Carving-width, tree-width and area-optimal planar graph drawing

> Therese Biedl University of Waterloo biedl@uwaterloo.ca

> > May 5, 2014

Given: A graph $G = (V, E).$

 \leftarrow

Þ

Þ **B**

- **•** Given: A graph $G = (V, E).$
- Want: a pretty drawing (created by an algorithm.)

- **Given: A graph** $G = (V, E).$
- Want: a pretty drawing (created by an algorithm.)
- What is "pretty"?

つくへ

- **•** Given: A graph $G = (V, E).$
- Want: a pretty drawing (created by an algorithm.)
- What is "pretty"?

This talk: Straight-line drawing, planar graph, no crossing.

Every planar graph has a planar straight-line drawing. (Wagner'36, Fáry'48, Stein'50)

- Every planar graph has a planar straight-line drawing. (Wagner'36, Fáry'48, Stein'50)
- Want small integer coordinates.

- Every planar graph has a planar straight-line drawing. (Wagner'36, Fáry'48, Stein'50)
- Want small integer coordinates.

Theorem (de Fraysseix, Pach, Pollack 1990; Schnyder 1990)

Every planar graph can be drawn in an $O(n) \times O(n)$ -grid.

Theorem (de Fraysseix, Pach, Pollack 1990; Schnyder 1990)

Every planar graph can be drawn in an $O(n) \times O(n)$ -grid.

Theorem (de Fraysseix, Pach, Pollack 1988)

Some planar graphs need an $\Omega(n) \times \Omega(n)$ -grid.

つくへ

Theorem (de Fraysseix, Pach, Pollack 1990; Schnyder 1990)

Every planar graph can be drawn in an $O(n) \times O(n)$ -grid.

Theorem (de Fraysseix, Pach, Pollack 1988)

Some planar graphs need an $\Omega(n) \times \Omega(n)$ -grid.

Many planar graph drawing results since:

- **•** Drawing in an $n \times n$ -grid (Schnyder 1990)
- Drawing in a $\frac{2}{3}n \times O(n)$ -grid (Chrobak, Nakano 1994)
- Drawing in a $\frac{3}{3}n \times O(n)$ give (Cinobak, 1)
Drawing in area $\frac{8}{9}n^2$ (Brandenburg 2008)
- 4-connected planar graphs in area $\frac{1}{4}n^2$ (Miura et al. 1999)
- **•** Trees in $O(n \log n)$ area (easy).
- Outer-planar graphs in $O(n \log n)$ area (B. 2002)
- Series-parallel graphs in $O(n^{1.5})$ area (B. 2009)
- and many more like that....

• Most graph drawing results have the form:

Algorithm draws graph in class X with area $f(n)$. Some graph in class X needs area $\Omega(f(n))$.

 Ω

• Most graph drawing results have the form:

Algorithm draws graph in class X with area $f(n)$. Some graph in class X needs area $\Omega(f(n))$.

• Very few graph drawing results of the form:

Algorithm draws G with optimal area for G. (Or at least within constant factor.)

DRAWOPTAREA: Given a planar graph G and a constant A, does G have a planar straight-line drawing of area at most A?

DRAWOPTAREA: Given a planar graph G and a constant A, does G have a planar straight-line drawing of area at most A?

NP-hard (Krug & Wagner 2007)

DRAWOPTAREA: Given a planar graph G and a constant A, does G have a planar straight-line drawing of area at most A?

- NP-hard (Krug & Wagner 2007)
- Polynomial for Apollonian networks (Mondal et al., 2011)

(planar 3-tree, maximal chordal planar, ...)

DRAWOPTAREA: Given a planar graph G and a constant A, does G have a planar straight-line drawing of area at most A?

- NP-hard (Krug & Wagner 2007)
- Polynomial for Apollonian networks (Mondal et al., 2011)

(planar 3-tree, maximal chordal planar, ...)

DRAWOPTAREA: Given a planar graph G and a constant A, does G have a planar straight-line drawing of area at most A?

- NP-hard (Krug & Wagner 2007)
- Polynomial for Apollonian networks (Mondal et al., 2011)

(planar 3-tree, maximal chordal planar, ...)

DRAWOPTAREA: Given a planar graph G and a constant A, does G have a planar straight-line drawing of area at most A?

- NP-hard (Krug & Wagner 2007)
- Polynomial for Apollonian networks (Mondal et al., 2011)

(planar 3-tree, maximal chordal planar, ...)

DRAWOPTAREA: Given a planar graph G and a constant A, does G have a planar straight-line drawing of area at most A?

- NP-hard (Krug & Wagner 2007)
- Polynomial for Apollonian networks (Mondal et al., 2011)

(planar 3-tree, maximal chordal planar, ...)

DRAWOPTAREA: Given a planar graph G and a constant A, does G have a planar straight-line drawing of area at most A?

- NP-hard (Krug & Wagner 2007)
- Polynomial for Apollonian networks (Mondal et al., 2011)

(planar 3-tree, maximal chordal planar, ...)

DRAWOPTAREA: Given a planar graph G and a constant A, does G have a planar straight-line drawing of area at most A?

- NP-hard (Krug & Wagner 2007)
- Polynomial for Apollonian networks (Mondal et al., 2011)

(planar 3-tree, maximal chordal planar, ...)

Why are Apollonian networks easy?

- treewidth 3?
- o faces are triangles?
- \bullet both?

Definition

Treewidth $tw(G) =$ min{k: G has chordal super-graph with clique-size k } -1

ほう メラう

 \leftarrow

 2990

重

Definition

Treewidth $tw(G) =$ min{k: G has chordal super-graph with clique-size k } -1

 QQ

∍

Definition

Treewidth $tw(G) =$ min{k: G has chordal super-graph with clique-size k } -1

つくへ

∍

Definition

Treewidth $tw(G) =$ min{k: G has chordal super-graph with clique-size k } -1

つくへ

Definition

Treewidth $tw(G) =$ min{k: G has chordal super-graph with clique-size k } -1

つくへ

Definition

Treewidth $tw(G) =$ min{k: G has chordal super-graph with clique-size k } -1

 QQ

∍

Definition

 \Box

Definition

 \leftarrow

∍

Definition

Treewidth $tw(G) =$ min{k: G has chordal super-graph with clique-size k } -1

- \bullet G has bounded treewidth \Rightarrow many NP-hard problems become polynomial (FPT).
- Often a first step towards developing a PTAS.

(Reduction-graph in [KW07] for NP-hardness of $DRAWOPTAREA$.)

(Reduction-graph in [KW07] for NP-hardness of $DRAWOPTAREA$.)

• Graph is drawn on 3 rows.

(Reduction-graph in [KW07] for NP-hardness of $DRAWOPTAREA$.)

- Graph is drawn on 3 rows.
- \bullet Therefore [FLW03]: pathwidth \leq 3.

(Reduction-graph in [KW07] for NP-hardness of $DRAWOPTAREA$.)

- Graph is drawn on 3 rows.
- \bullet Therefore [FLW03]: pathwidth \leq 3.
- Well-known: then treewidth \leq 3.

Planar graph drawing and treewidth

(Reduction-graph in [KW07] for NP-hardness of DRAWOPTAREA.)

- But this graph was disconnected.
- And it has many possible planar embeddings.

つくへ

Planar graph drawing and treewidth

(Reduction-graph in $[KW07]$ for NP-hardness of $DRAWOPTAREA$.)

- But this graph was disconnected.
- And it has many possible planar embeddings.

Theorem (B. 2014)

DRAWOPTAREA is NP-hard even for a 3-connected planar graph with treewidth at most 8.

Planar graph drawing and treewidth

Theorem (B. 2014)

DRAWOPTAREA is NP-hard even for a 3-connected planar graph with treewidth at most 8.

つくへ

Back to: Why is DRAWOPTAREA easy on Apollonian networks?

- **e** constant treewidth?
- faces are triangles?
- o both?

Back to: Why is DRAWOPTAREA easy on Apollonian networks?

- **constant treewidth no, still NP-hard**
- faces are triangles?
- o both?

 Ω

Back to: Why is DRAWOPTAREA easy on Apollonian networks?

- **constant treewidth no, still NP-hard**
- faces are triangles?
- \bullet hoth?

Definition (Planar triangulated graph)

Planar graph where all faces (including outer-face) are triangles.

Theorem (B. 2014)

DRAWOPTAREA is NP-hard even for planar graphs that are one edge away from being triangulated.

 Ω

Theorem (B. 2014)

DRAWOPTAREA is NP-hard even for planar graphs that are one edge away from being triangulated.

 $Q \cap$

Theorem (B. 2014)

DRAWOPTAREA is NP-hard even for planar graphs that are one edge away from being triangulated.

Theorem (B. 2014)

DRAWOPTAREA is NP-hard even for planar graphs that are one edge away from being triangulated.

NP-hard for triangulated? Conjectured yes.

Back to: Why is DRAWOPTAREA easy on Apollonian networks?

- **o** constant treewidth? no, still NP-hard
- small face-degrees?
- both?

Back to: Why is DRAWOPTAREA easy on Apollonian networks?

- **o** constant treewidth? no, still NP-hard
- **•** small face-degrees? no, still NP-hard
- both?

 Ω

Back to: Why is DRAWOPTAREA easy on Apollonian networks?

- **constant treewidth? no, still NP-hard**
- **•** small face-degrees? no, still NP-hard
- both?

Theorem (based on B., Vatshelle 2012)

If G is a plane graph with bounded treewidth and bounded $face-degrees$, then $DRAWOPTAREA$ is polynomial.

つくへ

Theorem (B. 2014, based on B., Vatshelle 2012)

If G is a plane graph with bounded treewidth and bounded face-degrees, then DRAWOPTAREA is polynomial.

Look at dual graph:

Theorem (B. 2014, based on B., Vatshelle 2012)

If G is a plane graph with bounded treewidth and bounded $face-degrees$, then $DRAWOPTAREA$ is polynomial.

Look at dual graph:

- bounded face degrees ⇔ bounded maximum degree in dual
- bounded treewidth ⇔ bounded treewidth in dual
- dual has bounded carving width

Definition (Carving decomposition)

Recursive vertex-partitioning (always split into two groups)

 \leftarrow

 QQ

э

Definition (Carving decomposition)

Recursive vertex-partitioning (always split into two groups)

Definition

Width of carving decomposition: maximum $\#$ edges in cut at arc. Carving width: Smallest possible width of carving decomposition.

つくへ

Definition (Carving decomposition of dual)

Recursive face-partitioning (always split into two groups)

つくへ

Definition (Carving decomposition of dual)

Recursive face-partitioning (always split into two groups)

Carving width of dual: maximum $#$ edges in boundary.

Planar graph drawing and carving width

Theorem (B. 2014, based on B., Vatshelle 2012)

If G is a plane graph whose dual has bounded carving width, then DRAWOPTAREA is polynomial.

Idea: Dynamic programming.

Planar graph drawing and carving width

Theorem (B. 2014, based on B., Vatshelle 2012)

If G is a plane graph whose dual has bounded carving width, then DRAWOPTAREA is polynomial.

Idea: Dynamic programming.

- G_a : graph "below" arc *a*.
- \bullet B_a : boundary-vertices of G_a
- \bullet π_a : mapping from B_a to points in $W \times H$ -grid.

 $M(a, \pi) = \text{TRUE}$ if we can draw G_a planar with B_a at $\pi(B_a)$

 Ω

Planar graph drawing and carving width

Theorem (B. 2014, based on B., Vatshelle 2012)

If G is a plane graph whose dual has bounded carving width, then DRAWOPTAREA is polynomial.

Idea: Dynamic programming.

- G_a : graph "below" arc *a*.
- \bullet B_a : boundary-vertices of G_a
- \bullet π_a : mapping from B_a to points in $W \times H$ -grid.

 Ω

 $M(a, \pi) = \text{TRUE}$ if we can draw G_a planar with B_a at $\pi(B_a)$

- Compute M (for all $W \cdot H \leq A$) bottom-up in decomposition.
- *G* has drawing \Leftrightarrow TRUE at root for some π, W, H.
- Run-time $O^*(A^{\frac{3}{2}cw(G^*)})$.

Ð

Þ

Ð

Þ

Ð

Þ

Ð

Þ

Ð

Þ

DRAWCONVEXOPTAREA: Only consider drawings where all faces (including outer-face) are convex.

つくへ

DRAWCONVEXOPTAREA: Only consider drawings where all faces (including outer-face) are convex.

つくへ

DRAWCONVEXOPTAREA: Only consider drawings where all faces (including outer-face) are convex.

Theorem (based on B.,Vatshelle 2012)

If G is a plane graph that has bounded carving width, then DRAWCONVEXOPTAREA is polynomial.

DRAWCONVEXOPTAREA: Only consider drawings where all faces (including outer-face) are convex.

Theorem (based on B.,Vatshelle 2012 B. 2014)

If G is a planeplanar graph that has bounded carving width t reewidth, then $DRAWCONVEXOPTAREA$ is polynomial.

• Is DRAWOPTAREA polynomial for other graph classes?

 2990

∍

- Is DRAWOPTAREA polynomial for other graph classes?
- Is DRAWCONVEXOPTAREA FPT in the treewidth?

- Is DRAWOPTAREA polynomial for other graph classes?
- \bullet Is DRAWCONVEXOPTAREA FPT in the treewidth?
- Approximation algorithms, or even a PTAS?

- Is DRAWOPTAREA polynomial for other graph classes?
- \bullet Is DRAWCONVEXOPTAREA FPT in the treewidth?
- Approximation algorithms, or even a PTAS?

References:

- T. Biedl, M. Vatshelle, The point-set embeddability problem for plane graphs, SoCG 2012, to appear in IJCGA.
- T. Biedl, On area-optimal planar drawings, to appear at ICALP 2014.