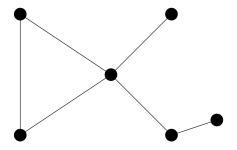
Online Independent Set Beyond the Worst-Case

Oliver Göbel

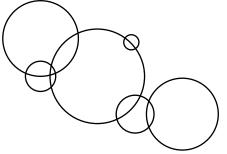
Computer Science i1 RWTH Aachen University

July 29, 2013

Joint work with Martin Hoefer, Thomas Kesselheim, Thomas Schleiden, Berthold Vöcking



- Graph G = (V, E) appears online
- \blacktriangleright bounded inductive independence number ρ
- Common Example: Disk Graphs (Further: chordal, interval, line, planar graphs)



- Graph G = (V, E) appears online
- \blacktriangleright bounded inductive independence number ρ
- Common Example: Disk Graphs (Further: chordal, interval, line, planar graphs)

- Worst-case competitive-ratio: $\Omega(n)$
- Our work: stochastic input model

Stochastic Input Sequences

- Variety of models in use
- quite different nature

Our Contribution

- Sampling Model bridges between models
- Approximation of unweighted (weighted) IS in O(1)
 (O(log n))

Input: Nodes from G online

 $M_1, M_2, M_3, M_4 \leftarrow \emptyset;$ $k \leftarrow B(n, \frac{1}{2})$ where n = |V|; $V' \leftarrow \{\text{first } k \text{ nodes from } V\};$ $V^+ \leftarrow V \setminus V';$

forall $v \in V'$ in order according to \prec do

if $M_1 \cup \{v\}$ is independent then $M_1 \leftarrow M_1 \cup \{v\}$

end

forall $v \in V^+$ in order of arrival do if $\nexists u \in M_1, u \prec v$ with $\{u, v\} \in E$ then $M_2 \leftarrow M_2 \cup \{v\}$; if $v \in M_2$ then w/prob $q := \frac{1}{2\rho}$: $M_3 \leftarrow M_3 \cup \{v\}$; if $v \in M_3$ and $\nexists u' \in M_4$ s.t. $\{v, u'\} \in E$ then $M_4 \leftarrow M_4 \cup \{v\}$ end

return M_4 ;