[Permutation](#page-13-0) Covers

Charles J. Colbourn

Permutation Covers

Charles J. Colbourn

School of Computing, Informatics, and Decision Systems Engineering Arizona State University

Workshop on Graphs and Algorithms, Fields Institute, May 2014

Permutation *t*-Coverings

- \triangleright A *t*-subpermutation of {0, ..., *v* − 1} is a *t*-tuple (x_1, \ldots, x_t) with $x_i \in \{0, \ldots, v-1\}$ for $1 \le i \le t$, and $x_i \neq x_i$ when $i \neq j$.
- A permutation π of $\{0, \ldots, v-1\}$ covers the *t*-subpermutation (x_1, \ldots, x_t) if $\pi^{-1}(x_i) < \pi^{-1}(x_j)$ whenever $i < j$.
- \blacktriangleright (In other words, the permutation is a linear extension of the subpermutation.)
- For example, $(4, 0, 3)$ is a 3-subpermutation that is covered by the permutation 4 2 0 3 1.

Permutation *t*-Coverings

► A *permutation covering* of *order v* and *strength t* is a set $\Pi = \{\pi_1, \ldots, \pi_N\}$ where π_i is a permutation of {0, . . . , *v* − 1}, and every *t*-subpermutation of $\{0, \ldots, \nu - 1\}$ is covered by at least one of the permutations $\{\pi_1, \ldots, \pi_N\}$.

[Permutation](#page-0-0) Covers Charles J. **Colbourn**

- \triangleright Call one a PermC(*N*; *t*, *v*).
- ▶ When written as an array, often called a *sequence covering array* SeqCA(*N*; *t*, *v*).

Permutation *t*-Covering Example

$$
t = 3, v = 5, N = 8
$$

[Permutation](#page-0-0) Covers

Scrambling Sets

[Permutation](#page-0-0) Covers

- ▶ A *completely t-scrambling set of permutations*, CSSP(*N*; *t*, *v*) is an $N \times v$ array $A = (a_{ij})$ for which
	- **Performation** exterior of the *v* symbols, and
	- \blacktriangleright in every set of *t* columns c_1, \ldots, c_t , and for every permutation ψ of $\{1, \ldots, t\}$, there is a row ρ such that $a_{\rho c_{\psi(i)}} < a_{\rho c_{\psi(i+1)}}$ for $1 \leq i < t.$
	- \blacktriangleright (in other words, in every set of *t* columns, every 'pattern' appears on these *t* columns in at least one row)
- If This is *equivalent* to a SeqCA(*N*; t , v) just interchange the roles of columns and symbols.

Sequence Covering Arrays

The Existence Question

- \triangleright Given *t* and *v*, what is the smallest *N* for which a SeqCA(*N*; *t*, *v*) exists?
- \triangleright Call this number SeqCAN(t , v).
	- \blacktriangleright SeqCAN $(t, v) > t!$
- ► SeqCAN(2, v) = 2 for all $v > 2$ Just take any permutation and its reversal!
- \triangleright SeqCAN(*t*, *v*) = *t*! when $v < t + 1$ (Levenshtein), and $SeqCAN(4,6) = 4!$ (Mathon and Tran Van Trung).
- ► But SeqCAN $(t, v) > t!$ when $v \geq 2t$ and $t \geq 3$.

[Permutation](#page-0-0) Covers

Charles J. Colbourn

Sequence Covering Arrays

The Existence Question when *t* ≥ 3

- \triangleright A connection with "covering arrays" demonstrates that SeqCAN(*t*, *v*) is $Ω(log v)$.
- ► Choosing *N* permutations uniformly and independently at random, the expected number of uncovered *t*-subpermutations is $\frac{v!}{(v-t)!}$ $\left(\frac{t!-1}{t!}\right)$ $\frac{-1}{t!}$)^N.
- \triangleright When *t* is fixed, this shows that SeqCAN(*t*, *v*) is *O*(log *v*).
- \triangleright And indeed, an efficient greedy algorithm produces solutions!

[Permutation](#page-0-0) Covers

Sequence Covering Arrays

The Existence Question when *t* ≥ 3

 \triangleright There is also one direct and one recursive construction when $t = 3$.

- $▶$ But for $t > 4$, we are currently reliant on algorithmic methods.
- In addition to greedy methods, answer set programming, constraint programming, and cooperative search methods have been applied.

[Permutation](#page-0-0) Covers

A Post-Optimization Method

[Permutation](#page-0-0) Covers

Charles J. Colbourn

- \triangleright Choose an arbitrary order on the permutations.
- \blacktriangleright Determine all *t*-permutations covered by each permutation that is not covered by an earlier one.

Example

[Permutation](#page-0-0) Covers

A Post-Optimization Method

- \triangleright Choose an arbitrary order on the permutations.
- ► Determine all *t*-permutations covered by each permutation that is not covered by an earlier one.
- ► For each permutation, form a poset on the *v* elements in which $x \prec y$ when there is some subpermutation in which *x* precedes *y* and that is covered for the first time by this permutation.
- \triangleright Choose an arbitrary linear extension of each poset, and replace the permutation using this linear extension.
- Example: From permutation 14203 , $\{103, 123\}$ has the poset 1 \prec 0, 1 \prec 2, 0 \prec 3, 2 \prec 3; one linear extension is 4 1 2 0 3.

[Permutation](#page-0-0) Covers

Example

[Permutation](#page-0-0) Covers

A Post-Optimization Method

- \triangleright Choose an arbitrary order on the permutations.
- ▶ Determine all *t*-permutations covered by each permutation that is not covered by an earlier one.
- ► For each permutation, form a poset on the *v* elements in which $x \prec y$ when there is some subpermutation in which *x* precedes *y* and that is covered for the first time by this permutation.
- \triangleright Choose an arbitrary linear extension of each poset, and replace the permutation using this linear extension.
- If there is a permutation that covers no subpermutation for the first time, remove it.
- \triangleright Repeat the steps above until some stopping criterion is met.

[Permutation](#page-0-0) Covers

Using the Post-Optimization Method

[Permutation](#page-0-0) Covers

- \triangleright Randomly choosing different linear extensions to alter the structure of the permutation covering appears to provide useful improvements in solutions that were the best known.
- \triangleright But perhaps this suggests that the other constructions are themselves not particularly good?