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→ PTAS necessary
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+ compact formulation
→ efficiently solvable
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[Folklore]

2. aim: compare gaps of HYP and BCR
→ improve upper bound of BCR



Integrality gaps

HYPINT BCRINT

I hypergraphic (HYP) LP:
[Warme 1998]

– strongly NP-hard to solve
→ PTAS necessary

+ HYP gap ≤ ln(4) ≈ 1.39
[Goemans et al. 2012]

I bidirected cut (BCR) LP:
[Edmonds 1967]

+ compact formulation
→ efficiently solvable

– BCR gap ≤ 2
[Folklore]

2. aim: compare gaps of HYP and BCR
→ improve upper bound of BCR



Integrality gaps

HYPINT BCRINT

I hypergraphic (HYP) LP:
[Warme 1998]

– strongly NP-hard to solve
→ PTAS necessary

+ HYP gap ≤ ln(4) ≈ 1.39
[Goemans et al. 2012]

I bidirected cut (BCR) LP:
[Edmonds 1967]

+ compact formulation
→ efficiently solvable

– BCR gap ≤ 2
[Folklore]

2. aim: compare gaps of HYP and BCR
→ improve upper bound of BCR



Two birds, one stone...

BCRHYPINT

1. solve BCR

2. compute solution to HYP from BCR
→ loss: β

3. use approximation for HYP:
→ loss: ln(4)

+ efficient algorithm

– total loss: β ln(4)

but:
if β < 2/ ln(4)

then BCR gap < 2



Two birds, one stone...

BCRHYPINT

1. solve BCR

2. compute solution to HYP from BCR
→ loss: β

3. use approximation for HYP:
→ loss: ln(4)

+ efficient algorithm

– total loss: β ln(4)

but:
if β < 2/ ln(4)

then BCR gap < 2



Comparing the gaps: known results

I always: BCR gap ≥ HYP gap

I sometimes: BCR gap > HYP gap

HYP opt
BCR opt

=
12
11

I sometimes: BCR gap = HYP gap

quasi-bipartite
[Chakrabarty et al. 2010]

[Fung et al. 2012]
[Goemans et al. 2012]



Comparing the gaps: known results

I always: BCR gap ≥ HYP gap
I sometimes: BCR gap > HYP gap

HYP opt
BCR opt

=
12
11

I sometimes: BCR gap = HYP gap

quasi-bipartite
[Chakrabarty et al. 2010]

[Fung et al. 2012]
[Goemans et al. 2012]



Comparing the gaps: known results

I always: BCR gap ≥ HYP gap
I sometimes: BCR gap > HYP gap

HYP opt
BCR opt

=
12
11

I sometimes: BCR gap = HYP gap

quasi-bipartite
[Chakrabarty et al. 2010]

[Fung et al. 2012]
[Goemans et al. 2012]



Equal gaps: new results

Theorem
In every Steiner claw-free instance, BCR gap = HYP gap.



Equal gaps: new results

Theorem
In every Steiner claw-free instance, BCR gap = HYP gap.

HYP opt
BCR opt

=
12
11



Equal gaps: new results

Theorem
In every Steiner claw-free instance, BCR gap = HYP gap.

Theorem
It is NP-hard to decide whether BCR opt = HYP opt (even on
instances with only one Steiner star).



BCR: undirected version
equivalent LP
[Goemans, Myung 1993]

notation:
I E(S): induced edges of S
I ymax(S) = maxv∈S yv
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∑
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From BCR to HYP

Lemma
An iteration succeeds if for every tight set S intersecting C,

1. C is connected in S, and

2. there is a maximizer of S in C.

If the iteration fails, ∃ demanding set:

tight set intersecting C
s.t. maximizer not in C.
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d ∈ S′ ∩ V (C)
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Thanks!


