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Submodularity definitions

I If f is a set function on E, we say that f is submodular if

∀S ⊂ T ⊂ T + e, f(T + e)− f(T ) ≤ f(S + e)− f(S). (1)

I The classic definition of submodularity is that set function f is
submodular if

for all S, T ⊆ E, f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ). (2)

Lemma
Definitions (1) and (2) are equivalent.
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Submodular polyhedra

I Let’s associate submodular functions with polyhedra.

I It turns out that the right thing to do is to think about
vectors x ∈ RE , and so polyhedra in RE .

I The key constraint for us is for some subset S ⊆ E
x(S) ≤ f(S).

I What about when S = ∅? To get this to make sense we will
normalize all our submodular functions by assuming that
f(∅) = 0.

I Now that we’ve normalized s.t. f(∅) = 0, define the
submodular polyhedron associated with set function f by

P (f) ≡ {x ∈ RE | x(S) ≤ f(S) ∀S ⊆ E}.
I It turns out to be convenient to also consider the face of P (f)

induced by the constraint x(E) ≤ f(E), called the base
polyhedron of f :

B(f) ≡ {x ∈ RE | x(S) ≤ f(S)∀S ⊂ E, x(E) = f(E)}.
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How do we know that y ∈ B(f)?

I Algorithms need to verify that y ∈ B(f), but there are 2n

inequalities to check.

I Here is a clever way to do it (Cunningham):

1. B(f) is bounded, and so it is the convex hull of its vertices,
i.e., y ∈ B(f) iff y is a convex combination of vertices of B(f).

2. We know that all vertices of B(f) come from Greedy applied
to linear orders, which have succinct certificates.

3. Carathéodory’s Theorem says that in fact there is always a
convex hull representation of y using at most n vertices.

I Therefore the algorithms will keep a convex hull
representation of y like this:

I We have an index set I of size O(n).
I For each i ∈ I we have a linear order ≺i with associated

Greedy vertex vi.
I We keep multipliers λi ≥ 0 for i ∈ I satisfying

∑
i∈I λi = 1.

I Then y =
∑

i∈I λiv
i is a succinct certificate proving that

y ∈ B(f).
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Why is this convex hull representation bad?

I There is no reason why we need multiplication and division in
dealing with submodular functions — after all, Greedy
operates with only addition, subtraction, and comparison.

I As algorithms proceed, new vertices get added to I, and then
we need to do some linear algebra to reduce |I| to O(n). This
linear algebra associated with maintaining the convex hull
representation is a computational bottleneck in empirical
testing.

I So let’s look for a better method of proving that y ∈ B(f)
that involves only addition, subtraction, and comparison.
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Combinatorial hull

I Suppose that we know (somehow) that x, z ∈ B(f) and we
want to prove that y ∈ B(f).

I Define x̃, ỹ, and z̃ to be x, y, z with one fixed coordinate
projected out.

Lemma
(Fujishige): If x̃ ≤ ỹ ≤ z̃ then y ∈ B(f).

I For example, if x, z are Greedy vertices, then the level-0
“projected box” between them is contained in B(f).

I We can iterate this operation: We could again take a
projected box between two level-0 points (maybe coming from
projecting out different coordinates) to get new points.

I It’s easy to prove that 2n−1 such combinatorial hull operations
suffice to cover all of B(f).

I Open Question: Can we algorithmically get a polynomial
(“Carathéodory-like”) bound on the size of such a
combinatorial hull representation?
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(Fujishige): If x̃ ≤ ỹ ≤ z̃ then y ∈ B(f).

I For example, if x, z are Greedy vertices, then the level-0
“projected box” between them is contained in B(f).

I We can iterate this operation: We could again take a
projected box between two level-0 points (maybe coming from
projecting out different coordinates) to get new points.

I It’s easy to prove that 2n−1 such combinatorial hull operations
suffice to cover all of B(f).

I Open Question: Can we algorithmically get a polynomial
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