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Problem Definition

Non-Uniform Graph Partitioning

Input:
G = (V,E), w : E → R+.

Capacities n1, n2, . . . , nk s.t.
∑k
j=1 nj > n.

Output:
A partition S1, . . . , Sk of V where each |Sj | 6 nj minimizing:

1

2

k∑
j=1

δ(Sj) .

Note:
Number of parts k might depend on n.
Capacities might be of different magnitudes.
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Motivation

Theoretical:
Captures well studied problems:
Min-Bisection, Min b-Balanced-Cut, Min k-Partitioning.

Practical:
Cloud and Parallel Computing: parallelism.

Hardware design: VLSI layout, circuit testing.

Data mining: clustering.

Social network analysis: community discovery.

Vision: pattern recognition.

Scientific Computing: linear systems.
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Related Work

Heuristics:
[Barnes-82], [Barnes-Vanneli-Walker-88], [Sanchis-89], [Hadley-Mark-Vanneli-92],
[Rendl-Wolkowicz-95] ...
Mainly use spectral theory, local search and quadratic programming.

Worst Case Guarantee
No meaningful known bounds.
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Related Work (Cont.)

Balanced Graph Partitioning: (nj ≡ n/k)

Min-Bisection: (k = 2)

True Approx.
{

O(log3/2 n) [Feige-Krauthgamer-02]
O (logn) [Räcke-08]

Bicriteria Approx.
{

O (logn) [Leighton-Rao-99]
O

(√
logn

)
[Arora-Rao-Vazirani-08]

Related to Sparsest-Cut and Min b-Balanced-Cut.

Min k-Partitioning: (general k)

NP-Hardness no true approximation [Andreev-Räcke-06]

Bicriteria Approx.

{
(O (logn) , 2) [Even-Naor-Rao-Schieber-99](
O

(√
logn log k

)
, 2

)
[Krauthgamer-Naor-S-09]{

(O(ε−2 log3/2 n), 1 + ε) [Andreev-Räcke-06]
(O(logn), 1 + ε) [Feldmann-Forschini-12]
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Related Work (Cont.)

Capacitated Metric Labeling:
The same as Non-Uniform Graph Partitioning with additional assignment costs.

(O (logn) , O((log k))) nj ≡ n/k [Naor-S-05]
(O (logn) , 1) constant k [Andrews-Hajiaghayi-Karloff-Moitra-11]

NP * ZPTIME
(
npolylog(n)

) ⇒
No finite approximation that violates capacities by O(log1/2−ε k), ∀ε > 0.
[Andrews-Hajiaghayi-Karloff-Moitra-11]
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Our Result

Theorem [Krauthgamer-Naor-S-Talwar-13]

There is a bicriteria approximation algorithm achieving a guarantee of:

(O (log n) , O(1))

for Non-Uniform Graph Partitioning.
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Known Techniques - Issues

1 Recursive Partitioning:
How many vertices to cut in each step?

2 Spreading Metrics:
Only spreading with average capacity - insufficient.

3 Räcke’s Tree Decomposition:
Dynamic programming does not seem to yield poly running time.

Our Approach

Configuration LP.
Randomized rounding + concentration via stopping times.
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Configuration LP

Fj , {S : S ⊆ V, |S| 6 nj}

(P) min
1

2

k∑
j=1

∑
S∈Fj

δ(S) · xS,j

s.t.

k∑
j=1

∑
S∈Fj :u∈S

xS,j > 1 ∀u ∈ V

∑
S∈Fj

xS,j 6 1 ∀j = 1, . . . , k

xS,j > 0 ∀j = 1, . . . , k,∀S ∈ Fj
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Configuration LP (Cont.)

Theorem

(P) can be efficiently solved up to a loss of O(log n) in the objective.

Proof Outline:
Dual separation oracle of (P) relates to Min ρ-Unbalanced-Cut.
Techniques from [Räcke-08] give an O(log n) approximation.

Difficulty: Applying the above in algorithms for solving mixed
packing/covering LPs yields O(log n) loss in cost and capacity.

Solution: Scaling constraints differently. �
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Randomized Rounding

Assumption:

n1 > n2 > . . . > nk and each nj is a power of 2.

Notation:

𝑛1 𝑛2 𝑛3 𝑛4 𝑛5 𝑛6 𝑛7 𝑛8= = = = => > >

𝑊1 𝑊2 𝑊3

Wi ,
{
j : nj = 2−(i−1)n1

}
i = 1, 2, . . . , `

ki , |Wi|
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Randomized Rounding (Cont.)

Idea: Covering vertices by random cuts.

Rounding - General Approach
1 Hi ← ∅ for every i = 1, . . . , `.
2 While V 6= ∅:

Choose j ∼ Unif [1, . . . , k].
Choose S ∈ Fj w.p. xS,j .
Let r be the mega-bucket s.t. j ∈Wr.
Hr ← Hr ∪ {S ∩ V }.
V ← V \ S.
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Randomized Rounding - Example

𝐻3 = 𝜙

𝐻2 = 𝜙

𝐻1 = 𝜙

𝐻ℓ = 𝜙
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𝑆1, 𝑆3\ 𝑆1 ∪ 𝑆2𝐻3 =
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Randomized Rounding (Cont.)

Question: What to do when all vertices are covered?

Merge: While |Hi| > ki merge smallest two cuts in Hi.

Theorem - Cost Analysis

E [cost(ALG)] 6 2 · cost (P) .

Proof Outline:

Pr [u and v covered in different iterations] 6
k∑
j=1

∑
S∈Fj :(u,v)∈δ(S)

xS,j .

�
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Capacity Analysis - Attempt I

Observation - Interchanging Cuts Within Wi

It suffices to upper bound:

Ni , number of vertices covered by Hi at the end .

Note:
E [Ni] 6 ki · 2−(i−1)n1.
` = O(log k) by merging every Wi with ki 6 2

1/2(i−1) into W1.
(` is number of mega-buckets)

Conclusion: Markov + union bound ⇒ O(log k) capacity violation.
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Capacity Analysis - Attempt II

Martingale

Mi,t , E [Ni | (S1, j1), . . . , (St, jt)]

{Mi,t}∞t=0 is a martingale with respect to {(St, jt)}∞t=1.

Note:
Mi,0 = E [Ni].
|Mi,t −Mi,t−1| 6 ki · 2−(i−1)n1. (Lipschitz)
Number of iterations to cover V : T = Θ(k log n).

Conclusion: Azuma + union bound ⇒ O(
√
k log n log log k)

capacity violation.
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Capacity Analysis - Attempt III

Worst Conditional Variance:
Let (T1, r1), . . . , (Tt−1, rt−1) be the realization that maximizes:

Var
[
Mi,t −Mi,t−1|(S1, j1) = (T1, r1), . . . , (St−1, jt−1) = (Tt−1, rt−1)

]
.

vi,t is the worst variance value.

Note:
For every t a different conditioning might be chosen.
Martingale concentration via bounded variances (Bernstein) is
not sufficient:∑
t>1 vi,t might be too big!
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Capacity Analysis - Attempt III (Cont.)

Pr

∑
t>1

Var
[
Mi,t −Mi,t−1|(S1, j1), . . . , (St−1, jt−1)

]
is small

 > ?

Theorem - Conditional Variances Sum

Pr

[∑
t>1

Var
[
Mi,t −Mi,t−1 | (S1, j1), . . . , (St−1, jt−1)

]
> 2α · ki · 2−(i−1)n21

]
6 1/α .

Intuition: In later iterations the changes are smaller in expectation. �
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Capacity Analysis - Attempt III (Cont.)

Martingale

{Mi,t}∞t=0

Good Event

Variances are small.

↘ ↙

???

Freedman’s Inequality

(stopping-time based concentration)
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Capacity Analysis - Attempt III (Cont.)

Immediate Conclusion:
Freedman’s inequality yields O(log log k) capacity violation.

Question

How do we get O(1) capacity violation?
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Instance Transformation (Cont.)
What is an instance transformation?

Total capacity of non-empty Wi grows by a constant c.
Inverse transformation moves cuts from Wi to some Wj , j 6 i.
Inverse transformation incurs a c capacity violation.

What does an instance transformation provide?

Large total capacity of Wi

⇓
Better concentration as the total capacity increases

⇓
Sum of conditional variances might be higher

⇓
Probability that sum of conditional variances is small increases

Conclusion: O(1) capacity violation.
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Thank You!

Questions?
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