Adaptable colouring and colour critical graphs

Bing Zhou Department of Mathematics Trent University

Adapted k-colouring of graphs

Definitions. A graph *G* is adaptably *k*colourable if for every *k*-edge colouring *c*', there is a *k*-vertex colouring *c* such that for every edge *xy* in *G*, not all of c(x), c(y), and c'(xy) are the same.

The edge xy is monochromatic if c(x)=c(y)=c'(xy).

The adaptable chromatic number of G, $\chi a(G)$, is the least k such that G is adaptably k-colourable.

Adapted *k*-colouring as a game

- $\cdot\,$ There are two players E and V.
- Player E colours the edges of a graph *G* first using colours in $\{1, 2, ..., k\}$.
- Player V then colours vertices of *G* using the same set of colours.
- Player V wins if he can colour the vertices without creating any monochromatic edges.
- \cdot Otherwise E wins.

Adapted k-colouring as a game

• The least number of colours that player V always has a winning strategy is the adaptable chromatic number of G, $\chi a(G)$.

Example. K4

• Consider the graph *K*4:

A 2-edge colouring of *K*4.

• E colours the edges in two colours:

An adapted 2-colouring

· V colours the vertices in two colours:

There is no monochromatic edge.

A winning strategy for E with 2 colours

• E has a winning strategy with two colours:

Therefore $\chi a(K_4) > 2$.

A winning strategy of V with 3 colours

$$\chi a(K4) = 3.$$

Colour critical graphs

• A graph *G* is *k*-critical if $\chi(G) = k$ and

 $\chi(G \square e) = k - 1$ for every edge *e* in *G*.

- A *k*-critical graph can be coloured with k 1 colours such that there is only one edge joining two vertices of the same colour.
- Fact. If *G* is *k*-critical then $\chi a(G) \le k \Box 1$. Problem. (Molloy and Thron 2012) Are there any critical graphs *G* with $\chi a(G) = \chi(G) \Box 1$?

Construction 1

The Hajós' construction.

Let G be the graph obtained by applying the Hajós' construction to two graphs G_1 and G_2 .

Fact. If both *G*₁ and *G*₂ are *k*-critical, then *G* is also *k*-critical.

Fact. (Huizenga 2008) If $\chi a(G_1) \ge k$ and $\chi a(G_2) \ge k$, then $\chi a(G) \ge k$.

Implication. If there is a *k*-critical graph *G* with $\chi a(G) = k \Box 1$ then there are infinitely many such graphs.

Construction 2

 $G_1 \lor G_2$, the join of G_1 and G_2

Construction 2

- [•] If G_1 is a k_1 -critical graph and G_2 is a k_2 -critical graph, then $G_1 \lor G_2$ is a (k_1+k_2) -critical graph.
 - However, it can happen that $\chi_a(G) < \chi_a(G_1) + \chi_a(G_2).$

The graph W5

 W_5

W_5 is 4-critical.

Therefore, $\chi a(W_5) = 3$.

An important property of *W*5

*W*₅ has a proper subgraph *H*₄ such that $\chi a(H_4) = 3$.

The construction for k = 5. (1)

We apply Hajós' construction to two copies of W_5 .

The construction for k = 5. (2)

We apply Hajós' construction one more time.

The construction for k = 5. (3)

We continue applying Hajós' construction to get this graph *F*4.

F4 is 4-critical.

The construction for k = 5. (4)

*F*4 contains three disjoint copies of *H*4.

 $G_5 = K_1 \vee F_4.$

The construction for k = 5. (5)

- *G*5 is 5-critical. Therefore $\chi a(G5) \leq 4$.
- Claim. $\chi a(G5) \ge 4$.
- We show that Player E has a winning strategy with 3 colours on G5.

General case

Theorem. For every integer k such that $k \ge 4$, there is a k-critical graph Gk that contains a proper subgraph Hk such that

 $\chi a(Hk) \geq k \Box 1.$

K4 again.

- · $\chi(K4) = 4$ and $\chi(K4 \square e) = 3$ for every edge *e* in *K*4.
- · $\chi a(K_4) = 3.$
- · $\chi a (K4 \square e) = 2$ for every edge e in K4.

Question. Are there any other such "double critical" graphs *G* with $\chi a = \chi(G) \square 1$?

The Grötzsch graph

Let *G* be the Grötzsch graph.

Fact. *G* is 4-critical.Fact. *G* is triangle-free.

The Grötzsch graph

Fact.
$$\chi a(G) = 3$$
.

Player E has a winning strategy if there are two colours.

Fact. There are triangle-free 4-critical graphs with adaptable chromatic number 3.

More questions

- Question 1: Are there triangle-free *k*-critical graphs with adaptable chromatic number *k*-1 for every $k \ge 5$?
- Question 2: Are there *k*-critical graphs with adaptable chromatic number *k*-1 and girth *g* for every $k \ge 4$ and $g \ge 4$?

Lower bound

• (Greene, 2004) $\chi_a(G) \ge \frac{\chi(G)}{\sqrt{n\log(\chi(G))}}$

where *n* is the number of vertices in *G*.

Conjecture. (Greene) There is a function *f* such that $\chi_a(G) \ge f(\chi(G))$ and $\lim_{k \to \infty} f(k) = \infty$.

Lower bound (2)

- Theorem. (Huizanga, 2008) There is an unbounded function f such that $\chi_a(G) \ge f(\chi(G))$ for almost every graph G.
 - Theorem. (Molloy and Thron, 2011) There is a function *h* tending to infinity such that $ch_a(G) \ge h(ch(G)).$
 - Theorem. (BZ 2013)

 $\chi_a(G) \ge K \log \log \chi(G)$ where *K* is a positive integer.

Still more questions

- **Problem**. (Molloy, Thron) Are there any graph G such that $\chi_a(G)$ is less than the order of $\sqrt{\chi(G)}$?
 - Problem. Can the lower bound $\log \log \chi(G)$ be improved?