Adaptable colouring and colour critical graphs

Bing Zhou Department of Mathematics Trent University

Adapted *k*-colouring of graphs

Definitions. A graph *G* is adaptably *k*colourable if for every *k*-edge colouring *c*', there is a *k*-vertex colouring *c* such that for every edge *xy* in *G*, not all of *c*(*x*), *c*(*y*), and *c*'(*xy*) are the same.

The edge *xy* is monochromatic if $c(x)=c(y)=c'(xy)$.

The adaptable chromatic number of *G*, χ*a*(*G*), is the least *k* such that *G* is adaptably *k*-colourable.

Adapted *k*-colouring as a game

- There are two players E and V.
- Player E colours the edges of a graph *G* first using colours in $\{1,2,...,k\}$.
- Player V then colours vertices of *G* using the same set of colours.
- Player V wins if he can colour the vertices without creating any monochromatic edges.
- Otherwise E wins.

Adapted *k*-colouring as a game

• The least number of colours that player V always has a winning strategy is the adaptable chromatic number of *G*, χ*a*(*G*).

Example. *K*4

• Consider the graph *K*4:

A 2-edge colouring of *K*4.

• E colours the edges in two colours:

An adapted 2-colouring

• V colours the vertices in two colours:

There is no monochromatic edge.

A winning strategy for E with 2 colours

• E has a winning strategy with two colours:

Therefore $\chi a(K4) > 2$.

A winning strategy of V with 3 colours

$$
\chi a(K4)=3.
$$

Colour critical graphs

 \cdot A graph *G* is *k*-critical if $\chi(G) = k$ and

 $\chi(G \sqcup e) = k - 1$ for every edge *e* in *G*.

- A *k*-critical graph can be coloured with *k* 1 colours such that there is only one edge joining two vertices of the same colour.
- Fact. If *G* is *k*-critical then $\chi a(G) \leq k \square 1$. Problem. (Molloy and Thron 2012) Are there any critical graphs *G* with

 $\gamma a(G) = \gamma(G) \sqcup 1$?

Construction 1

The Hajós' construction.

Let G be the graph obtained by applying the Hajós' construction to two graphs *G*1 and *G*2.

Fact. If both *G*1 and *G*2 are *k*-critical, then *G* is also *k*-critical.

Fact. (Huizenga 2008) If $\chi_a(G_1) \geq k$ and $\chi_a(G_2)$ $\geq k$, then $\gamma a(G) \geq k$.

Implication. If there is a *k*-critical graph *G* with $\gamma a(G) = k \square 1$ then there are infinitely many such graphs.

Construction 2

 $G_1 \vee G_2$, the join of G_1 and G_2

Construction 2

- If G_i is a k_i -critical graph and G_i is a k_i -critical graph, then $G_1 \vee G_2$ is a (k_1+k_2) -critical graph.
	- However, it can happen that $\chi_{\alpha}(G) < \chi_{\alpha}(G_{1}) + \chi_{\alpha}(G_{2}).$

The graph *W*5

*W*5

*W*5 is 4-critical.

 $\chi a(W_5) \geq 3$.

Therefore, $\chi a(W_5) = 3$.

An important property of *W*5

*W*5 has a proper subgraph *H*4 such that $χa(H4) = 3.$

The construction for $k = 5$. (1)

We apply Hajós' construction to two copies of *W*5.

The construction for $k = 5$. (2)

We apply Hajós' construction one more time.

The construction for $k = 5$. (3)

We continue applying Hajós' construction to get this graph *F*4.

*F*4 is 4-critical.

The construction for $k = 5$. (4)

*F*4 contains three disjoint copies of *H*4.

 $G_5 = K_1 \vee F_4$.

The construction for $k = 5$. (5)

*G*5 is 5-critical. Therefore $\chi a(G5) \leq 4$.

Claim. $\chi a(G5) \geq 4$.

We show that Player E has a winning strategy with 3 colours on *G*5.

General case

Theorem. For every integer *k* such that $k \geq 4$, there is a *k*-critical graph *Gk* that contains a proper subgraph *Hk* such that

 $\chi a(Hk) \geq k \sqcup 1$.

*K*4 again.

- $\gamma(X4) = 4$ and $\chi(X4 \sqcup e) = 3$ for every edge *e* in *K*4.
- $·$ *χα*(*K*4) = 3.
- \cdot χa (*K*₄ \Box *e*) = 2 for every edge *e* in *K*₄.

Question. Are there any other such "double critical" graphs *G* with $\chi a = \chi(G) \square$ 1?

The Grötzsch graph

Let *G* be the Grötzsch graph.

Fact. *G* is 4-critical. Fact. *G* is triangle-free.

The Grötzsch graph

$$
Fact. \ \ \chi a(G) = 3.
$$

Player E has a winning strategy if there are two colours.

Fact. There are triangle-free 4-critical graphs with adaptable chromatic number 3.

- Question 1: Are there triangle-free *k*-critical graphs with adaptable chromatic number *k*-1 for every $k \geq 5$?
- Question 2: Are there *k*-critical graphs with adaptable chromatic number *k*-1 and girth *g* for every $k \geq 4$ and $q \geq 4$?

Lower bound

 \cdot (Greene, 2004) $\chi_a(G) \geq \frac{\chi(G)}{\sqrt{n \log(\chi(G))}}$

where *n* is the number of vertices in G .

Conjecture. (Greene) There is a function f such that $\chi_a(G) \ge f(\chi(G))$ and $\lim_{k \to \infty} f(k) = \infty$.

Lower bound (2)

- Theorem. (Huizanga, 2008) There is an unbounded function f such that $\chi_a(G) \geq$ $f(\chi(G))$ for almost every graph G.
	- Theorem. (Molloy and Thron, 2011) There is a function h tending to infinity such that $ch_a(G) \geq h(ch(G)).$
	- Theorem. $(BZ 2013)$

 $\chi_{\alpha}(G) \geq K \log \log \chi(G)$ where K is a positive integer.

Still more questions

- Problem. (Molloy, Thron) Are there any graph G such that $\chi_{\alpha}(G)$ is less than the order of $\sqrt{\chi(G)}$?
	- Problem. Can the lower bound $\log \log \chi(G)$ be improved?