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I shall need this exercise later, someone please solve it

Exercise
If A = lim−→nAn, B = lim−→nBn and there are morphisms ϕj , ψj such
that the following diagram commutes

A1 A2 A3
. . . A

B1 B2 B3
. . . B

ϕ1 ϕ2 ϕ3ψ1 ψ2

then A ∼= B.



The plan

1. Today:

1.1 Basic properties of C*-algebras.

1.2 Classification: UHF and AF algebras.

1.3 Elliott’s program.

2. Friday: Applying logic to 1.2–1.3.

3. Saturday: Convincing you that 1.2–1.3 is logic.
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Prologue

A topological space X is Polish if it is separable and completely
metrizable.
A subset of X is analytic if it is a continuous image of a Borel set.
An equivalence relation E on X is analytic if it is an analytic
subset of X 2.

Thesis
Almost all classical classification problems deal with analytic
equivalence relations on Polish spaces.

Thesis
In almost all cases, the space of invariants has a Polish topology
and the computation of invariants is given by a Borel-measurable
function.
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Hilbert space, inner product

v =(v0, v1, . . . , vn, . . . ) ∈ CN

(v |u) =
∑

n vnūn inner product

‖v‖ =
√

(v |v) norm

`2 ={v | ‖v‖ <∞}

L2(µ) ={f : [0, 1]→ C |
∫
|f |2 dµ <∞}

Fact
Two complex Hilbert spaces are isomorphic iff their dimensions are
equal. In particular, `2 ∼= L2(µ).
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C*-algebras

H: a complex Hilbert space, `2
If a : H → H is linear let

‖a‖ = sup
‖ξ‖=1

‖aξ‖.

Define a∗ implicitly via

(aη|ξ) = (η|a∗ξ)

for all η and ξ in H.

(B(H)

,+, ·,∗ , ‖ · ‖

): the algebra of bounded linear operators on H,

Example

If dim(H) = n then B(H) is Mn(C): n × n complex matrices.



C*-algebras

H: a complex Hilbert space, `2
If a : H → H is linear let

‖a‖ = sup
‖ξ‖=1

‖aξ‖.

Define a∗ implicitly via

(aη|ξ) = (η|a∗ξ)

for all η and ξ in H.
(B(H)

,+, ·,∗ , ‖ · ‖

): the algebra of bounded linear operators on H,

Example

If dim(H) = n then B(H) is Mn(C): n × n complex matrices.



C*-algebras

H: a complex Hilbert space, `2
If a : H → H is linear let

‖a‖ = sup
‖ξ‖=1

‖aξ‖.

Define a∗ implicitly via

(aη|ξ) = (η|a∗ξ)

for all η and ξ in H.
(B(H),+, ·,∗ , ‖ · ‖): the algebra of bounded linear operators on H,

Example

If dim(H) = n then B(H) is Mn(C): n × n complex matrices.



C*-algebras

H: a complex Hilbert space, `2
If a : H → H is linear let

‖a‖ = sup
‖ξ‖=1

‖aξ‖.

Define a∗ implicitly via

(aη|ξ) = (η|a∗ξ)

for all η and ξ in H.
(B(H),+, ·,∗ , ‖ · ‖): the algebra of bounded linear operators on H,

Example

If dim(H) = n then B(H) is Mn(C): n × n complex matrices.



Definition
A concrete C*-algebra is a norm-closed subalgebra of B(H).

An abstract C*-algebra is a Banach algebra with involution
(A,+, ·, ∗, ‖ · ‖) such that

1. (a∗)∗ = a

2. (ab)∗ = b∗a∗

3. ‖a‖ = ‖a∗‖

4. ‖ab‖ ≤ ‖a‖ · ‖b‖

5. ‖a∗a‖ = ‖a‖2

for all a and b in A.

Every concrete C*-algebra is an abstract C*-algebra.

Theorem (Gelfand–Naimark–Segal, 1942)

Every abstract C*-algebra is isomorphic to a concrete C*-algebra.
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Examples of C*-algebras

1. B(H), Mn(C).

2. If X is a compact Hausdorff space,

C (X ) = {f : X → C|f is continuous}.



Gelfand–Naimark duality

A C*-algebra is unital if it has a multiplicative unit.

Theorem (Gelfand–Naimark)

Every unital abelian C*-algebra is of the form C (X ) for some
compact Hausdorff space.

Theorem
Categories of unital abelian C*-algebras with *-homomorphisms
and compact Hausdorff spaces with continuous maps are
equivalent.

X Y

C(X) C(Y)

ϕ

g 7→ g ◦ ϕ
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Automatic continuity

Proposition

Every *-homomorphism Φ: A→ B between C*-algebras satisfies

‖Φ(a)‖ ≤ ‖a‖

(C*-algebraists call such map a contraction).

Proof.
First the abelian case:

Φ: C (X )→ C (Y )

is of the form Φ(f ) = f ◦ ϕ for a continuous ϕ : Y → X .
For the general case, note that a∗a always generates an abelian
algebra, hence ‖Φ(a∗a)‖ ≤ ‖a∗a‖.
Then use the C*-equality, ‖a‖2 = ‖a∗a‖.
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Direct (or inductive) limits

Assume Aλ, for λ ∈ Λ, is a directed system of C*-algebras with

Φκλ : Aκ → Aλ

for κ < λ in Λ a commuting system of *-homomorphisms. Since all
Φκλ are contractions, on the ‘algebraic’ direct limit we have a
uniquely defined C*-norm.
Let limλ Aλ be the closure of the ‘algebraic’ direct limit.



(Unital) embeddings

A *-homomorphism between unital algebras is unital if it sends
unit to unit.

Define a unital *-homomorphism

M2(C) ↪→ M4(C)

via (
a11 a12

a21 a22

)
7→


a11 a12 0 0
a21 a22 0 0
0 0 a11 a12

0 0 a21 a22





(Unital) embeddings

A *-homomorphism between unital algebras is unital if it sends
unit to unit.
Define a unital *-homomorphism

M2(C) ↪→ M4(C)

via

(
a11 a12

a21 a22

)
7→


a11 a12 0 0
a21 a22 0 0
0 0 a11 a12

0 0 a21 a22





(Unital) embeddings

A *-homomorphism between unital algebras is unital if it sends
unit to unit.
Define a unital *-homomorphism

M2(C) ↪→ M4(C)

via (
a11 a12

a21 a22

)
7→


a11 a12 0 0
a21 a22 0 0
0 0 a11 a12

0 0 a21 a22





CAR algebra (Fermion algebra, M2∞)

M2(C) ↪→ M4(C)

↪→ M8(C) ↪→ M16(C) ↪→ . . .

M2∞(C) = lim−→M2n(C).
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The structure of full matrix algebras

Lemma
There is a unital *-homomorphism of Mm(C) into Mn(C) if and
only if m divides n. Moreover, such *-homomorphism is unique up
to a unitary conjugacy.

Partial proof.

If m|n then a 7→ diag(a, a, . . . , a) (a repeated m/n times).
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Uniformly HyperFinite (UHF) algebras
are direct limits of full matrix algebras

If A = limj Mn(j)(C) is unital, let the generalized integer associated
to A be the formal infinite product

GI (A) =
∏

p prime

pk(p)

where k(p) is the supremum of all k such that pk divides n(l) for
some l .

It seems that
GI (M2∞) = 2ℵ0 ,

but one needs to check that GI (A) is well-defined.
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Stability
We need to show that A = limj Mn(j)(C) = limj Mk(j)(C) implies

(∀j)(∃l)(n(j) divides k(l)).

If C ,D are subalgebras of A, write

C ⊆ε D

if (∀c ∈ C )(∃d ∈ D)‖c − d‖ ≤ ε‖c‖.

Lemma
(∀k ∈ N)(∃ε > 0) such that for all A and subalgebras C and D of
A such that C ⊆ε D and C ∼= Mk(C), then there exists an inner
automorphism Φ of A such that Φ[C ] ⊆ D.

A C*-algebra A is LM (Locally Matricial) if every finite F ⊆ A is
ε-included in some full matrix subalgebra of A, for every ε > 0.

Corollary

If A is separable then LM implies UHF.
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Classification of UHF algebras

Theorem (Glimm, 1960)

If A and B are unital separable UHF algebras, then GI (A) = GI (B)
if and only if A ∼= B.

Proof.
⇒ Let A = limj Mn(j)(C) and B = limj Mm(j)(C).
Since GI (A) = GI (B), we may assume

n(j)|m(j) and m(j)|n(j + 1).

Then we have ϕj and ψj for all j ∈ N so that

Mn(1)(C) Mn(2)(C) Mn(3)(C) . . . A

Mm(1)(C) Mm(2)(C) Mm(3)(C) . . . B

ϕ1 ϕ2 ϕ3ψ1 ψ2

commutes, and by the exercise we have A ∼= B.
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AF algebras

We move on to the classification problem for the next simplest
class of unital separable C*-algebras.

A C*-algebra is AF (Approximately Finite) if it is a direct limit of
finite-dimensional C*-algebras.

Lemma
Every finite-dimensional C*-algebra is a direct sum of full matrix
algebras.
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Bratteli diagrams

Consider unital *-homomorphism

Φ: M2(C)⊕M3(C)→ M6(C)⊕M5(C)⊕M6(C)

(a, b) 7→ (diag(a, a, a), diag(a, b), diag(b, b)).

The Bratteli diagram describing this map is the following:

2 6

3 5

6

Bratteli diagram determines *-homomorphism Φ uniquely, up to
the unitary conjugacy.
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Examples of Bratteli diagrams that describe AF algebras

• • • • . . .

M2∞ .

• • • • . . .

M3∞ .

• . . .

• • . . .

• • • . . .

• . . .

C(2N).
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More examples of Bratteli diagrams

• . . .

• • . . .

• • • . . .

• . . .

C(ω + 1)

1 1 2 3 5 . . .

1 1 2 3 . . .

Fibonacci algebra: a simple unital AF algebra with a unique trace that is not UHF.
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Classification of AF algebras: Stabilization

If n ∈ N and A is a C*-algebra, then so is Mn(A): n × n matrices
of elements of A with respect to the matrix operations and the
operator norm.

Consider the direct limit of Mn(A), for n ∈ N, with (non-unital)
*-homomorphism

Φn : Mn(A)→ Mn+1(A)

defined via

Φn(a) =

(
a 0
0 0

)
.

Then M∞(A) = limn Mn(A) is the stabilization of A.
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Classification of AF algebras:
Murray-von Neumann equivalence

Fix a C*-algebra A. Some p ∈ A is a projection if p2 = p = p∗.

If p and q are projections in A, then we write p ∼ q and say that p
and q are Murray von Neumann equivalent if there exists v ∈ A
such that

vv∗ = p and v∗v = q.

Let V (A) be the set of projections on M∞(A) modulo ∼, equipped
with the operation ⊕ defined by

[p]⊕ [q] :=

[(
p 0
0 q

)]
.

This is an abelian semigroup and its Grothendieck group is K0(A).
K0(A)+ is the set of elements of K0(A) that correspond to
projections in M∞(A).
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K-theoretic classification

Example

If A is UHF then K0(A) = {k/m : k ∈ Z,m divides GI (A)}.

Theorem (Elliott, 1975)

Separable unital AF algebras are classified by the ordered
(countable, abelian) group

K0(A) = (K0(A),K0(A)+, [1A]).

Categories of AF algebras and their K0 groups are equivalent.

AF algebra A Bratteli diagram, BD(A)

K0(A)

non-canonical

non-canonical
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Elliott’s program

Conjecture (Elliott, 1990’s)

All nuclear,1 separable, simple, unital, infinite-dimensional
C*-algebras are classified by the K-theoretic invariant,

Ell(A) : ((K0(A),K0(A)+, 1),K1(A)).

This conjecture has lead to some spectacular developments.

1I shall define nuclear C*-algebras on Saturday. All algebras mentioned
today (except B(H)) are nuclear.
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Examples

If K is a class of compact Hausdorff spaces, then AK algebras have
building blocks of the form

C (X ,Mm(C)) = {f : X → Mm(C)|X ∈ K and f is continuous}

With K = {[0, 1]} we have AI algebras, if K = {{z ∈ C : |z | = 1}}
we have AT algebras, if K is the class of all compact metric spaces
then we have AH algebras.

Theorem (Elliott–Gong–Li, 2010)

If sup{dim(X ) : X ∈ K} <∞ then simple unital AK algebras are
classified by their Elliott invariant.

It actually suffices to have algebras of slow dimension growth.
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Nuclear, separable, simple, unital counterexamples

Jiang–Su, 1999

There exists an infinite-dimensional C*-algebra Z such that
Ell(Z) = Ell(C) and Ell(A⊗Z) = Ell(A) for all A.

Rørdam 2003, Toms, 2004
There are AH algebras A such that A 6∼= A⊗Z (yet
Ell(A) = Ell(A⊗Z)).

The algebra A constructed by Toms cannot be distinguished from
A⊗Z by any ‘reasonable’ invariant.
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Elliott’s conjecture recast

Conjecture (Toms–Winter, 2009)

All nuclear, separable, simple, unital algebras A such that
A⊗Z ∼= A are classified by Elliott’s invariant.

Theorem (Toms–Winter, 2009)

For ‘natural’ AH algebras A, A⊗Z has slow dimension growth and
is therefore subject to Elliott–Gong–Li classification theorem.

Toms–Winter conjecture has been confirmed in many cases, largely
by the work of Winter.
Next time:

1. What is the descriptive complexity of the isomorphism relation
of C*-algebras?
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