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Classical Situation (1970’s): Ext(A)

Let A be a separable unital C∗-algebra. Ext(A) is given by the
set of unital ∗-monomorphisms π : A→ B(H)/K (H) modulo
B(H)-unitary equivalence.

Use a unitarily implemented isomorphism between B(H) and
M2(B(H)) to define a semigroup structure on Ext(A).

Here is the picture:

[π] + [ρ] =

[(
π 0
0 ρ

)]
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2011 Situation: Hom(N ,RU)

In 2011 Brown introduced the following convex set.

For N a separable II1-factor, R the hyperfinite II1-factor, and U
a free ultrafilter on N define Hom(N,RU ) to be the set of unital
∗-homomorphisms π : N → RU modulo unitary equivalence.

We use isomorphisms between RU and pRUp for p a projection
in RU to define convex combinations.
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2011 Situation: Hom(N ,RU)

Here is a(n incorrect) picture:

t[π] + (1− t)[ρ] =

[(
pπp 0

0 p⊥ρp⊥

)]
where p is a projection in RU and τR(p) = t.

With this definition, we may consider Hom(N,RU ) as a closed,
bounded, convex subset of a Banach space.

Brown was able to characterize extreme points:

Theorem (Brown, 2011)

[π] ∈ Hom(N,RU ) is extreme if and only if π(N)′ ∩ RU is a
factor.
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Preliminaries

Definition

For a separable, unital, tracial C∗-algebra A, and a separable
McDuff II1-factor M (M ∼= M ⊗ R), we define Hom(A,M) to
be the space of unital ∗-homomorphisms π : A→ M modulo
the equivalence relation of weak approximate unitary
equivalence (w.a.u.e.).

That is, [π] = [ρ] if there is a sequence {un} of unitaries in M
such that for every a ∈ A we have

lim
n
||π(a)− unρ(a)u∗n||2 = 0.

We endow Hom(A,M) with the topology of pointwise
convergence (with appropriate consideration for equivalence
classes).
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Convex Structure

Taking advantage of the properties of a McDuff factor
(M ∼= M ⊗ R), we can define convex combinations in
Hom(A,M).

Definition

For a McDuff factor M, an isomorphism σM : M ⊗ R → M is a
regular isomorphism if σM ◦ (idM ⊗ 1R) ∼ idM .
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Convex Structure

Definition

For t ∈ [0, 1], [π], [ρ] ∈ Hom(A,M), we define

t[π] + (1− t)[ρ] := [σM(π ⊗ p + ρ⊗ p⊥)]

where σM : M ⊗ R → M is a regular isomorphism and p is a
projection in R with τR(p) = t.

(Correct) Picture:(
(1M ⊗ p)(π ⊗ 1R)(1M ⊗ p) 0

0 (1M ⊗ p⊥)(ρ⊗ 1R)(1M ⊗ p⊥)

)
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Extreme Points

We may also consider Hom(A,M) as a closed, separable,
bounded, convex subset of a Banach space.

We would like to find a nice characterization of extreme points.

The characterization in the ultrapower situation cannot apply
here because relative commutants are not well-defined under
weak approximate unitary equivalence.

Proposition (A.)

Given π : A→ M, we have that Hom(A/kerπ,M) is a face of
Hom(A,M).
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Connection to Trace Space

Given [π] ∈ Hom(A,M) we get a (unital) trace on A given by

τM ◦ π.

The correspondence [π] 7→ τM ◦ π is well-defined, continuous,
and affine.

Natural question: For a fixed M, does this give all of the
(unital) traces on A?
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Nuclear Case

Theorem (A.)

If A is nuclear then for any McDuff M we have
Hom(A,M) ∼= T (A) given by [π]↔ τM ◦ π.

English Version: All traces of a separable unital nuclear algebra
“lift”through any fixed McDuff factor; and the traces
“remember”their homomorphisms up to w.a.u.e.

(Recall: A nuclear ⇒ Ext(A) is a group. But the class of
algebras A for which Ext(A) is a group is strictly larger than
the nuclears. In 1977 Anderson showed that Ext(A) is not
always a group.)
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Examples

Similar to the program of Ext(A) we would like to find
examples of the following.

1 Well-Behaved Non-Nuclear: A non-nuclear A where for
any McDuff M, all traces lift through M and the traces
remember their homomorphisms.

2 Too Many Traces: A necessarily non-nuclear algebra B
where for some McDuff M, there is a trace on B that
does not lift through M.

3 Forgetful Trace: A necessarily non-nuclear algebra C where
for some McDuff M, there is a trace on C lifting through
M via two inequivalent homomorphisms.
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(1) Well-Behaved Non-Nuclear

Dadarlat found a tracial non-nuclear A contained in an
AF-algebra.

It follows that any trace on A lifts through R; hence any trace
lifts through any McDuff.

Also, it can be shown that the traces remember their
homomorphisms (in any McDuff).
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(2) Too Many Traces

Brown found an algebra B such that for any McDuff M, there
is a trace TM ∈ T (B) so that the von Neumann closure of the
GNS representation πTM

is isomorphic to M. That is,

πTM
(B)′′ ∼= M.

A result by Ozawa demonstrates that there is no separable
universal McDuff factor. So there cannot be an M such that
every trace of B lifts through M.
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(3) Forgetful Trace

Finding an example of an algebra C with a forgetful trace
would give legitimacy to the expectation that the convex sets
Hom(C,M) form an invariant richer than the trace space.

A result of Hadwin’s using the concept of dimension ratio
(related to free entropy) gives a II1 factor N and two
inequivalent homomorphisms π, ρ : C ∗r (F2)→ N such that
τN ◦ π = τN ◦ ρ.

Alas, N is not necessarily McDuff.

Question: Is the inequivalence of π and ρ preserved when we
pass to π ⊗ 1R , ρ⊗ 1R : C ∗r (F2)→ N ⊗ R?
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