Steiner-Star-Free Graphs and Equivalence of Steiner Tree Relaxations

Andreas Emil Feldmann¹ Jochen Könemann¹ Neil Olver² Laura Sanità¹

¹Combinatorics & Optimization, University of Waterloo

²VU University & CWI, Amsterdam

The Steiner Tree problem

TerminalsSteiner vertices

The Steiner Tree problem

TerminalsSteiner vertices

Applications and known results

- applications: network design, VLSI
- one of Karp's original 21 NP-hard problems
- APX-hard

Applications and known results

- TerminalsSteiner vertices
- applications: network design, VLSI
- one of Karp's original 21 NP-hard problems
- APX-hard

- $(\ln(4) + \varepsilon)$ -approximation: [Byrka et al. 2012]
 - iterative rounding of hypergraphic (HYP) LP
 - solving HYP is strongly NP-hard
 - runtime bottleneck: PTAS for HYP

Applications and known results

- TerminalsSteiner vertices
- applications: network design, VLSI
- one of Karp's original 21 NP-hard problems
- APX-hard

- $(\ln(4) + \varepsilon)$ -approximation: [Byrka et al. 2012]
 - iterative rounding of hypergraphic (HYP) LP
 - solving HYP is strongly NP-hard
 - runtime bottleneck: PTAS for HYP
- 1. aim: improve runtime

Integrality gaps

[Warme 1998]

- strongly NP-hard to solve \rightarrow PTAS necessary
- + HYP gap $\leq \ln(4) \approx 1.39$

[Goemans et al. 2012]

Integrality gaps

hypergraphic (HYP) LP:

[Warme 1998]

- strongly NP-hard to solve \rightarrow PTAS necessary
- + HYP gap $\leq \ln(4) \approx 1.39$

[Goemans et al. 2012]

- bidirected cut (BCR) LP: [Edmonds 1967]
 - + compact formulation \rightarrow efficiently solvable
 - BCR gap \leq 2

[Folklore]

Integrality gaps

hypergraphic (HYP) LP:

[Warme 1998]

- strongly NP-hard to solve \rightarrow PTAS necessary
- + HYP gap $\leq \ln(4) \approx 1.39$

[Goemans et al. 2012]

- bidirected cut (BCR) LP: [Edmonds 1967]
 - + compact formulation
 - \rightarrow efficiently solvable
 - BCR gap \leq 2

[Folklore]

2. aim: compare gaps of HYP and BCR \rightarrow improve upper bound of BCR

Two birds, one stone...

- 1. solve BCR
- 2. compute solution to HYP from BCR \rightarrow loss: β
- 3. use approximation for HYP:

 \rightarrow loss: ln(4)

Two birds, one stone...

- 1. solve BCR
- 2. compute solution to HYP from BCR \rightarrow loss: β
- 3. use approximation for HYP:

 \rightarrow loss: ln(4)

- + efficient algorithm
- total loss: $\beta \ln(4)$

but: if $\beta < 2/\ln(4)$ then BCR gap < 2

Comparing the gaps: known results

• always: BCR gap \geq HYP gap

Comparing the gaps: known results

- always: BCR gap \geq HYP gap
- sometimes: BCR gap > HYP gap

Comparing the gaps: known results

- always: BCR gap \geq HYP gap
- sometimes: BCR gap > HYP gap

sometimes: BCR gap = HYP gap

quasi-bipartite

[Chakrabarty et al. 2010] [Fung et al. 2012] [Goemans et al. 2012] Equal gaps: new results

Theorem

In every Steiner claw-free instance, BCR gap = HYP gap.

Equal gaps: new results

Theorem In every Steiner claw-free instance, BCR gap = HYP gap.

Equal gaps: new results

Theorem

In every **Steiner claw-free** *instance*, *BCR gap* = *HYP gap*.

Theorem

It is NP-hard to decide whether BCR opt = HYP opt (even on instances with only one Steiner star).

BCR: undirected version

equivalent LP

[Goemans, Myung 1993]

BCR: undirected version

equivalent LP

[Goemans, Myung 1993]

notation:

- ► *E*(*S*): induced edges of *S*
- $y_{\max}(S) = \max_{v \in S} y_v$

TerminalsSteiner vertices

$$\min \sum_{e \in E} z_e \operatorname{cost}(e) \quad \text{s.t.}$$

 $\sum_{e \in E(S)} z_e \leq \sum_{v \in S} y_v - y_{\max}(S) \qquad \forall S \subseteq V \qquad (\text{no cycles})$

 $\sum_{e \in E} z_e = \sum_{v \in V} y_v - 1$ (connectedness) $y_t = 1 \qquad \forall t \in R \quad (terminals in tree)$ $y_v, z_e \ge 0 \qquad \forall v \in V, e \in E$

Hypergraphic relaxation

based on full components:

Hypergraphic relaxation

based on full components:

notation:

- R(C): terminals in C
- $(a)^+ = \max\{0, a\}$

$$\begin{array}{l} \min \ \sum_{C \in \mathcal{K}} x_C \operatorname{cost}(C) \quad \text{s.t.} \\ & \sum_{C \in \mathcal{K}} x_C (|R(C) \cap S| - 1)^+ \leq |S| - 1 \quad \forall S \subseteq R \quad (\text{no cycles}) \\ & \sum_{C \in \mathcal{K}} x_C (|R(C)| - 1)^+ = |R| - 1 \quad (\text{connectedness}) \end{array}$$

$$x_C \ge 0 \qquad \qquad \forall C \in \mathcal{K}$$

BCR

- 1. identify component C of support
- 2. $y_v \rightarrow y_v \varepsilon$, \forall Steiners of *C*
- 3. $z_e \rightarrow z_e \varepsilon$, \forall edges of *C*
- 4. $x_C \rightarrow \varepsilon$
- 5. repeat

BCR

- 1. identify component C of support
- 2. $y_{\nu} \rightarrow y_{\nu} \varepsilon$, \forall Steiners of *C*

3.
$$z_e \rightarrow z_e - \varepsilon$$
, \forall edges of C

4.
$$x_C \rightarrow \varepsilon$$

5. repeat

Constant cost:

$$\sum_{e \in E(C)} z_e \operatorname{cost}(e) = x_C \operatorname{cost}(C)$$

1. identify component C of support

2.
$$y_v \rightarrow y_v - \varepsilon$$
, \forall Steiners of C

3.
$$z_e \rightarrow z_e - \varepsilon$$
, \forall edges of C

4.
$$x_C \rightarrow \varepsilon$$

5. repeat

Bottleneck: tight set S

$$\sum_{e \in E(S)} z_e = \sum_{v \in S} y_v - y_{\max}(S) \quad \text{(no cycles)}$$

- E(S): induced edges of S
- $y_{\max}(S) = \max_{v \in S} y_v$

1. identify component C of support

2.
$$y_v \rightarrow y_v - \varepsilon$$
, \forall Steiners of C

3.
$$z_e \rightarrow z_e - \varepsilon$$
, \forall edges of C

4.
$$x_C \rightarrow \varepsilon$$

5. repeat

Bottleneck: tight set S

Lemma

An iteration succeeds if for every tight set S intersecting C,

- 1. C is connected in S, and
- 2. there is a maximizer of S in C.

Lemma

An iteration succeeds if for every tight set S intersecting C,

- 1. C is connected in S, and
- 2. there is a maximizer of S in C.

Identifying a component:

1. add neighboring Steiners, s.t. all tight sets are connected

Lemma

An iteration succeeds if for every tight set S intersecting C,

- 1. C is connected in S, and
- 2. there is a maximizer of S in C.

Identifying a component:

- 1. add neighboring Steiners, s.t. all tight sets are connected
- 2. add terminals neighboring Steiners, s.t. all tight sets are connected

Lemma

An iteration succeeds if for every tight set S intersecting C,

- 1. C is connected in S, and
- 2. there is a maximizer of S in C.

If the iteration fails, \exists *demanding set*:

tight set intersecting *C* s.t. maximizer not in *C*.

- maximizers $\notin C$
- connected Steiners $\subseteq C$

Lemma Every tight set is internally connected.

- maximizers $\notin C$
- connected Steiners $\subseteq C$
- blocked edge ab:
 a ∉ C, b ∈ C

Lemma Every tight set is internally connected.

- maximizers $\notin C$
- connected Steiners $\subseteq C$
- blocked edge ab:
 a ∉ C, b ∈ C
- blocking set S':
 a ∈ S', b ∉ S',
 d ∈ S' ∩ V(C)

Lemma

Demanding and blocking sets do not intersect in terminals.

- maximizers $\notin C$
- connected Steiners $\subseteq C$
- blocked edge ab:
 a ∉ C, b ∈ C
 a is Steiner
- blocking set S':
 a ∈ S', b ∉ S',
 d ∈ S' ∩ V(C)

Lemma

Demanding and blocking sets do not intersect in terminals.

Identifying a component:

- 1. add neighboring Steiners, s.t. all tight sets are connected
- 2. add terminals neighboring Steiners, s.t. all tight sets are connected

Lemma

Demanding and blocking sets do not intersect in terminals.

- maximizers $\notin C$
- connected Steiners $\subseteq C$
- blocked edge ab:
 a ∉ C, b ∈ C
 a is Steiner
- ► blocking set S': $a \in S', b \notin S',$ $d \in S' \cap V(C)$ Steiner

Lemma

b is connected to a maximizer of S in $S \setminus S'$.

- maximizers $\notin C$
- connected Steiners $\subseteq C$
- blocked edges a₁b₁, a₂b₂: a_i ∉ C, b_i ∈ C a₁ is Steiner
- ► blocking set S': $a_1 \in S', b_1 \notin S', d \in S' \cap V(C)$ Steiner

Lemma

b is connected to a maximizer of S in $S \setminus S'$.

- maximizers $\notin C$
- connected Steiners $\subseteq C$
- ▶ blocked edges a_1b_1 , a_2b_2 : $a_i \notin C$, $b_i \in C$ $a_1 \neq a_2$ are Steiners
- ▶ blocking sets S', S'': $a_1 \in S', b_1 \notin S',$ $a_2 \in S'', b_2 \notin S'',$ $d \in S' \cap V(C)$ Steiner

Lemma

b is connected to a maximizer of S in $S \setminus S'$.

A demanding set S has

- maximizers $\notin C$
- connected Steiners $\subseteq C$
- ▶ blocked edges a_1b_1 , a_2b_2 : $a_i \notin C$, $b_i \in C$ $a_1 \neq a_2$ are Steiners
- ▶ blocking sets S', S'': $a_1 \in S', b_1 \notin S',$ $a_2 \in S'', b_2 \notin S'',$ $d \in S' \cap V(C)$ Steiner

Theorem

In every Steiner claw-free instance, BCR gap = HYP gap.

Quo vadis?

Conjecture

If the following minor does not exist, then BCR gap = HYP gap.

Quo vadis?

Conjecture

If the following minor does not exist, then BCR gap = HYP gap.

Quo vadis?

Conjecture If the following minor does not exist, then BCR gap = HYP gap.

Thanks!