
Steiner-Star-Free Graphs and Equivalence of
Steiner Tree Relaxations

Andreas Emil Feldmann1

Jochen Könemann1 Neil Olver2 Laura Sanità1

1Combinatorics & Optimization, University of Waterloo

2VU University & CWI, Amsterdam

The Steiner Tree problem

Terminals

Steiner vertices

The Steiner Tree problem

Terminals

Steiner vertices

Applications and known results

Terminals

Steiner vertices

I applications:
network design, VLSI

I one of Karp’s original
21 NP-hard problems

I APX-hard

I (ln(4) + ε)-approximation: [Byrka et al. 2012]

I iterative rounding of
hypergraphic (HYP) LP

I solving HYP is strongly NP-hard
I runtime bottleneck: PTAS for HYP

1. aim: improve runtime

Applications and known results

Terminals

Steiner vertices

I applications:
network design, VLSI

I one of Karp’s original
21 NP-hard problems

I APX-hard

I (ln(4) + ε)-approximation: [Byrka et al. 2012]

I iterative rounding of
hypergraphic (HYP) LP

I solving HYP is strongly NP-hard
I runtime bottleneck: PTAS for HYP

1. aim: improve runtime

Applications and known results

Terminals

Steiner vertices

I applications:
network design, VLSI

I one of Karp’s original
21 NP-hard problems

I APX-hard

I (ln(4) + ε)-approximation: [Byrka et al. 2012]

I iterative rounding of
hypergraphic (HYP) LP

I solving HYP is strongly NP-hard
I runtime bottleneck: PTAS for HYP

1. aim: improve runtime

Integrality gaps

HYPINT

I hypergraphic (HYP) LP:
[Warme 1998]

– strongly NP-hard to solve
→ PTAS necessary

+ HYP gap ≤ ln(4) ≈ 1.39
[Goemans et al. 2012]

I bidirected cut (BCR) LP:
[Edmonds 1967]

+ compact formulation
→ efficiently solvable

– BCR gap ≤ 2
[Folklore]

2. aim: compare gaps of HYP and BCR
→ improve upper bound of BCR

Integrality gaps

HYPINT BCRINT

I hypergraphic (HYP) LP:
[Warme 1998]

– strongly NP-hard to solve
→ PTAS necessary

+ HYP gap ≤ ln(4) ≈ 1.39
[Goemans et al. 2012]

I bidirected cut (BCR) LP:
[Edmonds 1967]

+ compact formulation
→ efficiently solvable

– BCR gap ≤ 2
[Folklore]

2. aim: compare gaps of HYP and BCR
→ improve upper bound of BCR

Integrality gaps

HYPINT BCRINT

I hypergraphic (HYP) LP:
[Warme 1998]

– strongly NP-hard to solve
→ PTAS necessary

+ HYP gap ≤ ln(4) ≈ 1.39
[Goemans et al. 2012]

I bidirected cut (BCR) LP:
[Edmonds 1967]

+ compact formulation
→ efficiently solvable

– BCR gap ≤ 2
[Folklore]

2. aim: compare gaps of HYP and BCR
→ improve upper bound of BCR

Two birds, one stone...

BCRHYPINT

1. solve BCR

2. compute solution to HYP from BCR
→ loss: β

3. use approximation for HYP:
→ loss: ln(4)

+ efficient algorithm

– total loss: β ln(4)

but:
if β < 2/ ln(4)

then BCR gap < 2

Two birds, one stone...

BCRHYPINT

1. solve BCR

2. compute solution to HYP from BCR
→ loss: β

3. use approximation for HYP:
→ loss: ln(4)

+ efficient algorithm

– total loss: β ln(4)

but:
if β < 2/ ln(4)

then BCR gap < 2

Comparing the gaps: known results

I always: BCR gap ≥ HYP gap

I sometimes: BCR gap > HYP gap

HYP opt
BCR opt

=
12
11

I sometimes: BCR gap = HYP gap

quasi-bipartite
[Chakrabarty et al. 2010]

[Fung et al. 2012]
[Goemans et al. 2012]

Comparing the gaps: known results

I always: BCR gap ≥ HYP gap
I sometimes: BCR gap > HYP gap

HYP opt
BCR opt

=
12
11

I sometimes: BCR gap = HYP gap

quasi-bipartite
[Chakrabarty et al. 2010]

[Fung et al. 2012]
[Goemans et al. 2012]

Comparing the gaps: known results

I always: BCR gap ≥ HYP gap
I sometimes: BCR gap > HYP gap

HYP opt
BCR opt

=
12
11

I sometimes: BCR gap = HYP gap

quasi-bipartite
[Chakrabarty et al. 2010]

[Fung et al. 2012]
[Goemans et al. 2012]

Equal gaps: new results

Theorem
In every Steiner claw-free instance, BCR gap = HYP gap.

Equal gaps: new results

Theorem
In every Steiner claw-free instance, BCR gap = HYP gap.

HYP opt
BCR opt

=
12
11

Equal gaps: new results

Theorem
In every Steiner claw-free instance, BCR gap = HYP gap.

Theorem
It is NP-hard to decide whether BCR opt = HYP opt (even on
instances with only one Steiner star).

BCR: undirected version
equivalent LP
[Goemans, Myung 1993]

notation:
I E(S): induced edges of S
I ymax(S) = maxv∈S yv

Terminals

Steiner vertices

min
∑
e∈E

ze cost(e) s.t.

∑
e∈E(S)

ze ≤
∑
v∈S

yv − ymax(S) ∀S ⊆ V (no cycles)

∑
e∈E

ze =
∑
v∈V

yv − 1 (connectedness)

yt = 1 ∀t ∈ R (terminals in tree)

yv , ze ≥ 0 ∀v ∈ V , e ∈ E

BCR: undirected version
equivalent LP
[Goemans, Myung 1993]

notation:
I E(S): induced edges of S
I ymax(S) = maxv∈S yv

Terminals

Steiner vertices

min
∑
e∈E

ze cost(e) s.t.

∑
e∈E(S)

ze ≤
∑
v∈S

yv − ymax(S) ∀S ⊆ V (no cycles)

∑
e∈E

ze =
∑
v∈V

yv − 1 (connectedness)

yt = 1 ∀t ∈ R (terminals in tree)

yv , ze ≥ 0 ∀v ∈ V , e ∈ E

Hypergraphic relaxation
based on full components:

notation:
I R(C): terminals in C
I (a)+ = max{0, a}

Terminals

Steiner vertices

min
∑
C∈K

xC cost(C) s.t.∑
C∈K

xC(|R(C) ∩ S| − 1)+ ≤ |S| − 1 ∀S ⊆ R (no cycles)∑
C∈K

xC(|R(C)| − 1)+ = |R| − 1 (connectedness)

xC ≥ 0 ∀C ∈ K

Hypergraphic relaxation
based on full components:

notation:
I R(C): terminals in C
I (a)+ = max{0, a} Terminals

Steiner vertices

min
∑
C∈K

xC cost(C) s.t.∑
C∈K

xC(|R(C) ∩ S| − 1)+ ≤ |S| − 1 ∀S ⊆ R (no cycles)∑
C∈K

xC(|R(C)| − 1)+ = |R| − 1 (connectedness)

xC ≥ 0 ∀C ∈ K

From BCR to HYP

BCR

−→

HYP

1. identify component C of support

2. yv → yv − ε, ∀ Steiners of C

3. ze → ze − ε, ∀ edges of C

4. xC → ε

5. repeat

Constant cost:
∑

e∈E(C)

ze cost(e) = xC cost(C)

From BCR to HYP

BCR

−→

HYP

1. identify component C of support

2. yv → yv − ε, ∀ Steiners of C

3. ze → ze − ε, ∀ edges of C

4. xC → ε

5. repeat

Constant cost:
∑

e∈E(C)

ze cost(e) = xC cost(C)

From BCR to HYP

1. identify component C of support

2. yv → yv − ε, ∀ Steiners of C

3. ze → ze − ε, ∀ edges of C

4. xC → ε

5. repeat

Bottleneck: tight set S

∑
e∈E(S)

ze =
∑
v∈S

yv − ymax(S) (no cycles)

I E(S): induced edges of S
I ymax(S) = maxv∈S yv

From BCR to HYP

1. identify component C of support

2. yv → yv − ε, ∀ Steiners of C

3. ze → ze − ε, ∀ edges of C

4. xC → ε

5. repeat

Bottleneck: tight set S

Lemma
An iteration succeeds if for every tight set S intersecting C,

1. C is connected in S, and

2. there is a maximizer of S in C.

From BCR to HYP

Lemma
An iteration succeeds if for every tight set S intersecting C,

1. C is connected in S, and

2. there is a maximizer of S in C.

Identifying a component:

1. add neighboring Steiners, s.t. all
tight sets are connected

2. add terminals neighboring Steiners,
s.t. all tight sets are connected

From BCR to HYP

Lemma
An iteration succeeds if for every tight set S intersecting C,

1. C is connected in S, and

2. there is a maximizer of S in C.

Identifying a component:

1. add neighboring Steiners, s.t. all
tight sets are connected

2. add terminals neighboring Steiners,
s.t. all tight sets are connected

From BCR to HYP

Lemma
An iteration succeeds if for every tight set S intersecting C,

1. C is connected in S, and

2. there is a maximizer of S in C.

If the iteration fails, ∃ demanding set:

tight set intersecting C
s.t. maximizer not in C.

Demanding sets and blocked edges

Lemma
Every tight set is internally connected.

A demanding set S has
I maximizers /∈ C
I connected Steiners ⊆ C

I blocked edge ab:
a /∈ C, b ∈ C

I blocking set S′:
a ∈ S′, b /∈ S′,
d ∈ S′ ∩ V (C)

Demanding sets and blocked edges

Lemma
Every tight set is internally connected.

A demanding set S has
I maximizers /∈ C
I connected Steiners ⊆ C
I blocked edge ab:

a /∈ C, b ∈ C

I blocking set S′:
a ∈ S′, b /∈ S′,
d ∈ S′ ∩ V (C)

Demanding sets and blocked edges

Lemma
Every tight set is internally connected.

A demanding set S has
I maximizers /∈ C
I connected Steiners ⊆ C
I blocked edge ab:

a /∈ C, b ∈ C
I blocking set S′:

a ∈ S′, b /∈ S′,
d ∈ S′ ∩ V (C)

Demanding sets and blocked edges

Lemma
Demanding and blocking sets do not intersect in terminals.

A demanding set S has
I maximizers /∈ C
I connected Steiners ⊆ C
I blocked edge ab:

a /∈ C, b ∈ C
a is Steiner

I blocking set S′:
a ∈ S′, b /∈ S′,
d ∈ S′ ∩ V (C)

Demanding sets and blocked edges

Lemma
Demanding and blocking sets do not intersect in terminals.

Identifying a component:

1. add neighboring Steiners, s.t.
all tight sets are connected

2. add terminals neighboring
Steiners, s.t. all tight sets are
connected

Demanding sets and blocked edges

Lemma
Demanding and blocking sets do not intersect in terminals.

A demanding set S has
I maximizers /∈ C
I connected Steiners ⊆ C
I blocked edge ab:

a /∈ C, b ∈ C
a is Steiner

I blocking set S′:
a ∈ S′, b /∈ S′,
d ∈ S′ ∩ V (C) Steiner

Demanding sets and blocked edges

Lemma
b is connected to a maximizer of S in S \ S′.

A demanding set S has
I maximizers /∈ C
I connected Steiners ⊆ C
I blocked edges a1b1, a2b2:

ai /∈ C, bi ∈ C
a1 is Steiner

I blocking set S′:
a1 ∈ S′, b1 /∈ S′,
d ∈ S′ ∩ V (C) Steiner

Theorem
In every Steiner claw-free instance, BCR gap = HYP gap.

Demanding sets and blocked edges

Lemma
b is connected to a maximizer of S in S \ S′.

A demanding set S has
I maximizers /∈ C
I connected Steiners ⊆ C
I blocked edges a1b1, a2b2:

ai /∈ C, bi ∈ C
a1 6= a2 are Steiners

I blocking sets S′, S′′:
a1 ∈ S′, b1 /∈ S′,
a2 ∈ S′′, b2 /∈ S′′,
d ∈ S′ ∩ V (C) Steiner

Theorem
In every Steiner claw-free instance, BCR gap = HYP gap.

Demanding sets and blocked edges

Lemma
b is connected to a maximizer of S in S \ S′.

A demanding set S has
I maximizers /∈ C
I connected Steiners ⊆ C
I blocked edges a1b1, a2b2:

ai /∈ C, bi ∈ C
a1 6= a2 are Steiners

I blocking sets S′, S′′:
a1 ∈ S′, b1 /∈ S′,
a2 ∈ S′′, b2 /∈ S′′,
d ∈ S′ ∩ V (C) Steiner

Theorem
In every Steiner claw-free instance, BCR gap = HYP gap.

Quo vadis?

Conjecture
If the following minor does not exist, then BCR gap = HYP gap.

Quo vadis?

Conjecture
If the following minor does not exist, then BCR gap = HYP gap.

Quo vadis?

Conjecture
If the following minor does not exist, then BCR gap = HYP gap.

HYP opt
BCR opt

=
16
15

Thanks!

