Fiscal policy in an unstable economy

Soon Ryoo Adelphi University Peter Skott Umass and Aalborg University

Workshop on Mathematics for New Economic Thinking Fields Institute, Toronto 31 October 2013

Overview

- Introduction
- Harrodian instability
- A fiscal policy rule
- Conclusions

INTRODUCTION

Academic literature

First paradox: 'Ricardian equivalence'
Second paradox: empirical literature
Causation???

Here:

Theoretical perspective

Functional finance vs arbitrary trajectories

Functional finance

"Functional Finance ... prescribes: first, the adjustment of total spending (by everybody in the economy, including the government) in order to eliminate both unemployment and inflation ...; second, the adjustment of public holdings of money and of government bonds ... to achieve the rate of interest which results in the most desirable level of investment"

Lerner (1943)

Steady growth results

OLG setting:

- empirical relevance of 'dynamic inefficiency'
- dynamic inefficiency implies AD problems
- Stock-flow consistent' setting
- Robust across models:
 - Low growth causes high debt
 - High government consumption causes low debt
- Why?
 - With higher I or G full-employment consumption needs to get squeezed \rightarrow higher taxes

Short-run stabilization?

Automatic fiscal stabilizers Are they sufficient?

Taylor rule for fiscal policy?
Supercharged fiscal stabilizer

General setting

- Closed economy (not NYC 1975 or Greece today)
- Labor constrained economy
- Given real interest rate (monetary policy)
 - Fixed coefficient production function

HARRODIAN BENCHMARK

Basic equations

Investment

$$\dot{g}_t = \lambda(u_t - u^*), \ \lambda > 0$$

Consumption

$$\frac{C}{K} = c(u-\delta)$$

Equilibrium condition

$$u = \frac{g}{s} + \delta$$

Harrodian problems

Warranted vs natural growth

$$g_w = su^* \gtrless n$$

Unstable dynamics

$$\dot{g}_t = \lambda(\frac{g_t}{s} + \delta - u^*) = \frac{\lambda}{s}(g_t - g^w)$$

Policy problem -- example

Assume initially: $u < u^*$ $e < e^*$ $g_w < n$

What should be done?

Solution

- First, reduce τ to ensure u>u* and raise short run growth
- Now g is increasing; at some point e will begin to increase
- Raise taxes as e gets closer to e*
- Note: to get 'soft landing' requires high tax rates and u<u* before hitting full employment
- Note: long-run growth positively related to τ .

Fiscal policy rule?

Short-run stabilization

- Reduce taxes to stimulate demand and growth
- τ must respond positively to u
- Ensuring full employment
 - \Box τ must respond to e
- Reduce overshooting
 - Adjust taxes to deviations of g from n

MODEL

Basic equations

Extended consumption function

$$\frac{C_t}{K_t} = c(1-\tau_t)(u_t - \delta + rb_t) + c_v(1+b_t), \quad 0 < c < 1, \ c_v > 0$$

Government consumption

$$\frac{G_t}{K_t} = \gamma_t$$

Equilibrium

$$u_{t} = \mu_{t} [g_{t} + \gamma_{t} + c_{v}(1 + b_{t})] + (\mu_{t} - 1)rb_{t} + \delta$$
$$\mu_{t} = 1/[1 - c(1 - \tau_{t})]$$

Dynamics

Investment dynamics

$$\dot{g}_t = \frac{\lambda}{1-c(1-\tau_t)} [g_t - g^w(\gamma_t, \tau_t, b_t)]$$

where

$$g^{w}(\gamma_{t},\tau_{t},b_{t}) = [1-c(1-\tau_{t})](u^{*}-\delta) - \gamma_{t} - [c(1-\tau_{t})r + c_{v}]b_{t} - c_{v}$$

Employment dynamics

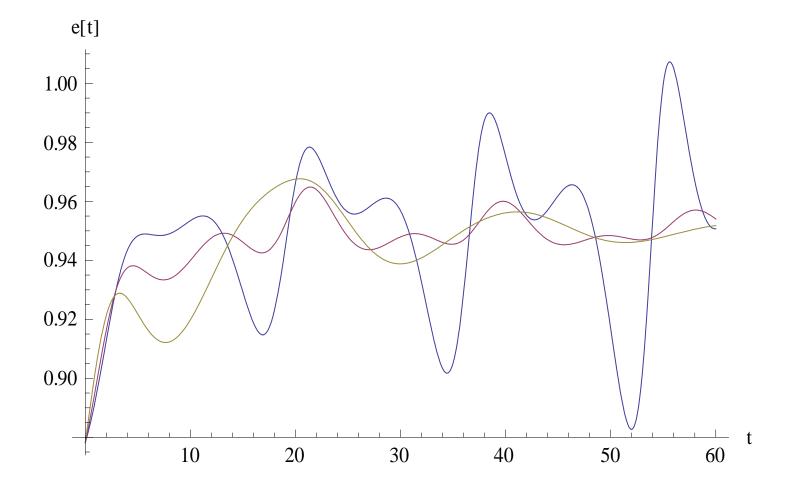
$$e = uk$$
 where $k = K/L$
 $\hat{k} = g - n$

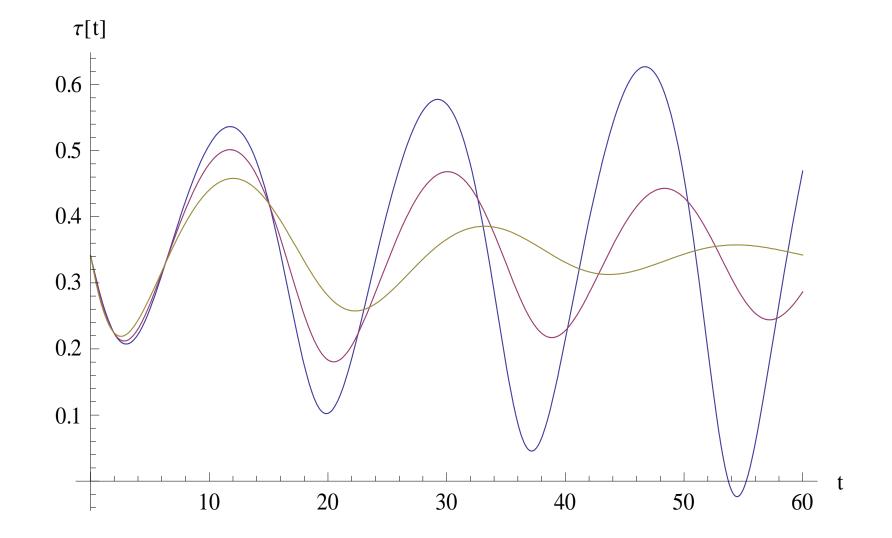
Debt dynamics

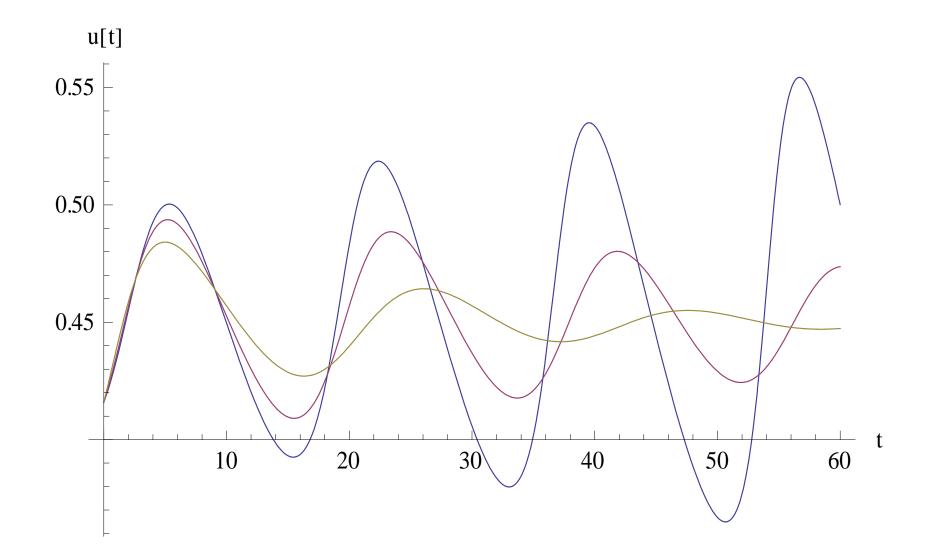
$$\dot{B}_t = rB_t + G_t - \tau(Y_t - \delta K_t + rB_t)$$

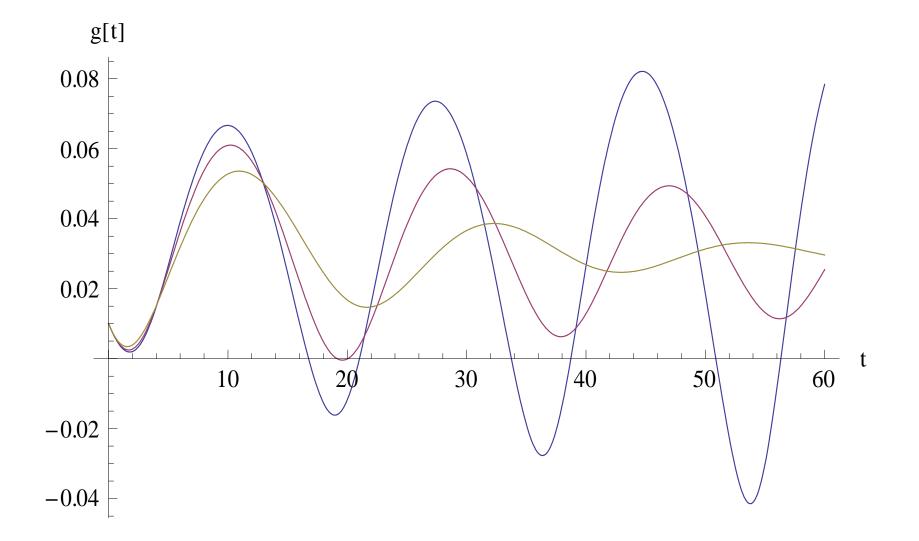
$$\dot{b}_t = (r - g_t)b_t + \gamma_t - \tau_t(u_t - \delta + rb_t)$$

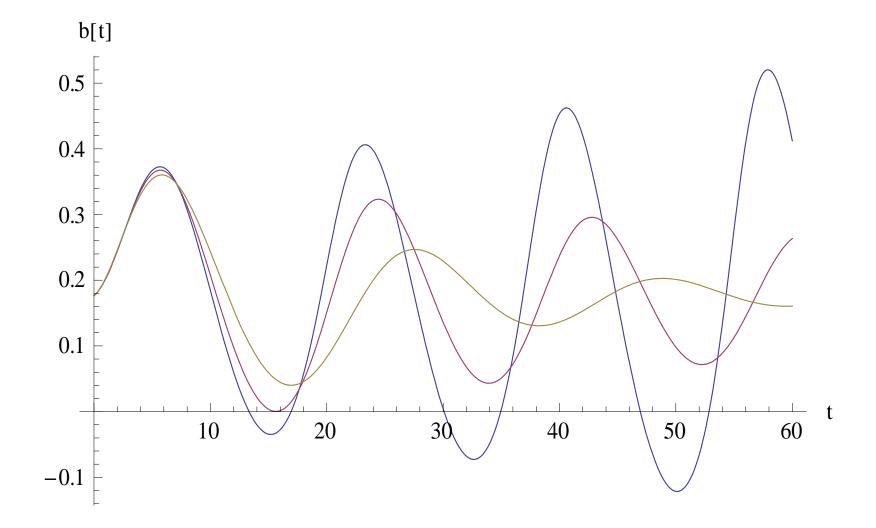
= $(r - g_t)b_t + \gamma_t - \tau_t\mu_t[g_t + \gamma_t + c_v(1 + b_t) + rb_t]$


Keynesian policy rule


Tax dynamics


$$\dot{\tau}_t = \phi_e(e_t - \bar{e}) + \phi_u(u_t - u^*) + \phi_g(g_t - n)$$
 with $\gamma_t = \gamma$


- 4D system
- Stability if sufficiently strong adjustment
- All three terms needed


- $\phi_u = 1$ (blue)
- $\phi_u = 1.2$ (red)
- $\phi_u = 1.6$ (light green)
- $\phi_e = 0.4, \phi_g = 0.8$
- Other values: c=0.625 c_v=0.045, u^d=0.45, Y=0.12, r=0.04, n=0.03, e^{*}=0.95, δ=0.1, λ=0.25

Austerity rule

Tax dynamics

$$\dot{\tau}_t = -\phi_b \left(\beta - \frac{b_t}{u}\right)$$

Implications:

Instability is reinforced

CONCLUSIONS AND EXTENSIONS

Conclusions

- Need for policy
 - Automatic stabilizers dampen effects of shocks but fail to remove Harrodian instability
- 'Keynesian policy rule' is stabilizing
- 'Austerity policy rule' is de-stabilizing

Extensions

- Monetary stabilization
 - Interaction of fiscal policy and 'Taylor rule'
 - Financial assets
- Other stabilizing mechanisms
 - 'reserve army effects'
- Fiscal rules in 'full' cycle model
- Empirics on 'implicit fiscal policy rules'

THANKS!