From Submodular to k-Submodular Maximization

Justin Ward

Joint Work with Stanislav Živný

July 31, 2013

Justin Ward **[From Submodular to k-Submodular Maximization](#page-24-0)**

Let U be a set of *n* elements.

Let $f: 2^U \to \mathbb{R}_{\geq 0}$ assign a value to each subset of U.

We say that f is submodular if

$$
f(A) + f(B) \ge f(A \cap B) + f(A \cup B)
$$

Submodularity is also characterized by diminishing returns:

$$
f(A+x)-f(A)\geq f(B+x)-f(B)
$$

for all $A \subseteq B$ and $x \notin B$.

We consider a generalization to biset functions $f : 3^U \to \mathbb{R}_{\geq 0}$.

We consider a generalization to biset functions $f : 3^U \to \mathbb{R}_{>0}$.

A biset function f is bisubmodular [Qi, 1988] if

 $f(A_1,A_2) + f(B_1,B_2)$ $f(A_1 \cap B_1, A_2 \cap B_2) + f(A_1 \cup B_1 \setminus (A_2 \cup B_2), A_2 \cup B_2 \setminus (A_1 \cup B_1))$ We consider a generalization to biset functions $f : 3^U \to \mathbb{R}_{>0}$.

A biset function f is bisubmodular [Qi, 1988] if

 $f(A_1,A_2) + f(B_1,B_2)$ $f(A_1 \cap B_1, A_2 \cap B_2) + f(A_1 \cup B_1 \setminus (A_2 \cup B_2), A_2 \cup B_2 \setminus (A_1 \cup B_1))$ We consider a generalization to biset functions $f: 3^U \to \mathbb{R}_{\geq 0}$.

A biset function f is bisubmodular [Qi, 1988] if

$$
f(A_1,A_2)+f(B_1,B_2) \ge f(A_1 \cap B_1, A_2 \cap B_2)+f(A_1 \cup B_1 \setminus (A_2 \cup B_2), A_2 \cup B_2 \setminus (A_1 \cup B_1))
$$

Alternatively f is bisubmodular if and only if $[Ando, Fujishige,]$ Naitoh 1996]:

• The function $g(S) = f(S \cap A_1, S \cap A_2)$ is submodular for any partition (A_1, A_2) of U.

We consider a generalization to biset functions $f: 3^U \to \mathbb{R}_{\geq 0}$.

A biset function f is bisubmodular [Qi, 1988] if

$$
f(A_1,A_2)+f(B_1,B_2) \ge f(A_1 \cap B_1, A_2 \cap B_2)+f(A_1 \cup B_1 \setminus (A_2 \cup B_2), A_2 \cup B_2 \setminus (A_1 \cup B_1))
$$

Alternatively f is bisubmodular if and only if $[Ando, Fujishige, j]$ Naitoh 1996]:

- The function $g(S) = f(S \cap A_1, S \cap A_2)$ is submodular for any partition (A_1, A_2) of U.
- $f(A_1 + e, A_2) + f(A_1, A_2 + e) > 2f(A_1, A_2)$

We consider a generalization to biset functions $f: 3^U \to \mathbb{R}_{\geq 0}$.

A biset function f is bisubmodular [Qi, 1988] if

$$
f(A_1,A_2)+f(B_1,B_2) \ge f(A_1 \cap B_1, A_2 \cap B_2)+f(A_1 \cup B_1 \setminus (A_2 \cup B_2), A_2 \cup B_2 \setminus (A_1 \cup B_1))
$$

Alternatively f is bisubmodular if and only if $[Ando, Fujishige, j]$ Naitoh 1996]:

- The function $g(S) = f(S \cap A_1, S \cap A_2)$ is submodular for any partition (A_1, A_2) of U.
- \bullet $[f (A_1 + e, A_2) f (A_1, A_2)] + [f (A_1, A_2 + e) f (A_1, A_2)] > 0$

k-Submodular Functions

We can identify a solution (S_1, \ldots, S_k) with a vector **v** in $\{0,1,\ldots,k\}^U$, where $v_e=i$ iff $e\in S_i$, and $v_e=0$ iff v_e in neither set. Then, let:

$$
\text{min}_0(\mathsf{s},t)\ =\begin{cases} 0,&\text{$\mathsf{s}\neq 0$, $t\neq 0$, $\mathsf{s}\neq t$}\\ \textsf{min}(\mathsf{s},t),&\text{otherwise} \end{cases}
$$

$$
\text{max}_0(\mathsf{s},t)\ = \begin{cases} 0, & \mathsf{s}\neq 0, \mathsf{t}\neq 0, \mathsf{s}\neq t \\ \textsf{max}(\mathsf{s},t), & \text{otherwise} \end{cases},
$$

k-submodularity, is then

$$
f(\mathbf{a}) + f(\mathbf{b}) \ge f(\min_0(\mathbf{a}, \mathbf{b})) + f(\max_0(\mathbf{a}, \mathbf{b}))
$$

Justin Ward **[From Submodular to k-Submodular Maximization](#page-0-0)**

Justin Ward **[From Submodular to k-Submodular Maximization](#page-0-0)**

Related Work

Bisubmodular functions have many mathematical applications:

- Arose in the context of delta-matroids and pseudomatroids [Bouchet 87, Chandrasekaran and Kabadi 1988]
- Have recently been studied in the area of valued CSPs [Huber, Krokhin, and Powell 2013].
- (Strongly) polynomial algorithms for minimization [Fujishige, Iwata 2006; McCormick, Fujishige 2010].

Related Work

Bisubmodular functions have many mathematical applications:

- Arose in the context of delta-matroids and pseudomatroids [Bouchet 87, Chandrasekaran and Kabadi 1988]
- Have recently been studied in the area of valued CSPs [Huber, Krokhin, and Powell 2013].
- (Strongly) polynomial algorithms for minimization [Fujishige, Iwata 2006; McCormick, Fujishige 2010].

Recently, there has been some interest in maximization [Singh, Guillory, and Bilmes 2012].

- Give conditions under which bisubmodular maximization can be reduced to submodular.
- Use a single submodular function with a matroid constraint to enforce disjointness.
- Give examples of bisubmodular functions that require the related submodular function to be negative.

Consider the following randomized algorithm (inspired by [Buchbinder, Feldman, Naor, Schwartz, 2012]):

• Set
$$
S = (S_1, \ldots, S_k) = (\emptyset, \ldots, \emptyset)
$$

• For each $e \in U$:

• Set
$$
x_i = \max_{k} (0, f(S_1, ..., S_i + e, ..., S_k) - f(S)).
$$

• Set
$$
\beta = \sum_{i=1}^{k} x_i
$$
.

• Add e to
$$
S_i
$$
 with probability $\frac{x_i}{\beta}$

Theorem

X

Randomized Greedy is a
$$
\frac{1}{\left(1+\sqrt{\frac{k}{2}}\right)}
$$
-approximation algorithm for
k-submodular maximization.

Let $S^{(j)} = (S_1^{(j)})$ $S_k^{(j)}, \ldots, S_k^{(j)}$ $\binom{N}{k}$) be the current solution after j elements have been considered.

Suppose we move these *elements in the optimal solution so they* agree $S^{(j)}$ and call the result $O^{(j)}.$

Then, $O^{(0)}$ is the optimal solution, and $O^{(n)}=S^{(n)}$ is the greedy solution.

It suffices to bound the expected decrease in $O^{(j)}$ at each phase.

Proof Sketch

Consider the $(j + 1)$ th element e, and suppose that $e \in O_p$. Remove *e* from $O^{(j)}$ and call the result A.

• As in the algorithm,

$$
x_i = \max(0, f(S_1, \ldots, S_i + e, \ldots, S_k) - f(S))
$$

• Also, define

$$
a_i = f(A_1, \ldots, A_i + e, \ldots, A_k) - f(A)
$$

Then, from bisubmodularity, we have:

\n- $$
a_i \leq x_i
$$
 for all $1 \leq i \leq k$.
\n- $\sum_{i=1}^k a_i \geq 0$.
\n

Proof Sketch

$$
\mathbb{E}[f(O^{(j)}) - f(O^{(j+1)})] = \frac{1}{\beta} \sum_{i=1}^{k} x_i (a_p - a_i)
$$

$$
\mathbb{E}[f(S^{(j+1)}) - f(S^{(j)})] = \frac{1}{\beta} \sum_{i=1}^{k} x_i^2
$$

We show that $\sum_{i=1}^{k} x_i (a_i - a_p) \le \sqrt{\frac{k}{2}} \sum_{i=1}^{k} x_i^2$

Main idea: consider extreme point solutions of the LP

$$
\begin{array}{ll}\text{maximize} & \sum_{i=1}^{k} x_i (a_p - a_i) \\ \text{subject to} & a_i \le x_i & 1 \le i \le k \\ & \sum_{i=1}^{k} a_i \ge 0 \end{array}
$$

Summing up the expected losses over all phases

$$
f(O^{(0)}) - f(O^{(n)}) \le \sqrt{\frac{k}{2}} \left[f(S^{(n)}) - f(S^{(0)}) \right]
$$

$$
f(O) - f(S) \le \sqrt{\frac{k}{2}} f(S)
$$

Let $g: 2^U \to \mathbb{R}_{\geq 0}$ be a submodular function. [Fujishige, Iwata, 2005] consider the following embedding:

$$
f(A,B)=g(A)+g(U\setminus B)
$$

Note that $f(A, U \setminus A) = 2g(A)$.

Recall: $[f(A + x, B) - f(A, B)] + [f(A, B + x) - f(A, B)] > 0.$

So, we can extend any solution to a partition without any loss in f . Thus, f preserves approximation, and so our randomized greedy 1/2-approximation is tight.

What does the randomized greedy algorithm look like on this embedding?

$$
f(A, B) = g(A) + g(U \setminus B)
$$

- We maintain 2 solutions $X = A$ and $Y = U \setminus B$.
- Initially, we $X = \emptyset$ and $Y = U$.
- At each step we either add e to X or remove e from Y with probability proportional to the increase in g .

Exactly the algorithm of [Buchbinder, Feldman, Naor, Schwarz, 2012].

Open Questions

- Are our results tight for $k > 3$?
- Can we attain better approximations for specific cases (like the monotone case).
- What about constrained optimization (budget, knapsack, matroid, etc.)?
- What about other variants, such as skew bisubmodularity?
- Can we find any embedding of submodular or bisubmodular into k-submodular for $k > 3$?

Open Questions

- Are our results tight for $k > 3$?
- Can we attain better approximations for specific cases (like the monotone case).
- What about constrained optimization (budget, knapsack, matroid, etc.)?
- What about other variants, such as skew bisubmodularity?
- Can we find any embedding of submodular or bisubmodular into k-submodular for $k > 3$?

Thank You