No-Wait Flowshop Scheduling is as Hard as Asymmetric Traveling Salesman Problem

Marcin Mucha (University of Warsaw) Maxim Sviridenko (University of Warwick, DIMAP)

FND 2013, Fields Institute, Toronto 1 August 2013

Marcin Mucha [No-Wait Flowshop is as Hard as ATSP](#page-65-0)

• We are given n jobs J_1, \ldots, J_n on a sequence of m machines M_1, \ldots, M_m .

- We are given n jobs J_1, \ldots, J_n on a sequence of m machines M_1, \ldots, M_m .
- Each job is a sequence of operations O_{i1}, \ldots, O_{im} with processing times t_{i1}, \ldots, t_{im} .

- We are given n jobs J_1, \ldots, J_n on a sequence of m machines M_1, \ldots, M_m .
- Each job is a sequence of operations O_{i1}, \ldots, O_{im} with processing times t_{i1}, \ldots, t_{im} .
- Jobs can not be paused once started (no-wait scheduling).

- We are given n jobs J_1, \ldots, J_n on a sequence of m machines M_1, \ldots, M_m .
- Each job is a sequence of operations O_{i1}, \ldots, O_{im} with processing times t_{i1}, \ldots, t_{im} .
- Jobs can not be paused once started (no-wait scheduling).
- \bullet Every machine runs the jobs in the same order $-$ no overtaking (permutation scheduling).

- We are given n jobs J_1, \ldots, J_n on a sequence of m machines M_1, \ldots, M_m .
- Each job is a sequence of operations O_{i1}, \ldots, O_{im} with processing times t_{i1}, \ldots, t_{im} .
- Jobs can not be paused once started (no-wait scheduling).
- \bullet Every machine runs the jobs in the same order $-$ no overtaking (permutation scheduling).
- Find job permutation which minimizes makespan.

- We are given n jobs J_1, \ldots, J_n on a sequence of m machines M_1, \ldots, M_m .
- Each job is a sequence of operations O_{i1}, \ldots, O_{im} with processing times t_{i1}, \ldots, t_{im} .
- Jobs can not be paused once started (no-wait scheduling).
- \bullet Every machine runs the jobs in the same order $-$ no overtaking (permutation scheduling).
- Find job permutation which minimizes makespan.

Think: production line for steel manufacturing, or production units with no intermediate storage capacity.

Example

Example - OK

m

Example - OK

Example - Not OK!

Not OK!

Example due to Spieksma and Woeginger (2005).

Gilmore, Gomory (1964) $O(n \log n)$ algorithm for $m = 2$.

Gilmore, Gomory (1964) $O(n \log n)$ algorithm for $m = 2$. Papadimitriou, Kanellakis (1980) Strongly NP-hard for $m \geq 4$. Gilmore, Gomory (1964) $O(n \log n)$ algorithm for $m = 2$. Papadimitriou, Kanellakis (1980) Strongly NP-hard for $m > 4$. Röck, Schmidt (1983) $\lceil \frac{m}{2} \rceil$ -approximation. \star

Gilmore, Gomory (1964) $O(n \log n)$ algorithm for $m = 2$. Papadimitriou, Kanellakis (1980) Strongly NP-hard for $m > 4$. Röck, Schmidt (1983) $\lceil \frac{m}{2} \rceil$ -approximation. \star Röck (1984) Strongly NP-hard for $m > 3$.

Gilmore, Gomory (1964) $O(n \log n)$ algorithm for $m = 2$. Papadimitriou, Kanellakis (1980) Strongly NP-hard for $m > 4$. Röck, Schmidt (1983) $\lceil \frac{m}{2} \rceil$ -approximation. \star Röck (1984) Strongly NP-hard for $m > 3$ \star Sviridenko (2003) PTAS for $m = O(1)$.

Gilmore, Gomory (1964) $O(n \log n)$ algorithm for $m = 2$. Papadimitriou, Kanellakis (1980) Strongly NP-hard for $m > 4$ \star Röck, Schmidt (1983) $\lceil \frac{m}{2} \rceil$ -approximation. \star Röck (1984) Strongly NP-hard for $m > 3$ \star Sviridenko (2003) PTAS for $m = O(1)$.

No-Wait Flowshop reduces to ATSP, so:

Gilmore, Gomory (1964) $O(n \log n)$ algorithm for $m = 2$. Papadimitriou, Kanellakis (1980) Strongly NP-hard for $m > 4$ \star Röck, Schmidt (1983) $\lceil \frac{m}{2} \rceil$ -approximation. \star Röck (1984) Strongly NP-hard for $m > 3$ \star Sviridenko (2003) PTAS for $m = O(1)$.

No-Wait Flowshop reduces to ATSP, so: Frieze, Galbiati, Maffioli (1982) $O(\log n)$ -approximation. \star Asadpour et al. (2010) O(log n/log log n)-approximation.

Gilmore, Gomory (1964) $O(n \log n)$ algorithm for $m = 2$. Papadimitriou, Kanellakis (1980) Strongly NP-hard for $m > 4$ \star Röck, Schmidt (1983) $\lceil \frac{m}{2} \rceil$ -approximation. \star Röck (1984) Strongly NP-hard for $m > 3$ \star Sviridenko (2003) PTAS for $m = O(1)$.

No-Wait Flowshop reduces to ATSP, so: Frieze, Galbiati, Maffioli (1982) $O(\log n)$ -approximation. \star Asadpour et al. (2010) O(log n/log log n)-approximation.

Is No-Wait Flowshop an easy case of ATSP?

Theorem (Main Result 1)

No-Wait Flowshop is as hard as ATSP, in particular APX-hard.

Theorem (Main Result 1)

No-Wait Flowshop is as hard as ATSP, in particular APX-hard.

Theorem (Main Result 2)

There is an O(log m)-approximation algorithm for No-Wait Flowshop.

2 [Encoding semi-metrics in No-Wait Flowshop](#page-32-0)

[Encoding semi-metrics in No-Wait Flowshop](#page-32-0)

3 O(log m)[-approximation](#page-48-0)

Job distance

 $\delta(\blacksquare, \blacksquare)$

Job distance

No-Wait Flowshop as ATSP

2 [Encoding semi-metrics in No-Wait Flowshop](#page-32-0)

Four machines

Any n-point semi-metric (V, d) embeds isometrically into the semi-metric (\mathbb{R}^n, δ) with

$$
\delta(x, y) = \max(x - y).
$$

Any n-point semi-metric (V, d) embeds isometrically into the semi-metric (\mathbb{R}^n, δ) with

$$
\delta(x, y) = \max(x - y).
$$

Proof.

$$
F(v)=(d(v,v_1),\ldots,d(v,v_n)).
$$

Any n-point semi-metric (V, d) embeds isometrically into the semi-metric (\mathbb{R}^n, δ) with

$$
\delta(x, y) = \max(x - y).
$$

Proof.

$$
F(v)=(d(v,v_1),\ldots,d(v,v_n)).
$$

Message: Wo-Wait Flowshop distance functions are as hard as general semi-metrics.

Any n-point semi-metric (V, d) embeds isometrically into the semi-metric (\mathbb{R}^n, δ) with

$$
\delta(x, y) = \max(x - y).
$$

Proof.

$$
F(v)=(d(v,v_1),\ldots,d(v,v_n)).
$$

Message: Wo-Wait Flowshop distance functions are as hard as general semi-metrics.

Theorem (Main Result 1)

No-Wait Flowshop is as hard as ATSP, in particular APX-hard.

Our functions are monotone.

- Our functions are monotone.
- Our functions are ε -Lipschitz (ε max. operation size)
- Our functions are monotone.
- Our functions are ε -Lipschitz (ε max. operation size)
- Our functions are monotone.
- Our functions are ε -Lipschitz (ε max. operation size), so...
- The number of machines depends on max. ATSP distance W .
- Our functions are monotone.
- Our functions are ε -Lipschitz (ε max. operation size), so...
- The number of machines depends on max. ATSP distance W .
- The total length of each job is $\Omega(nW) >> OPT$.

[Encoding semi-metrics in No-Wait Flowshop](#page-32-0)

- Always choose the shortest representative.
- Stop after log m rounds and add an arbitrary Hamiltonian cycle.
- Always choose the shortest representative.
- Stop after log m rounds and add an arbitrary Hamiltonian cycle.

Theorem

This algorithm is a O(log m)-approximation.

Let r_1, \ldots, r_k be the representative vertices after log m rounds and $L(r_1), \ldots, L(r_k)$ their lengths.

Let r_1, \ldots, r_k be the representative vertices after log m rounds and $L(r_1), \ldots, L(r_k)$ their lengths.

The total length of jobs in r_i 's component is at least $mL(r_i)$, so on *m* machines they require at least $L(r_i)$ time to schedule.

Let r_1, \ldots, r_k be the representative vertices after log m rounds and $L(r_1), \ldots, L(r_k)$ their lengths.

The total length of jobs in r_i 's component is at least $mL(r_i)$, so on m machines they require at least $L(r_i)$ time to schedule.

This gives $OPT \geq \sum_i L(r_i)$.

Let r_1, \ldots, r_k be the representative vertices after log m rounds and $L(r_1), \ldots, L(r_k)$ their lengths.

The total length of jobs in r_i 's component is at least $mL(r_i)$, so on m machines they require at least $L(r_i)$ time to schedule.

This gives $OPT \geq \sum_i L(r_i)$.

The Hamiltonian cycle we add has at most this length.

Gilmore, Gomory (1964) $O(n \log n)$ algorithm for $m = 2$. Papadimitriou, Kanellakis (1980) Strongly NP-hard for $m \geq 4$. Röck, Schmidt (1983) $\lceil \frac{m}{2} \rceil$ -approximation. \star Röck (1984) Strongly NP-hard for $m \geq 3$. Sviridenko (2003) PTAS for $m = O(1)$. Asadpour et al. (2010) $O(\log n / \log \log n)$ approximation via ATSP.

New result ATSP-hardness (for $m = \text{polyn}(n)$). New result $O(\log m)$ -approximation.

Problem (1)

Bridge the gap betweeen a PTAS and O(log m). $O(1)$ -approximation for some range of m?

Problem (1)

Bridge the gap betweeen a PTAS and O(log m). O(1)-approximation for some range of m?

Problem (2)

Can you get $O(\log m / \log \log m)$ -approximation?

Problem (1)

Bridge the gap betweeen a PTAS and O(log m). $O(1)$ -approximation for some range of m?

Problem (2)

Can you get $O(\log m / \log \log m)$ -approximation?

Problem (3)

Can you get $O(\log n/\log \log n)$ -approximation for ATSP à la Frieze, Galbiati, Maffioli?

Thanks!