Financial Instability Contagion: a quantitative definition and mechanism

Youngna Choi

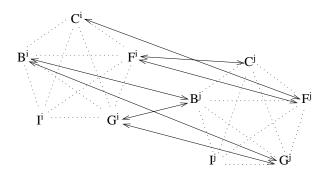
Montclair State University choiy@mail.montclair.edu

Mathematics for Economic Thinking The Fields Institute Toronto, Canada November 2013

Objective

1. Questions:

- What is contagion?
- Why and how does that happen?
- Can it be prevented?
- 2. Answers
 - Quantitative definition of (instability) contagion
 - Mechanism
 - Hope so


Outline

- 1. Previous Result (w/R. Douady, G. Castellacci)
 - Agent-based dynamical system of wealth
 - Early warning system: Market Instability Indicator
 - Extension to multiple economies
 - Quantitative definition of (instability) contagion
- 2. Main Result (w/ G. Castellacci)
 - Mechanism of contagion
- 3. Theory vs. Real Life
 - Working with data
- 4. Conjectures and wishes (by YC)

Dynamical System of Wealth I

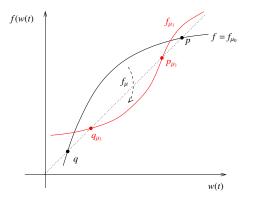
- Divide an economy into *n* aggregates called *agents*
- $w_i(t)$ = Wealth of Agent *i* at time *t*
 - $w_i(t) = \text{Equity} + \text{Debt} = \text{Cash}(\text{ables}) + \text{Invested Assets}$
 - $w_i(t) = E_i(t) + D_i(t) = L_i(t) + K_i(t)$
- $w_i(t + 1) = w_i(t)$ + Internal Growth + Cash In Cash Out
 - $w_i(t+1) = w_i(t) + F_{ii}(t) + \sum_{j \neq i}^n F_{ij}(t) \sum_{k \neq i}^n F_{ki}(t)$
 - $F_{ij}(t)$ = fund transferred from *j* to *i* at *t*
- Wealth dynamical system $f : \overline{M} \subset \mathbb{R}^n \longrightarrow \overline{M}$, $(w_1(t), w_2(t), \dots, w_n(t)) \longmapsto (w_1(t+1), w_2(t+1), \dots, w_n(t+1))$

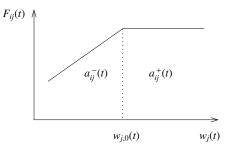
Feedback Loop via Flow of Funds

Figure : Feedback loop in a two-economy system. Five agents in each economy, Consumers, Firms, Banks, Government, and Investors, are interconnected by flow of funds

Dynamical System of Wealth II

- Stable equilibrium: persists perturbation
- Unstable equilibrium: perturbation propagates through feedback loop




Figure : One dimensional illustration of stability change

Elasticity Coefficient I

• Elasticity Coefficient
$$a_{ij}(t) = \frac{\partial F_{ij}(t+1)}{\partial w_j(t)}$$

• Different sign of $\Delta w_j(t)$ yields different reaction of $F_{ij}(t)$:

- Post-Crisis Banks: credit reduction vs. hoarding cash
- Post-Crisis Firms: layoff vs. hire freeze

Elasticity Coefficient II

• Elasticities vs. Jacobian df(w(t)) = B(w(t)):

$$b_{ii} = 1 + a_{ii} - \sum_{k \neq i}^{n} a_{ki}$$

- $b_{ij} = a_{ij}$ for $i \neq j$
- Canonical embedding of local elasticities and Jacobians

Market Instability Indicator and Contagion

• Market Instability Indicator (MII)

I(t) = Spectral Radius of $B(w(t)) = \rho(B(w(t)))$

- I(t) < 1: perturbations of the system tend to be absorbed
- I(t) > 1: small perturbations tend to increase when propagating
- We say that *instability contagion* occurs if given two times $0 < t_0 < t_1$,
 - At $t < t_0$, $\max_k \rho(B^{(k)}(t)) < 1$ and $\rho(B(t)) < 1$
 - 2 At $t \in (t_0, t_1)$, $\max_k \rho(B^{(k)}(t)) > 1$ and $\rho(B(t)) < 1$
 - 3 At time $t > t_1 B(t) \neq \bigoplus_{k=1}^{s} B^{(k)}(t)$ and $\rho(B(t)) > 1$.
- Condition 3 implies $A^{(ij)}(t) \neq 0$ $(i \neq j)$

 \implies causal nature of contagion

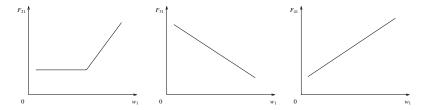
Mechanism of Contagion

• Lower bound of MII

$$|\operatorname{tr}(B)| = \max_{\lambda_i \in \sigma(B)} |\lambda_i| = \rho(B)$$

•
$$b_{ii} = 1 + a_{ii} - \sum_{k \neq i}^n a_{ik}$$

•
$$w_i(t+1) = w_i(t) + F_{ii}(t) + \sum_{j \neq i}^n F_{ij}(t) - \sum_{k \neq i}^n F_{ki}(t)$$


- If $w_i(t)$ is strictly decreasing in t, then $b_{ii}(t) = \frac{\partial w_i(t+1)}{\partial w_i(t)} > 0$
- If $w_i(t)$ is strictly decreasing in t and concave, then $b_{ii}(t) > 1$
- ▶ When w_i decreases, $\sum_{j\neq i}^n F_{ij}$ tends to drop and $\sum_{k\neq i}^n F_{ki}$ goes up
- When agent *i* hits liquidity and solvency constraints, F_{ki} becomes obliged
- These push up b_{ii} , thus $\rho(B)$ as well

Contagion within an Economy I

6-agent model with consumers (1), firms (2), banks (3), government (4), investors (5), and rest of the world (6).

- Assume consumers are highly leveraged, have little L_1
- K_1 and w_1 are decreasing and concave $\implies a_{11} > 0$
- As $w_1 \downarrow$, eventually $a_{21} \sim 0$, $a_{31} < 0$, $a_{41} > 0$, $a_{51} \sim 0$, and $a_{61} \sim 0$

•
$$b_{11} \approx 1 + a_{11} - a_{31} - a_{41} \gg 1$$

Contagion within an Economy II

- Split the economy into C-B (1) and F-G-I-R (2) partitions
 - ► $b_{11} \gg 1 \Rightarrow \text{likely } \rho(B^{(1)}) \ge \frac{|b_{11}+b_{33}|}{2} > 1 \text{ while } \rho(B(t)) < 1$
 - There is financial instability in Partition (1)
 - Stage (ii) of instability contagion
- If C defaults on payment, then $w_3(t)$ decreases
 - Out of panick, w_3 would decrease with acceleration, so $a_{33} > 0$
 - Due to mass-withdrawal, $a_{i3} < 0$ for i = 1, 2, 5, 6, risking a bank run
 - ► $b_{33} = 1 + a_{33} \sum_{k\neq 3}^{6} a_{k3}$ jumps, driving $\rho(B(t)) \ge \frac{\sum_{i=1}^{6} |b_{ii}|}{6} > 1$
 - Stage (iii) of instability contagion
- Instability contagion has taken place
- In reality: US authorities immediately intervened

Contagion across Two Economies

11-agent model with C1, F1, B1, G1, I1, C2, F2, B2, G2, I2, and R (1 - 11).

• Assume G1 has difficulty paying back B2

• w_i is has been decreasing and $a_{ii} > 0$ for $1 \le i \le 5$

►
$$b_{44} = 1 + a_{44} - \sum_{k \neq 4}^{11} a_{k4} \approx 1 + a_{44} - a_{34} - a_{54} - a_{84} \gg 1$$

- High probability that $\rho(B^{(1)}(t)) > 1$ while $\rho(B(t)) < 1$
- Stage (ii) of Contagion
- If G1 defaults on payment, then B2 is hit and $w_8(t)$ goes down
 - Due to panick, $b_{88} \gg 1$, possibly driving $\rho(B(t)) \ge \frac{\sum_{i=1}^{11} |b_{ii}|}{11} > 1$
 - Stage (iii) of instability contagion
- Instability contagion has taken place
- In reality: ECB "...whatever it takes..." (in Stage (ii))

Work in Progress and Current Issues

- Data!!
 - ► Federal Reserve Board, Bureau of Economic Analysis, (FDIC)
 - Not enough details and frequency
 - Selection of Agents: Nonprofit Organizations, Fed
- QE distorted market: we are riding a saddle
 - ► Regrouping agents are necessary to measure the true effect of QE
- Printed monies: seeds of the next (mega) bubbles?
- Detecting bubbles (after defining them) using MII

Selected References

- Acharya, V., Engle, R. and Richardson, M. Capital Shortfall: A New Approach to Ranking and Regulating Systemic Risks, May 2012. To appear in American Economic Review Papers and Proceedings.
- **2** Benhabib, J., 1992. Cycles and Chaos in Economic Equilibrium, Princeton University Press.
- Giuseppe Castellacci and Youngna Choi, Financial Instability Contagion: a dynamical systems approach. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2320324
- Youngna Choi and Raphael Douady, Financial Crisis Dynamics: Attempt to Define a Market Instability Indicator. *Quantitative Finance*, Vol 12 (9), 2012, 1351–1365.
- Youngna Choi and Raphael Douady, Financial Crisis and Contagion: A Dynamical Systems Approach. To appear in *Handbook on Systemic Risk*, Cambridge University Press.
- Daniel Hollo, Manfred Kremer and Marco Lo Luca, CISS A Composite Indicator of Systemic Stress in the Financial System. Working paper, August 2011. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1611717
- Carmen M. Reinhart and Kenneth S. Rogoff, This time is different: A panoramic view of eight centuries of financial crises. NBER, April 2008. http://www.nber.org/~wbuiter/cr1.pdf.
- Tversky, Amos, and Kahneman, Daniel, Advances in Prospect Theory: Cumulative representations of Uncertainty, *Journal of Risk and Uncertainty*, 5, 297-323, 1992.