theorem, a grid yields an $\Omega(k^2)$ lower bound.
- What about parameter number of terminals?
- \bullet What about problems with vertex-based measures, such as NODE MULTIWAY CUT?
 - Also a combinatorial kernel for PLANAR ODD CYCLE TRANSVERSAL would be nice.
- Get better exponent!
 - For the brick theorem, a grid yields an $\Omega(k^2)$ lower bound.
- What about parameter number of terminals?
- \bullet What about problems with vertex-based measures, such as NODE MULTIWAY CUT?
 - Also a combinatorial kernel for PLANAR ODD CYCLE TRANSVERSAL would be nice.
- Lift to graphs with fixed excluded minor?

- Get better exponent!
 - For the brick theorem, a grid yields an $\Omega(k^2)$ lower bound.
- What about parameter number of terminals?
- \bullet What about problems with vertex-based measures, such as NODE MULTIWAY CUT?
 - Also a combinatorial kernel for PLANAR ODD CYCLE TRANSVERSAL would be nice.
- Lift to graphs with fixed excluded minor?
 - $\bullet~\mathrm{EDGE}~\mathrm{MULTIWAY}~\mathrm{Cut}$ for e.g. torus is also open.

- Get better exponent!
 - For the brick theorem, a grid yields an $\Omega(k^2)$ lower bound.
- What about parameter number of terminals?
- \bullet What about problems with vertex-based measures, such as NODE MULTIWAY CUT?
 - Also a combinatorial kernel for PLANAR ODD CYCLE TRANSVERSAL would be nice.
- Lift to graphs with fixed excluded minor?
 - $\bullet~\mathrm{EDGE}~\mathrm{MULTIWAY}~\mathrm{Cut}$ for e.g. torus is also open.
- Subexponential algorithm for PLANAR STEINER FOREST?

- Get better exponent!
 - For the brick theorem, a grid yields an $\Omega(k^2)$ lower bound.
- What about parameter number of terminals?
- \bullet What about problems with vertex-based measures, such as NODE MULTIWAY CUT?
 - Also a combinatorial kernel for PLANAR ODD CYCLE TRANSVERSAL would be nice.
- Lift to graphs with fixed excluded minor?
 - $\bullet~\mathrm{EDGE}~\mathrm{MULTIWAY}~\mathrm{Cut}$ for e.g. torus is also open.
- Subexponential algorithm for PLANAR STEINER FOREST?
 - Main obstacle: NP-hard for treewidth 3.

Thank you

Questions?

Tikz faces based on a code by Raoul Kessels, http://www.texample.net/tikz/examples/emoticons/, under Creative Commons Attribution 2.5 license (CC BY 2.5)