Steiner-Star-Free Graphs and Equivalence of Steiner Tree Relaxations

Andreas Emil Feldmann¹ Jochen Könemann¹ Neil Olver² Laura Sanità¹

¹Combinatorics & Optimization, University of Waterloo

²VU University & CWI, Amsterdam

The Steiner Tree problem

Terminals Steiner vertices

The Steiner Tree problem

Terminals Steiner vertices

Applications and known results

- \blacktriangleright applications: network design, VLSI
- \triangleright one of Karp's original 21 NP-hard problems
- \blacktriangleright APX-hard

Applications and known results

- Terminals Steiner vertices
- \blacktriangleright applications: network design, VLSI
- \triangleright one of Karp's original 21 NP-hard problems
- \blacktriangleright APX-hard
- \blacktriangleright (ln(4) + ε)-approximation: [Byrka et al. 2012]
	- \blacktriangleright iterative rounding of *hypergraphic* (HYP) LP
	- \triangleright solving HYP is strongly NP-hard
	- runtime bottleneck: PTAS for HYP

Applications and known results

- Terminals Steiner vertices
- \blacktriangleright applications: network design, VLSI
- \triangleright one of Karp's original 21 NP-hard problems
- \blacktriangleright APX-hard
- \blacktriangleright (ln(4) + ε)-approximation: [Byrka et al. 2012]
	- \blacktriangleright iterative rounding of *hypergraphic* (HYP) LP
	- \triangleright solving HYP is strongly NP-hard
	- ▶ runtime bottleneck: PTAS for HYP
- **1. aim:** improve runtime

Integrality gaps

[Warme 1998]

- strongly NP-hard to solve \rightarrow PTAS necessary
- + HYP gap \leq ln(4) \approx 1.39

[Goemans et al. 2012]

Integrality gaps

hypergraphic (HYP) LP:

[Warme 1998]

- strongly NP-hard to solve \rightarrow PTAS necessary
- + HYP gap $<$ ln(4) \approx 1.39

[Goemans et al. 2012]

bidirected cut (BCR) LP:

[Edmonds 1967]

- + compact formulation \rightarrow efficiently solvable
- $-$ BCR gap \leq 2

[Folklore]

Integrality gaps

hypergraphic (HYP) LP:

[Warme 1998]

- strongly NP-hard to solve \rightarrow PTAS necessary
- + HYP gap \leq ln(4) \approx 1.39

[Goemans et al. 2012]

- bidirected cut (BCR) LP: [Edmonds 1967]
	- + compact formulation
		- \rightarrow efficiently solvable
	- $-$ BCR gap \leq 2

[Folklore]

2. aim: compare gaps of HYP and BCR \rightarrow improve upper bound of BCR

Two birds, one stone...

- 1. solve BCR
- 2. compute solution to HYP from BCR \rightarrow loss: β
- 3. use approximation for HYP:

 \rightarrow loss: ln(4)

Two birds, one stone...

- 1. solve BCR
- 2. compute solution to HYP from BCR \rightarrow loss: β
- 3. use approximation for HYP: \rightarrow loss: ln(4)
- $+$ efficient algorithm
- total loss: β ln(4)

but: if β < 2/ln(4) then BCR gap $<$ 2

Comparing the gaps: known results

► always: BCR gap \geq HYP gap

Comparing the gaps: known results

- ► always: BCR gap \geq HYP gap
- Sometimes: BCR gap $>$ HYP gap

Comparing the gaps: known results

- ► always: BCR gap $≥$ HYP gap
- \triangleright sometimes: BCR gap $>$ HYP gap

 \triangleright sometimes: BCR gap = HYP gap

quasi-bipartite

[Chakrabarty et al. 2010] [Fung et al. 2012] [Goemans et al. 2012]

Equal gaps: new results

Theorem

In every **Steiner claw-free** *instance, BCR gap* = *HYP gap.*

Equal gaps: new results

Theorem

In every **Steiner claw-free** *instance, BCR gap* = *HYP gap.*

Equal gaps: new results

Theorem

In every **Steiner claw-free** *instance, BCR gap* = *HYP gap.*

Theorem

It is NP-hard to decide whether BCR opt = *HYP opt (even on instances with only one Steiner star).*

BCR: undirected version

equivalent LP

[Goemans, Myung 1993]

BCR: undirected version

equivalent LP

[Goemans, Myung 1993]

notation:

- \blacktriangleright $E(S)$: induced edges of S
- $V_{\text{max}}(S) = \max_{V \in S} V_V$

Terminals Steiner vertices

min $\sum z_e \, \mathsf{cost}(e)$ s.t. *e*∈*E*

 \sum

 $\sum z_e \leq \sum y_v - y_{\text{max}}(S)$ $\forall S \subseteq V$ (no cycles) *e*∈*E*(*S*) *v*∈*S* $z_e = \sum$ *y^v* − 1 (connectedness)

e∈*E v*∈*V* $y_t = 1$ $\forall t \in R$ (terminals in tree) *y^v* , *z^e* ≥ 0 ∀*v* ∈ *V*, *e* ∈ *E*

Hypergraphic relaxation

based on *full components*:

Steiner vertices

Hypergraphic relaxation

based on *full components*:

notation:

- \blacktriangleright $R(C)$: terminals in C
- \blacktriangleright $(a)^+$ = max $\{0, a\}$

min
$$
\sum_{C \in \mathcal{K}} x_C \cos(C)
$$
 s.t.
\n
$$
\sum_{C \in \mathcal{K}} x_C(|R(C) \cap S| - 1)^+ \le |S| - 1 \quad \forall S \subseteq R \quad \text{(no cycles)}
$$
\n
$$
\sum_{C \in \mathcal{K}} x_C(|R(C)| - 1)^+ = |R| - 1 \quad \text{(connectedness)}
$$

$$
x_C \geq 0 \qquad \qquad \forall C \in \mathcal{K}
$$

BCR

- 1. identify component *C* of support
- 2. $y_v \rightarrow y_v \varepsilon$, \forall Steiners of C
- 3. $z_e \rightarrow z_e \varepsilon$, \forall edges of C
- 4. $x_C \rightarrow \varepsilon$

−→

5. repeat

BCR

- 1. identify component *C* of support
- 2. $y_v \rightarrow y_v \varepsilon$, \forall Steiners of C
- 3. $z_e \rightarrow z_e \varepsilon$, \forall edges of C
- 4. $X_C \rightarrow \varepsilon$

−→

5. repeat

Constant cost:

e∈*E*(*C*) $\sum z_e \text{ cost}(e) = x_c \text{ cost}(C)$

- 1. identify component *C* of support
- 2. $y_v \rightarrow y_v \varepsilon$, \forall Steiners of C

3.
$$
z_e \rightarrow z_e - \varepsilon
$$
, \forall edges of C

4.
$$
x_C \rightarrow \varepsilon
$$

5. repeat

Bottleneck: **tight set** *S*

$$
\sum_{e \in E(S)} z_e = \sum_{v \in S} y_v - y_{\text{max}}(S) \qquad \text{(no cycles)}
$$

- \blacktriangleright $E(S)$: induced edges of S
- \blacktriangleright *Y*_{max} (S) = max_{*v*∈*S*} *Y_v*

- 1. identify component *C* of support
- 2. $v_v \rightarrow v_v \varepsilon$, \forall Steiners of C

3.
$$
z_e \rightarrow z_e - \varepsilon
$$
, \forall edges of C

4.
$$
x_C \rightarrow \varepsilon
$$

5. repeat

Bottleneck: **tight set** *S*

Lemma

An iteration succeeds if for every tight set S intersecting C,

- 1. *C is connected in S, and*
- 2. *there is a maximizer of S in C.*

Lemma

An iteration succeeds if for every tight set S intersecting C,

- 1. *C is connected in S, and*
- 2. *there is a maximizer of S in C.*

Identifying a component:

1. add neighboring Steiners, s.t. all tight sets are connected

Lemma

An iteration succeeds if for every tight set S intersecting C,

- 1. *C is connected in S, and*
- 2. *there is a maximizer of S in C.*

Identifying a component:

- 1. add neighboring Steiners, s.t. all tight sets are connected
- 2. add terminals neighboring Steiners, s.t. all tight sets are connected

Lemma

An iteration succeeds if for every tight set S intersecting C,

- 1. *C is connected in S, and*
- 2. *there is a maximizer of S in C.*

If the iteration fails, ∃ *demanding set*:

tight set intersecting *C* s.t. maximizer not in *C*.

- **► maximizers** $\notin C$
- ► connected Steiners \subseteq *C*

Lemma *Every tight set is internally connected.*

- **► maximizers** $\notin C$
- ► connected Steiners \subset C
- ► blocked edge *ab*: $a \notin C$, $b \in C$

Lemma *Every tight set is internally connected.*

- **► maximizers** $\notin C$
- ► connected Steiners \subset C
- ► blocked edge *ab*: $a \notin C$, $b \in C$
- ► blocking set S[']: $a \in S'$, $b \notin S'$, $d \in S' \cap V(C)$

Lemma

Demanding and blocking sets do not intersect in terminals.

- **► maximizers** $\notin C$
- ► connected Steiners \subset C
- ► blocked edge *ab*: $a \notin C$, $b \in C$ *a* is Steiner
- ► blocking set S[']: $a \in S', b \notin S',$ $d \in S' \cap V(C)$

Lemma

Demanding and blocking sets do not intersect in terminals.

Identifying a component:

- 1. add neighboring Steiners, s.t. all tight sets are connected
- 2. add terminals neighboring Steiners, s.t. all tight sets are connected

Lemma

Demanding and blocking sets do not intersect in terminals.

- **► maximizers** $\notin C$
- ► connected Steiners \subset C
- ► blocked edge *ab*: $a \notin C$, $b \in C$ *a* is Steiner
- ► blocking set S[']: $a \in S', b \notin S',$ *d* ∈ *S* ⁰ ∩ *V*(*C*) Steiner

Lemma

b is connected to a maximizer of S in S \setminus S'.

- **► maximizers** $\notin C$
- ► connected Steiners \subseteq C
- \blacktriangleright blocked edges a_1b_1 , a_2b_2 : $a_i \notin C$, $b_i \in C$ *a*¹ is Steiner
- ► blocking set S': $a_1 \in S'$, $b_1 \notin S'$, *d* ∈ *S* ⁰ ∩ *V*(*C*) Steiner

Lemma

b is connected to a maximizer of S in S \setminus S'.

- **► maximizers** $\notin C$
- ► connected Steiners \subseteq C
- \blacktriangleright blocked edges a_1b_1 , a_2b_2 : $a_i \notin C$, $b_i \in C$ $a_1 \neq a_2$ are Steiners
- ► blocking sets S', S": $a_1 \in S'$, $b_1 \notin S'$, $a_2 \in S''$, $b_2 \notin S''$, *d* ∈ *S* ⁰ ∩ *V*(*C*) Steiner

Lemma

b is connected to a maximizer of S in S \setminus S'.

A demanding set *S* has

- **► maximizers** \notin *C*
- ► connected Steiners \subseteq C
- \blacktriangleright blocked edges a_1b_1 , a_2b_2 : $a_i \notin C$, $b_i \in C$ $a_1 \neq a_2$ are Steiners
- ► blocking sets S', S": $a_1 \in S'$, $b_1 \notin S'$, $a_2 \in S''$, $b_2 \notin S''$,

d ∈ *S* ⁰ ∩ *V*(*C*) Steiner

Theorem

In every **Steiner claw-free** *instance, BCR gap* = *HYP gap.*

Quo vadis?

Conjecture

If the following minor does not exist, then BCR gap = HYP gap.

Quo vadis?

Conjecture

If the following minor does not exist, then BCR gap = HYP gap.

Quo vadis?

Conjecture

If the following minor does not exist, then BCR gap = HYP gap.

Thanks!