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Submodular Functions

Let U be a set of n elements.

Let f : 2U → R≥0 assign a value to each subset of U.

We say that f is submodular if

f (A) + f (B) ≥ f (A ∩ B) + f (A ∪ B)

Submodularity is also characterized by diminishing returns:

f (A + x)− f (A) ≥ f (B + x)− f (B)

for all A ⊆ B and x 6∈ B.
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Bisubmodular Functions

We consider a generalization to biset functions f : 3U → R≥0.

A biset function f is bisubmodular [Qi, 1988] if

f (A1,A2) + f (B1,B2) ≥
f (A1∩B1, A2∩B2) + f (A1∪B1\(A2∪B2), A2∪B2\(A1∪B1))

Alternatively f is bisubmodular if and only if [Ando, Fujishige,
Naitoh 1996]:

The function g(S) = f (S∩A1,S∩A2) is submodular for any
partition (A1,A2) of U.
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Bisubmodular Functions

We consider a generalization to biset functions f : 3U → R≥0.

A biset function f is bisubmodular [Qi, 1988] if

f (A1,A2) + f (B1,B2) ≥
f (A1∩B1, A2∩B2) + f (A1∪B1\(A2∪B2), A2∪B2\(A1∪B1))

Alternatively f is bisubmodular if and only if [Ando, Fujishige,
Naitoh 1996]:

The function g(S) = f (S∩A1, S∩A2) is submodular for any
partition (A1,A2) of U.

f (A1 + e,A2) + f (A1,A2 + e) ≥ 2f (A1,A2)
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Bisubmodular Functions

We consider a generalization to biset functions f : 3U → R≥0.

A biset function f is bisubmodular [Qi, 1988] if

f (A1,A2) + f (B1,B2) ≥
f (A1∩B1, A2∩B2) + f (A1∪B1\(A2∪B2), A2∪B2\(A1∪B1))

Alternatively f is bisubmodular if and only if [Ando, Fujishige,
Naitoh 1996]:

The function g(S) = f (S∩A1, S∩A2) is submodular for any
partition (A1,A2) of U.

[f (A1 + e,A2)− f (A1,A2)] + [f (A1,A2 + e)− f (A1,A2)] ≥ 0
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k-Submodular Functions

We can identify a solution (S1, . . . ,Sk) with a vector v in
{0, 1, . . . , k}U , where ve = i iff e ∈ Si , and ve = 0 iff ve in neither
set. Then, let:

min0(s, t) =

{
0, s 6= 0, t 6= 0, s 6= t

min(s, t), otherwise

max0(s, t) =

{
0, s 6= 0, t 6= 0, s 6= t

max(s, t), otherwise
,

k-submodularity, is then

f (a) + f (b) ≥ f (min0(a,b)) + f (max0(a,b))

Justin Ward From Submodular to k-Submodular Maximization



Application: Wireless Network Coverage
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Related Work

Bisubmodular functions have many mathematical applications:

Arose in the context of delta-matroids and pseudomatroids
[Bouchet 87, Chandrasekaran and Kabadi 1988]

Have recently been studied in the area of valued CSPs [Huber,
Krokhin, and Powell 2013].

(Strongly) polynomial algorithms for minimization [Fujishige,
Iwata 2006; McCormick, Fujishige 2010].

Recently, there has been some interest in maximization [Singh,
Guillory, and Bilmes 2012].

Give conditions under which bisubmodular maximization can
be reduced to submodular.

Use a single submodular function with a matroid constraint to
enforce disjointness.

Give examples of bisubmodular functions that require the
related submodular function to be negative.
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Randomized Greedy

Consider the following randomized algorithm (inspired by
[Buchbinder, Feldman, Naor, Schwartz, 2012]):

Set S = (S1, . . . ,Sk) = (∅, . . . , ∅)
For each e ∈ U:

Set xi = max(0, f (S1, . . . , Si + e, . . . , Sk)− f (S) ).

Set β =
∑k

i=1 xi .
Add e to Si with probability xi

β

Theorem

Randomized Greedy is a
1(

1 +
√

k
2

) -approximation algorithm for

k-submodular maximization.
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Proof Sketch

Let S (j) = (S
(j)
1 , . . . ,S

(j)
k ) be the current solution after j elements

have been considered.

Suppose we move these j elements in the optimal solution so they
agree S (j) and call the result O(j).

Then, O(0) is the optimal solution, and O(n) = S (n) is the greedy
solution.

It suffices to bound the expected decrease in O(j) at each phase.
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Proof Sketch

Consider the (j + 1)th element e, and suppose that e ∈ Op.

Remove e from O(j) and call the result A.

As in the algorithm,

xi = max(0, f (S1, . . . ,Si + e, . . . ,Sk)− f (S))

Also, define

ai = f (A1, . . . ,Ai + e, . . . ,Ak)− f (A)

Then, from bisubmodularity, we have:

ai ≤ xi for all 1 ≤ i ≤ k .∑k
i=1 ai ≥ 0.
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Proof Sketch

E[f (O(j))− f (O(j+1))] =
1

β

k∑
i=1

xi (ap − ai )

E[f (S (j+1))− f (S (j))] =
1

β

k∑
i=1

x2i

We show that
∑k

i=1 xi (ai − ap) ≤
√

k
2

∑k
i=1 x

2
i

Main idea: consider extreme point solutions of the LP

maximize
k∑

i=1

xi (ap − ai )

subject to ai ≤ xi 1 ≤ i ≤ k

k∑
i=1

ai ≥ 0
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Proof Sketch

Summing up the expected losses over all phases

f (O(0))− f (O(n)) ≤
√

k

2

[
f (S (n))− f (S (0))

]
f (O)− f (S) ≤

√
k

2
f (S)
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Embedding Submodular Functions

Let g : 2U → R≥0 be a submodular function. [Fujishige, Iwata,
2005] consider the following embedding:

f (A,B) = g(A) + g(U \ B)

Note that f (A,U \ A) = 2g(A).

Recall: [f (A + x ,B)− f (A,B)] + [f (A,B + x)− f (A,B)] ≥ 0.

So, we can extend any solution to a partition without any loss in f .
Thus, f preserves approximation, and so our randomized greedy
1/2-approximation is tight.
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Embedding Submodular Functions

What does the randomized greedy algorithm look like on this
embedding?

f (A,B) = g(A) + g(U \ B)

We maintain 2 solutions X = A and Y = U \ B.

Initially, we X = ∅ and Y = U.

At each step we either add e to X or remove e from Y with
probability proportional to the increase in g .

Exactly the algorithm of [Buchbinder, Feldman, Naor, Schwarz,
2012].
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Summary

k = 1 2 ≥ 3

Deterministic Greedy 1/3 1/3 1/(k + 1)

Random Greedy 1/2 1/2 1/(1 +
√

k/2)

Naive Random 1/4 1/4 1/k
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Open Questions

Are our results tight for k ≥ 3?

Can we attain better approximations for specific cases (like
the monotone case).

What about constrained optimization (budget, knapsack,
matroid, etc.)?

What about other variants, such as skew bisubmodularity?

Can we find any embedding of submodular or bisubmodular
into k-submodular for k ≥ 3?

Thank You
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