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Welfare Maximization

A set M of m = |M|
items

n agents each with
valuations wi (S) for sets
of items S ⊆ M

Goal: assign items to
agents to maximize∑

i wi (Si )

Items arrive online and
must be irrevocably
assigned

Agents Items

w1(·)

w2(·)

w3(·)
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Submodularity

We will assume valuations wi (·) are monotone and submodular

Definition

A valuation function w : 2M → R+ is submodular if
w(T + j)− w(T ) ≤ w(S + j)− w(S) for all j ∈ M whenever S ⊆ T , and
monotone if w(S) ≤ w(T ) whenever S ⊆ T .
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Submodularity

Definition

A valuation function w : 2M → R+ is a coverage valuation if there is a set
system {Aj : j ∈ M} such that w(S) = |⋃j∈S Aj | for all S ⊆ M.

A1

A2

A3

A4

A5

Definition

A function w : 2M → R+ is budget-additive if w(S) = min{B,∑j∈S bj} for
some budget B and item values bj .

Kapralov, Post, Vondrák Greedy is Optimal July 31, 2013 FND Workshop 4 / 19



Previous Work

The greedy algorithm is a 1/2-approximation for monotone submodular
valuations [FNW78, LLN06]

A (1− 1/e)-approximation is known offline [Von08], and this is optimal
[KLMM08]

(1− 1/e)-approximations are known online for several special cases

I Matching [KVV90]
I Budget-additive with small bids (bij � Bi ) [MSVV05]
I Budget-additive with single bids (bij ∈ {0, bi} for some bi ) [AGKM11]
I Conjectured for general budget-additive valuations

In some stochastic settings it is possible to beat 1− 1/e [GM08,
FMMM09, BK10, MOS11, MOZ12]

Is 1− 1/e possible online with general monotone submodular valuations?
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Main Result

No, 1/2 is optimal:

Theorem

For any constant δ > 0, there is no (1/2 + δ)-competitive polynomial-time
algorithm (even randomized, against an oblivious adversary) for the online
welfare maximization problem with coverage valuations unless NP = RP.

Relies on a careful combination of two sources of hardness, both
computational (inapproximability of Max k-cover [Fei98]) and
information-theoretic (the unknown online ordering)
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Other Results

Theorem

For budget-additive valuations, no online (randomized) algorithm can
achieve (in expectation) more than a 0.612-fraction of the optimal value of
the standard LP relaxation.

Does not rule out a (1− 1/e)-approximation for budget-additive
valuations
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Other Results

Theorem

In the stochastic i.i.d. model the greedy algorithm is (1− 1/e)-competitive
for valuations satisfying the property of diminishing returns, and no
polynomial-time algorithm can achieve (1− 1/e + δ) unless NP = RP.

Diminishing returns is a natural generalization of submodularity to
multisets that we define. We believe that it may be useful in other
problems.
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Hardness of Max k-cover

Theorem (Fei98, FT04, FV10)

For any fixed c > 0 and ε > 0, it is NP-hard to distinguish between the
following two cases for a given collection of sets S ⊂ 2U , partitioned into
groups S1, . . . ,Sk :

YES case: There are k disjoint sets, 1 from each group Si , whose
union is the universe U.

NO case: For any choice of ` ≤ ck sets, their union covers at most a
(1− (1− 1/k)` + ε)-fraction (≈ (1− e−`/k + ε)) of the elements of U.

This holds even for set systems such that

every set has the same (constant) size s; and

each group contains the same (constant) number of sets.
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Hardness of offline welfare maximization

Previously proved by [KLMM08] via a different technique

Consider a hard instance of Max k-cover where n is the number of sets
in each group and k is the number of groups

Create n agents and m = kn items

For agent i the item (j1, j2) ∈ [k]× [n] is associated with the set
Aj1,j2+i (mod n), so the value of a set S of items is

wi (S) =
∣∣∣ ⋃

(j1,j2)∈S

Aj1,(j2+i mod n)

∣∣∣ .
YES instance: set Si = {(j , π(j)− i mod n)} where π : [k]→ [n] is the
set from each group covering U, which gives wi (Si ) = |U| for all i

NO instance: (1− e−`/k + ε)|U| is concave, so maximized when each
agent gets k items, which yields wi (Si ) ≤ (1− 1/e + ε)|U|.

Kapralov, Post, Vondrák Greedy is Optimal July 31, 2013 FND Workshop 10 / 19



Hardness of online matching

Lower bound for online matching
[KVV90]:

At each step a random agent
“drops out” and cannot be
matched to any future element

If there are t steps remaining, we
can only guess the identity of
this agent with probability 1/t

Leads to a 1− 1/e lower bound
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Hard instance of online welfare maximization

Idea: expand each vertex into an
entire instance of welfare
maximization with coverage
valuations to impose the additional
difficulty of approximating an
APX-hard problem at each stage

tn agents and tm items

At each stage 1 copy of each
item arrives, and a random copy
of each agent drops out
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Kapralov, Post, Vondrák Greedy is Optimal July 31, 2013 FND Workshop 12 / 19



Hard instance of online welfare maximization

Idea: expand each vertex into an
entire instance of welfare
maximization with coverage
valuations to impose the additional
difficulty of approximating an
APX-hard problem at each stage

tn agents and tm items

At each stage 1 copy of each
item arrives, and a random copy
of each agent drops out
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Difficulty

Problem: items in one stage may be
spread around agents in many
different copies

But we have a bound depending
only on the number of items
allocated to any agent:

I In the NO instance, any choice
of ` ≤ ck sets covers at most
(1− e−`/k + ε)-fraction of U

I Taking multiple copies of the
same item does not increase
valuation
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Proof sketch

Lemma

For all ε′ > 0 there exist ε, c > 0 and a constant lower bound on k such
that the expected value collected in the NO case by the agents deactivated
at the end of stage j is at most (j/t + ε′)n|U| for j ≤ (1− ε′)t.

Sketch.

Because the agents deactivated in each stage are random, we can
bound the expected number of items allocated to agents deactivated at
the end of stage j by m ln t

t−j

An agent receiving ` items gets about (1− e−`/k)|U| value

This is concave and maximized if each agent gets ` = k ln t
t−j items:(

1− e(k ln t
t−j

)/k
)
|U| =

j

t
|U|
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Proof sketch

Sketch of Theorem.

By the previous lemma in the NO instance we achieve at most

(1−ε′)t∑
j=1

(
j

t
+ ε′

)
n|U|+ ε′tn|U| ≤

(
1

2
+ 2ε′

)
tn|U| .

Suppose we have a (1/2 + δ)-approximation. Set ε′ = δ/4, then in the
YES instance it achieves at least(

1

2
+ 4ε′

)
tn|U| .

We can distinguish between these two cases with constant probability,
and this can be improved to one-sided error
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Budget-additive valuations

maximize
∑

i∈N,j∈M bijxij
subject to ∀i ∈ N,

∑
j∈M bijxij ≤ Bi

∀j ∈ M,
∑

i∈N xij ≤ 1
x ≥ 0

Theorem

No online (randomized) algorithm can achieve (in expectation) more than a
0.612-fraction (< 1− 1/e) of the optimal value of this LP.

Similar proof: take a particular instance with an integrality gap and
make it hard to approximate online by blowing it up into an instance
with the same structure as the hard instance of online matching.
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Submodularity on multisets

Recall that f : 2M → R+ is submodular if
f (S + j)− f (S) ≥ w(T + j)− w(T ) for all j ∈ M whenever S ⊆ T

Definition

A function f : Zm
+ → R has the property of diminishing returns, if for any

x ≤ y (coordinate-wise) and any unit basis vector
ei = (0, . . . , 0, 1, 0, . . . , 0), i ∈ [m],

f (x + ei )− f (x) ≥ f (y + ei )− f (y) .

Note this implies f is submodular if its domain is {0, 1}m and concave
if its domain is Z+
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Stochastic welfare maximization

Theorem

Suppose the items are i.i.d. samples from some (possibly unknown)
distribution over a set M. Then the greedy algorithm achieves a
(1− 1/e)-approximation, and there is no (1− 1/e + δ)-approximation
unless NP = RP.

The upper bound is a straightforward extension of the analysis of
[DJSW11] for the budget-additive case

I If the current allocation is (T1, . . . ,Tn), then the expected gain of the
next item is at least 1

m (LP −∑i wi (Ti ))

For the lower bound, take the above (1− 1/e)-hard instance of offline
welfare maximization, make t = poly(m) copies of each agent, and
draw tm random samples from the set of items
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Open Questions

Is 1− 1/e possible online for budget-additive functions?

I If you think yes:

F Configuration LP
F Online matching without monotonicity

I If you think no:

F Probably requires stronger hardness result for offline version

Is there an offline (1− 1/e)-approximation for functions with
diminishing returns?
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