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Theorem (Gel’fand-Naimark duality)

The category of C*-algebras, with *-morphisms as arrows, is a
concrete realization of the dual category of locally compact spaces,
with proper continuous maps as arrows.
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Theorem (Gel’fand-Naimark duality)

The category of C*-algebras, with *-morphisms as arrows, is a
concrete realization of the dual category of locally compact spaces,
with proper continuous maps as arrows.

Founding Allegory of Noncommutative Geometry

Noncommutative geometry is the study of noncommutative
generalizations of algebras of functions on spaces.
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Theorem (Gel’fand-Naimark duality)

The category of C*-algebras, with *-morphisms as arrows, is a
concrete realization of the dual category of locally compact spaces,
with proper continuous maps as arrows.

Motivation
Noncommutative metric geometry aims at providing a
foundation for constructions of approximations in quantum
physics based upon quantum spaces, and provides a new
approach to developing a geometry for quantum spaces
from the metric geometry of their state spaces. The key tools
are metrics on classes of quantum metric spaces.
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3 Locally Compact Quantum Metric Spaces
Topographies
Convergence for locally compact quantum metric
spaces
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What should a quantum locally compact metric
space be?

Founding Allegory of Noncommutative Metric Geometry

Noncommutative metric geometry is the study of
noncommutative generalizations of algebras of Lipschitz
functions on metric spaces.

First Problem of Noncommutative Metric Geometry

What should a noncommutative analogue of a Lipschitz
algebra be? For a locally compact metric space, Gel’fand
duality suggests that a noncommutative Lipschitz algebra
be based on a C*-algebra. What extra structure does the
metric provide?

We begin with the classical picture as a guide.
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Lipschitz Seminorms

A natural dual object to a metric is the Lipschitz seminorm:

Definition

Let (X, m) be a metric space. For any function f : X→ R,
define:

L(f ) = sup
{
|f (x)− f (y)|

m(x, y)
: x, y ∈ X, x 6= y

}
.

Questions

1 Can we recover the metric from its Lipschitz
seminorm?

2 What makes a Lipschitz seminorm special among all
seminorms?
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A distance on the state space

The self-adjoint part of a C*-algebra A is denoted by sa (A)
while its state space is denoted by S (A) and the smallest
unital C*-algebra containing A is denoted by uA.

Definition

A Lipschitz pair (A, L) is a C*-algebra A and a densely
defined seminorm L on sa (uA) such that
{a ∈ sa (uA) : L(a) = 0} = R1A.

Definition (Kantorovich (1940), Kantorovich-Rubinstein (1958),
Wasserstein (1969), Dobrushin (1970), Connes (1989), Rieffel
(1998))
The Monge-Kantorovich metric mkL on S (A) associated with
a Lipschitz pair (A, L) is defined for all ϕ, ψ ∈ S (A) by:

mkL(ϕ, ψ) = sup {|ϕ(a)− ψ(a)| : a ∈ sa (A), L(a) 6 1} .
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The classical Monge-Kantorovich metric

Theorem
Let (X, m) be a compact metric space and identify X with the pure
state space of C(X) (i.e. the Gel’fand spectrum of C(X)). Let L be
the Lipschitz seminorm for m. Then:

∀x, y ∈ X m(x, y) = mkL(x, y).

The Monge-Kantorovich metric is well-behaved when
working over compact metric spaces:

Theorem (Wasserstein, Dobrushin (1970))
Let (X, m) be a compact metric space. The Monge-Kantorovich
metric mkL associated with m is a metric which metrizes the
weak* topology on the state space S (C(X)) of C(X).
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Compact Quantum Metric Spaces

Based on this observation, Rieffel introduced:

Definition (Rieffel, 1998)

A compact quantum metric space (A, L) consists of an
order-unit space A and a seminorm L densely defined on A,
satisfying:

{a ∈ A : L(a) = 0} = R1A,

and such that the distance:

mkL : ϕ, ψ ∈ S (A) 7→ sup{|ϕ(a)− ψ(a)| : a ∈ A, L(a) 6 1}

metrizes the weak* topology on the state space S (A). The
seminorm L is then called a Lip-norm.

We shall call a quantum compact metric space a unital
Lipschitz pair (A, L) such that (sa (A), L) is a compact
quantum metric space.
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Characterization of Compact Quantum Metric
Spaces

The key observation of Rieffel is that one may characterize
compact quantum metric spaces in C*-algebraic terms:

Theorem (Rieffel, 1998)

A unital Lipschitz pair (A, L) with A unital is a compact
quantum metric space if and only if:

1 r = diam (S (A), mkL) < ∞,
2 {a ∈ sa (A) : L(a) 6 1, ‖a‖A 6 r} is precompact in norm.

Proof.

Use Kadison functional representation and Arzéla-Ascoli
theorems.
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Examples: Ergodic Actions of Compact Groups
with continuous Lengths

For any C*-algebra A, let sa (A) be its self-adjoint part and
‖ · ‖A be its norm.

Theorem (Rieffel, 1998)

Let α be a strongly continuous action of a compact group G on a
unital C*-algebra A and ` be a continuous length function on G.
Let e ∈ G be the unit of G. For all a ∈ A, define:

L(a) = sup
{‖αg(a)− a‖A

`(g)
: g ∈ G \ {e}

}
.

If {a ∈ A : ∀g ∈ G αg(a) = a} = C1A, then (sa (A), L) is a
compact quantum metric space.

This result uses the fact that spectral subspaces for such
actions are finite dimensional (Hoegh-Krohn, Landstad,
Stormer, 1981).
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Convergence of Compact Metric Spaces

Definition

Let (X, mX) and (Y, mY) be two compact metric spaces. A
distance m on X ä Y is admissible for (mX, mY) when the
canonical injections (X, mX) ↪→ (X ä Y, m) and
(Y, mY) ↪→ (X ä Y, m) are isometries.

Notation
The Hausdorff distance on the compact subsets of a metric space
(X, m) is denoted by Hausm.

Definition (Gromov, 1981)

The Gromov-Hausdorff distance between two compact metric
spaces (X, mX) and (Y, mY) is the infimum of the set:

{Hausm(X, Y) : m is admissible for (mX, mY)} .
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McShane’s Theorem

How to formulate “isometric embeddings” in the
noncommutative world?

Theorem (McShane, 1934)
Let (Z, m) be a metric space and X ⊆ Z. If f : X→ R has
Lipschitz constant l, then there exists g : Z→ R with Lipschitz
constant l and whose restriction to X is f .

Thus, the Lipschitz seminorm on C(X→ R) is the quotient
of the Lipschitz seminorm on C(Z→ R). More generally, a
map ι : X→ Z between two compact metric spaces is an
isometry if and only:

LX(f ) = inf{LZ(g) : g ∈ C(Z→ R), g ◦ ι = f}

for all f ∈ C(X→ R). This result requires that we work
with R-valued Lipschitz functions.
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The quantum Gromov-Hausdorff distance

Definition (Rieffel, 2000)

Let (A1, L1) and (A2, L2) be two compact quantum metric
spaces. A Lip-norm L on A1 ⊕A2 is admissible for (L1, L1)
when, for all {j, k} = {1, 2} and aj ∈ sa

(
Aj
)
:

Lj(a) = inf{L(a1, a2) : ak ∈ sa (Ak)}.
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(
Aj
)
:

Lj(a) = inf{L(a1, a2) : ak ∈ sa (Ak)}.

Proposition (Rieffel, 1999)

If L is an admissible Lip-norm for (LA, LB) then the canonical
injections (S (A), mkLA) ↪→ (S (A⊕B), mkL) is an isometry
(and similarly with (B, LB)).
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(
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Definition (Rieffel, 2000)

The quantum Gromov-Hausdorff distance
distq((A, LA), (B, LB)) between two compact quantum
metric spaces (A, LA) and (B, LB) is the infimum of the set:

{HausmkL(S (A), S (B)) : L is admissible for (LA, LB)} .
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Basic Properties of distq

Theorem (Rieffel, 2000)

For any three quantum compact metric spaces (A, LA), (B, LB)
and (D, LD), we have:

1 diam (S (A), mkLA) + diam (S (B), mkLB) >
distq((A, LA), (B, LB)) = distq((B, LB), (A, LA)) > 0,

2 distq((A, LA), (D, LD)) 6
distq((A, LA), (B, LB)) + distq((B, LB), (D, LD)),

3 distq is complete,
4 distq is dominated by the Gromov-Hausdorff distance in the

classical case,
5 distq((A, LA), (B, LB)) = 0 iff there exists a

order-unit-space isomorphism from sa (A) to sa (B) whose
dual map is an isometry from (S (B), mkLB) to
(S (A), mkLA).
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The Distance Zero Problem

How to get *-isomorphism as necessary for distance zero?
1 Replace the state space by 2× 2-matrix-valued

completely positive unital maps: Kerr’s matricial
Gromov-Hausdorff distance

2 Replace the state space by the graph of the
multiplication restricted to the unit Lip-ball: Li’s
C*-algebraic distance

3 Work entirely within the C*-algebra category.

Li’s nuclear distance based on Lip-balls,
FL approach based on Leibniz Lip-norms:

1 FL’s quantum propinquity based on Lip-balls.
2 FL’s dual propinquity based on state space.

Thus, our new approach focuses on keeping the noncommutative
Monge-Kantorovich metric and shift the focus to the relationship
between Lip-norms and multiplicative structure.
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The Leibniz inequality

The main problem of distq is that it does not involve the
multiplication at all, and in fact, neither does the definition
of compact quantum metric spaces.

Yet, most important
examples of quantum locally compact metric space have a
very important additional property:

Definition

A seminorm L on a C*-algebra A has the Leibniz property
when:

∀a, b ∈ A L(ab) 6 ‖a‖AL(b) + L(a)‖b‖A.

In most cases, the Lip-norms of quantum locally compact
metric space comes from derivations, spectral triples or
similar constructions which gives the Leibniz property. This
is a natural connection between metric and multiplicative
structures of quantum locally compact metric space.
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The role of the Leibniz inequality

The Leibniz inequality plays a central role in Rieffel’s
recent work on convergence of vector bundles. It
appears that one should work within the framework of
C*-metric spaces, where Lip-norms are defined on
C*-algebras and satisfy a strong form of the Leibniz
property (cf Rieffel’s work on convergence of matrix
algebras to spheres, for instance).

Yet, the quotient of a Leibniz seminorm is not Leibniz in
general. This means that if one asks for admissible
Lip-norms to be Leibniz in the definition of distq, one
only gets a pseudo-semi-metric (Rieffel’s proximity).

Hard Problem
How does one define a non-trivial metric on *-isomorphic,
quantum isometric classes of C*-metric spaces?
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GPS

1 Quantum Compact Metric Spaces
The Monge Kantorovich distance
Compact Quantum Metric Spaces

2 The Gromov-Hausdorff Propinquity
The quantum Gromov-Hausdorff distance
The dual propinquity
The Quantum Propinquity

3 Locally Compact Quantum Metric Spaces
Topographies
Convergence for locally compact quantum metric
spaces
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Leibniz quantum compact metric spaces

We first choose a category of quantum compact metric
spaces.

For a, b elements of a C*-algebra A, let a ◦ b = ab+ba
2 be the

Jordan product of a, b and {a, b} = ab−ba
2i be the Lie product

of a, b.

Definition (Latrémolière, 2013)

A quantum compact metric space (A, L) is a Leibniz quantum
compact metric space when, for all a, b ∈ sa (A) we have:

L (a ◦ b) 6 ‖a‖AL(b) + L(a)‖b‖A

and
L ({a, b}) 6 ‖a‖AL(b) + L(a)‖b‖A,

while L is lower semi-continuous.
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Bridges and Tunnels

We propose the following notion of a pair of isometric
embeddings of Leibniz quantum compact metric spaces:

Definition (Latrémolière, 2013)

Let (A1, L1) and (A2, L2) be two Leibniz quantum compact
metric spaces. A tunnel (D, LD, π1, π2) is a Leibniz quantum
compact metric space (D, LD) together with two surjective
*-morphisms π1 and π2 such that:

Lj(a) = inf
{

LD(d)
∣∣πj(d) = a

}
for all j ∈ {1, 2} and a ∈ sa

(
Aj
)
.
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We propose the following notion of a pair of isometric
embeddings of Leibniz quantum compact metric spaces:

Definition (Latrémolière, 2013)

Let (A1, L1) and (A2, L2) be two Leibniz quantum compact
metric spaces. A tunnel (D, LD, π1, π2) is a Leibniz quantum
compact metric space (D, LD) together with two surjective
*-morphisms π1 and π2 such that:

Lj(a) = inf
{

LD(d)
∣∣πj(d) = a

}
for all j ∈ {1, 2} and a ∈ sa

(
Aj
)
.

We do not require the tunnel to be of the form (A ⊕
B, L, πA, πB) with πA, πB canonical surjections.
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Bridges and Tunnels

We propose the following notion of a pair of isometric
embeddings of Leibniz quantum compact metric spaces:

Definition (Latrémolière, 2013)

Let (A1, L1) and (A2, L2) be two Leibniz quantum compact
metric spaces. A tunnel (D, LD, π1, π2) is a Leibniz quantum
compact metric space (D, LD) together with two surjective
*-morphisms π1 and π2 such that:

Lj(a) = inf
{

LD(d)
∣∣πj(d) = a

}
for all j ∈ {1, 2} and a ∈ sa

(
Aj
)
.

We can add various conditions on the Leibniz quantum com-
pact metric space of a tunnel: strong Leibniz Lip-norm, com-
pact C*-metric space, etc...
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Bimodules and Bridges

A particular, common type of tunnels is given by the
following construction for two Leibniz quantum compact
metric spaces (A, LA) and (B, LB):

1 Let Ω be a A-B-bimodule, with a norm ‖ · ‖Ω such that:

‖aωb‖Ω 6 ‖a‖A‖ω‖Ω‖b‖B
for all a ∈ A, b ∈ B and ω ∈ Ω.

2 Choose ω0 ∈ Ω and γ > 0 such that, if we set:

bnω0,γ (a, b) = ‖aω0 −ω0b‖Ω

and then:

L(a, b) = max
{

LA(a), LB(b),
1
γ

bnω0,γ (a, b)
}

for all a ∈ A, b ∈ B, then (A⊕B, L, πA, πB) is a tunnel
(where πA,πB are canonical surjections).
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1 Let Ω be a A-B-bimodule, with a norm ‖ · ‖Ω such that:

‖aωb‖Ω 6 ‖a‖A‖ω‖Ω‖b‖B
for all a ∈ A, b ∈ B and ω ∈ Ω.

2 Choose ω0 ∈ Ω and γ > 0 such that, if we set:

bnω0,γ (a, b) = ‖aω0 −ω0b‖Ω

and then:

L(a, b) = max
{

LA(a), LB(b),
1
γ

bnω0,γ (a, b)
}

for all a ∈ A, b ∈ B, then (A⊕B, L, πA, πB) is a tunnel
(where πA,πB are canonical surjections).
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Bridges

The bimodule approach to the construction of Lip-norm is
particularly interesting when the bimodules are
C*-algebras. We thus propose:

Definition (Latrémolière, 2013)

Let (A1, L1) and (A2, L2) be two Leibniz quantum compact
metric spaces. A bridge (D, ω, ρ1, ρ2) is a unital C*-algebra D
and two unital *-monomorphisms ρj : Aj ↪→ D (j = 1, 2) and
ω ∈ D such that there exists ϕ ∈ S (D) with
ϕ((1−ω)∗(1−ω)) = 0 and ϕ((1−ω)(1−ω)∗) = 0.

To every bridge, we can associate a tunnel. The question is
to choose the constant γ such that:

L : (a, b) ∈ sa (A⊕B) 7→ max
{

L1(a), L2(b),
1
γ
‖aω−ωb‖Ω

}
is admissible (difficulties arise: Rieffel, 0910.1968)
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Let (A1, L1) and (A2, L2) be two Leibniz quantum compact
metric spaces. A bridge (D, ω, ρ1, ρ2) is a unital C*-algebra D
and two unital *-monomorphisms ρj : Aj ↪→ D (j = 1, 2) and
ω ∈ D such that there exists ϕ ∈ S (D) with
ϕ((1−ω)∗(1−ω)) = 0 and ϕ((1−ω)(1−ω)∗) = 0.

To every bridge, we can associate a tunnel. The question is
to choose the constant γ such that:

L : (a, b) ∈ sa (A⊕B) 7→ max
{

L1(a), L2(b),
1
γ
‖aω−ωb‖Ω

}
is admissible (difficulties arise: Rieffel, 0910.1968)
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Defining a Distance from Tunnels: reach

How do we define a distance from tunnels?

We associate
numerical quantities to a tunnel. The first is:

Definition (Latrémolière, 2013)

Let (A, LA), (B, LB) be two Leibniz quantum compact
metric spaces and τ = (D, LD, πA, πB) be a tunnel from
(A, LA) to (B, LB). The reach ρ (τ) of τ is:

HausmkLD
(π∗A (S (A)) , π∗B (S (B))) ,

where Hausm is the Hausdorff distance on compact subsets
of a metric space (E, m).
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Defining a Distance from Tunnels: reach

How do we define a distance from tunnels? We associate
numerical quantities to a tunnel. The first is:

Definition (Latrémolière, 2013)

Let (A, LA), (B, LB) be two Leibniz quantum compact
metric spaces and τ = (D, LD, πA, πB) be a tunnel from
(A, LA) to (B, LB). The reach ρ (τ) of τ is:

HausmkLD
(π∗A (S (A)) , π∗B (S (B))) ,

where Hausm is the Hausdorff distance on compact subsets
of a metric space (E, m).
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Defining a Distance from Tunnels: depth

We must also account for the greater level of generality
from Rieffel’s admissibility.

The key is the quantity:

Definition (Latrémolière, 2013)

Let (A, LA), (B, LB) be two Leibniz quantum compact
metric spaces and τ = (D, LD, πA, πB) be a tunnel from
(A, LA) to (B, LB). The depth δ (τ) of τ is:

HausmkLD
(S (D), co (π∗A (S (A)) ∪ π∗B (S (B)))) ,

where co (A) is the weak* closure of the convex hull of any
subset A of S (D).

This quantity will prove useful in dealing with the triangle
inequality property of our new metric. No other approach
has ever involved our more general tunnels and only look
at A⊕B, for which the depth is always 0.
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We must also account for the greater level of generality
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(A, LA) to (B, LB). The depth δ (τ) of τ is:
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(S (D), co (π∗A (S (A)) ∪ π∗B (S (B)))) ,

where co (A) is the weak* closure of the convex hull of any
subset A of S (D).

This quantity will prove useful in dealing with the triangle
inequality property of our new metric. No other approach
has ever involved our more general tunnels and only look
at A⊕B, for which the depth is always 0.
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Defining a Distance from Tunnels: depth

We must also account for the greater level of generality
from Rieffel’s admissibility. The key is the quantity:

Definition (Latrémolière, 2013)

Let (A, LA), (B, LB) be two Leibniz quantum compact
metric spaces and τ = (D, LD, πA, πB) be a tunnel from
(A, LA) to (B, LB). The depth δ (τ) of τ is:

HausmkLD
(S (D), co (π∗A (S (A)) ∪ π∗B (S (B)))) ,

where co (A) is the weak* closure of the convex hull of any
subset A of S (D).

This quantity will prove useful in dealing with the triangle
inequality property of our new metric. No other approach
has ever involved our more general tunnels and only look
at A⊕B, for which the depth is always 0.
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Putting it together

Originally, we define the length of a tunnel by:

Definition (Latrémolière, 2013)

The length of a tunnel τ is the maximum of its reach and its
depth.

A better, equivalent, synthetic quantity, however, is:

Definition (Latrémolière, 2014)

Let τ = (D, LD, πA, πB) be a tunnel between two Leibniz
quantum compact metric spaces (A, LA) and (B, LB). The
extent χ (τ) of τ is:

max
{

HausmkLD
(S (D), π∗A (S (A)) , )

HausmkLD
(S (D), π∗B (S (B)))

}
.
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The length of a tunnel τ is the maximum of its reach and its
depth.

A better, equivalent, synthetic quantity, however, is:

Definition (Latrémolière, 2014)

Let τ = (D, LD, πA, πB) be a tunnel between two Leibniz
quantum compact metric spaces (A, LA) and (B, LB). The
extent χ (τ) of τ is:

max
{

HausmkLD
(S (D), π∗A (S (A)) , )

HausmkLD
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The Dual Propinquity

We can define a new distance between Leibniz quantum
compact metric spaces:

Definition (Latrémolière, 2013, 2014)

The dual propinquity Λ∗((A, LA), (B, LB)) between two
Leibniz quantum compact metric spaces (A, LA) and
(B, LB) is:

inf {χ (τ)|τ is a tunnel from (A, LA) and (B, LB)} .
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The Dual Propinquity

We can define a new distance between Leibniz quantum
compact metric spaces:

Definition (Latrémolière, 2013, 2014)

The dual propinquity Λ∗((A, LA), (B, LB)) between two
Leibniz quantum compact metric spaces (A, LA) and
(B, LB) is:

inf {χ (τ)|τ is a tunnel from (A, LA) and (B, LB)} .

We originally defined the dual propinquity in terms of
lengths of tunnels, though this requires more care; the re-
sulting metrics are equivalent.
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The Dual Propinquity

We can define a new distance between Leibniz quantum
compact metric spaces:

Definition (Latrémolière, 2013, 2014)

The dual propinquity Λ∗((A, LA), (B, LB)) between two
Leibniz quantum compact metric spaces (A, LA) and
(B, LB) is:

inf {χ (τ)|τ is a tunnel from (A, LA) and (B, LB)} .

We may restrict our attention to some specific classes of tun-
nels, and define specialized versions of the dual propinquity,
e.g. to compact C*-metric spaces.
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Triangle Inequality

Theorem (Latrémolière, 2014)
For all Leibniz quantum compact metric spaces (A1, L1), (A2, L2)
and (A3, L3), we have:

Λ∗((A1, L1), (A3, L3)) 6 Λ∗((A1, L1), (A2, L2))

+ Λ∗((A2, L2), (A3, L3)).

Proof.
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Theorem (Latrémolière, 2014)
For all Leibniz quantum compact metric spaces (A1, L1), (A2, L2)
and (A3, L3), we have:

Λ∗((A1, L1), (A3, L3)) 6 Λ∗((A1, L1), (A2, L2))

+ Λ∗((A2, L2), (A3, L3)).

Proof.

Let τ12 = (D12, L12, π1, π2) be a tunnel from (A1, L1) to
(A2, L2) and τ23 = (D23, L23, ρ2, ρ3) be a tunnel from (A2, L2)
to (A3, L3).
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Triangle Inequality

Theorem (Latrémolière, 2014)
For all Leibniz quantum compact metric spaces (A1, L1), (A2, L2)
and (A3, L3), we have:

Λ∗((A1, L1), (A3, L3)) 6 Λ∗((A1, L1), (A2, L2))

+ Λ∗((A2, L2), (A3, L3)).

Proof.

Let D = D12 ⊕D23. For all ε > 0, set Lε(d12, d23) as:

max
{

L12(d12), L23(d23),
1
ε
‖π2(d12)− ρ2(d23)‖A3

}
for all d12 ∈ sa (D12), d23 ∈ sa (D23).
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Triangle Inequality

Theorem (Latrémolière, 2014)
For all Leibniz quantum compact metric spaces (A1, L1), (A2, L2)
and (A3, L3), we have:

Λ∗((A1, L1), (A3, L3)) 6 Λ∗((A1, L1), (A2, L2))

+ Λ∗((A2, L2), (A3, L3)).

Proof.

For all ε > 0, we check that τε = (D12 ⊕D23, Lε, π1, ρ3) is a
tunnel from (A1, L1) to (A3, L3) with:

χ (τε) 6 χ (τ12) + χ (τ23) + ε.
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Triangle Inequality

Theorem (Latrémolière, 2014)
For all Leibniz quantum compact metric spaces (A1, L1), (A2, L2)
and (A3, L3), we have:

Λ∗((A1, L1), (A3, L3)) 6 Λ∗((A1, L1), (A2, L2))

+ Λ∗((A2, L2), (A3, L3)).

Proof.

We conclude by choosing τ12 and τ23 such that

χ (τ12) 6 Λ∗((A1, L1), (A2, L2)) + ε

and χ (τ23) 6 Λ∗((A2, L2), (A3, L3)) + ε, then take the infi-
mum over ε.



The Gromov-
Hausdorff

Propinquity

Frédéric
Latrémolière,

PhD

Quantum
Compact
Metric Spaces

The Gromov-
Hausdorff
Propinquity
The quantum
Gromov-Hausdorff
distance

The dual propinquity

The Quantum
Propinquity

Locally
Compact
Quantum
Metric Spaces

Triangle Inequality

Theorem (Latrémolière, 2014)
For all Leibniz quantum compact metric spaces (A1, L1), (A2, L2)
and (A3, L3), we have:

Λ∗((A1, L1), (A3, L3)) 6 Λ∗((A1, L1), (A2, L2))

+ Λ∗((A2, L2), (A3, L3)).

Proof.

Comment: the tunnels Dε are not in general of the form
(A1 ⊕ A3, . . .). To form such a tunnel would require tak-
ing a quotient, and this is why triangle inequality fails, for
instance, with Rieffel’s proximity, or the quantum Gromov-
Hausdorff distance involves non-Leibniz seminorms.
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Distance Zero

Theorem (Latrémolière, 2013)
For any two Leibniz quantum compact metric spaces (A, LA) and
(B, LB):

Λ∗((A, LA), (B, LB)) = 0

if and only if there exists a *-isomorphism π : A→ B such that
LB ◦ π = LA.

Proof.
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Distance Zero

Theorem (Latrémolière, 2013)
For any two Leibniz quantum compact metric spaces (A, LA) and
(B, LB):

Λ∗((A, LA), (B, LB)) = 0

if and only if there exists a *-isomorphism π : A→ B such that
LB ◦ π = LA.

Proof.

Fix ε > 0 and let τε = (Dε, Lε, πε
A, πε

B) be a tunnel from
(A, LA) to (B, LB) of extent ε or less.
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Distance Zero

Theorem (Latrémolière, 2013)
For any two Leibniz quantum compact metric spaces (A, LA) and
(B, LB):

Λ∗((A, LA), (B, LB)) = 0

if and only if there exists a *-isomorphism π : A→ B such that
LB ◦ π = LA.

Proof.

For any a ∈ sa (A) and l > LA(a), introduce the sets:

lτε (a|l) = {d ∈ sa (Dε) : πε
A(d) = a, Lε(d) 6 l} ,

and
tτε (a|l) = πε

B (lτε (a|l)) .
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Distance Zero

Theorem (Latrémolière, 2013)
For any two Leibniz quantum compact metric spaces (A, LA) and
(B, LB):

Λ∗((A, LA), (B, LB)) = 0

if and only if there exists a *-isomorphism π : A→ B such that
LB ◦ π = LA.

Proof.

The target sets tτε (a|l) are sort of an image of a for τε. If ϕ ∈
S (Dε) and d ∈ lτε (a|l) then there exists ψ ∈ S (A) such that
mkLD(ϕ, ψ ◦ πA) 6 χ (τ). Then:

|ϕ(d)| 6 |ϕ(d) + ψ ◦ πA(d)|+ |ψ(a)| 6 lχ (τε) + ‖a‖A.
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Distance Zero

Theorem (Latrémolière, 2013)
For any two Leibniz quantum compact metric spaces (A, LA) and
(B, LB):

Λ∗((A, LA), (B, LB)) = 0

if and only if there exists a *-isomorphism π : A→ B such that
LB ◦ π = LA.

Proof.

One then deduces that:

diam (tτε (a|l), ‖ · ‖B) 6 lχ (τε) 6 lε.

and tτ (a|l) is a compact subset of the norm compact set {b ∈
sa (B) : L(b) 6 1, ‖b‖ 6 ‖a‖+ 1}.
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Distance Zero

Theorem (Latrémolière, 2013)
For any two Leibniz quantum compact metric spaces (A, LA) and
(B, LB):

Λ∗((A, LA), (B, LB)) = 0

if and only if there exists a *-isomorphism π : A→ B such that
LB ◦ π = LA.

Proof.

Thus (tτε (a|l))ε>0 admits a converging subnet for the Haus-
dorff distance induced by ‖ · ‖B, whose limit is a singleton.
We can use a diagonal argument and our norm estimates to
remove the dependence of the subnet on a and l. This defines
a map π from A to B.
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Distance Zero

Theorem (Latrémolière, 2013)
For any two Leibniz quantum compact metric spaces (A, LA) and
(B, LB):

Λ∗((A, LA), (B, LB)) = 0

if and only if there exists a *-isomorphism π : A→ B such that
LB ◦ π = LA.

Proof.

The multiplicative property of π requires the norm estimate
for la (l|r), while the linearity does not.
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Comparison with the quantum Gromov-Hausdorff
distance

We established:

Theorem (Latrémolière, 2013)
For any two Leibniz quantum compact metric spaces (A, LA) and
(B, LB):

distq((A, LA), (B, LB)) 6 Λ∗((A, LA), (B, LB)).

Moreover, if (A, LA) = (C(X), LX) and (B, LB) = (C(Y), LY)
where X, Y are compact metric spaces and LX and LY are Lipschitz
seminorms, then:

Λ∗((A, LA), (B, LB)) 6 GH(X, Y).

Thus the dual propinquity is an analogue of the
Gromov-Hausdorff distance.
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Completeness

Theorem (Latrémolière, 2013)
The dual propinquity is complete.

Proof.
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Completeness

Theorem (Latrémolière, 2013)
The dual propinquity is complete.

Proof.

It is sufficient to work with a sequence (An, Ln)n∈N of Leibniz
quantum compact metric spaces such that for all n ∈ N there
exists τn = (Dn, Ln, πn, ρn) with:

∞

∑
n=0

λ (τn) < ∞.

For any d = (dn)n∈N ∈ ∏n∈N sa (Dn), we set:

S(d) = sup{Ln(dn) : n ∈ N}.
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Completeness

Theorem (Latrémolière, 2013)
The dual propinquity is complete.

Proof.

Let

L =

(dn)n∈N ∈ ∏
n∈N

sa (Dn) :
∀n ∈ N
πn+1(dn) = ρn(dn+1)
S ((dn)n∈N) < ∞

 .

Let F be the C*-algebra spanned by L in ∏n∈NDn and:

I = {(dn)n∈N ∈ F : lim
n→∞
‖dn‖Dn = 0}.

Our candidate for a limit to (An, Ln)n∈N is F/I .



The Gromov-
Hausdorff

Propinquity

Frédéric
Latrémolière,

PhD

Quantum
Compact
Metric Spaces

The Gromov-
Hausdorff
Propinquity
The quantum
Gromov-Hausdorff
distance

The dual propinquity

The Quantum
Propinquity

Locally
Compact
Quantum
Metric Spaces

Completeness

Theorem (Latrémolière, 2013)
The dual propinquity is complete.

Proof.

If ε > 0 and dn ∈ sa (Dn) for some n ∈ N with Ln(dn) < ∞
then we can find d = (dm),∈N with Ln(dn) 6 S(d) 6 Ln(dn) +
1
2 ε and

‖d‖F 6 ‖dn‖Dn + 2 (Ln(dn) + ε)
∞

∑
n=0

λ (τn).

If an+1 = ωn(dn), then there exists dn+1 in Dn+1
with Ln+1(dn+1) 6 Ln+1(an+1) +

1
2 ε and ‖dn+1‖Dn+1 6

‖an+1‖An+1 + 2(Ln+1(an+1) + ε). Now Ln+1(an+1) 6 Ln(dn).
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Completeness

Theorem (Latrémolière, 2013)
The dual propinquity is complete.

Proof.

We may use our lifting lemma to show for m ∈ N:
the map (dn)n∈N ∈ F 7→ dm ∈ Dm is a *-epimorphism,
the Lip-norms Lm are quotient of S.

We then get two estimates:

HausmkLn
(S (An+1), S (Dn)) 6 2λ (τn)

and

HausmkLn
(S (Dn), S (Dn+1)) 6 2 max {λ (τn), λ (τn+1)} .
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Completeness

Theorem (Latrémolière, 2013)
The dual propinquity is complete.

Proof.

We need a few technical lemmas to show that:

diam (S (F), mkS) < ∞.

From this, we then can prove that (F, S) is a Leibniz quantum
compact metric space.
Using Blaschke selection theorem and our estimates, the se-
quences (S (An))n∈N and (S (Dn))n∈N converge to some
weak* compact convex Z in (S (F), mkS).
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Completeness

Theorem (Latrémolière, 2013)
The dual propinquity is complete.

Proof.

We now identify Z with the state space of F/I . Last, we en-
dow F/I with the quotient of S, which is a Lip-norm. How-
ever, why is it a Leibniz Lip-norm?
This is shown by truncating sequences in F which all map to
the same element in F/I .
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GPS

1 Quantum Compact Metric Spaces
The Monge Kantorovich distance
Compact Quantum Metric Spaces

2 The Gromov-Hausdorff Propinquity
The quantum Gromov-Hausdorff distance
The dual propinquity
The Quantum Propinquity

3 Locally Compact Quantum Metric Spaces
Topographies
Convergence for locally compact quantum metric
spaces
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Bridges and a new distance

For any two Leibniz quantum compact metric spaces, a
bridge γ = (D, ω, ρA, ρB) provides the ingredients for a
tunnel, if we can find λ > 0 such that:

a, b 7→ max
{

LA(a), LB(b),
1
λ
‖ρ1(a)ω−ωρ2(b)‖D

}
is admissible, and in particular, defines a tunnel.

Two Questions

1 How do we compute a possible λ > 0?
2 What is the extent of the associated tunnel, as a

function of λ > 0?
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Bridges and a new distance

For any two Leibniz quantum compact metric spaces, a
bridge γ = (D, ω, ρA, ρB) provides the ingredients for a
tunnel, if we can find λ > 0 such that:

a, b 7→ max
{

LA(a), LB(b),
1
λ
‖ρ1(a)ω−ωρ2(b)‖D

}
is admissible, and in particular, defines a tunnel.

Two Questions
1 How do we compute a possible λ > 0?

2 What is the extent of the associated tunnel, as a
function of λ > 0?
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Bridges and a new distance

For any two Leibniz quantum compact metric spaces, a
bridge γ = (D, ω, ρA, ρB) provides the ingredients for a
tunnel, if we can find λ > 0 such that:

a, b 7→ max
{

LA(a), LB(b),
1
λ
‖ρ1(a)ω−ωρ2(b)‖D

}
is admissible, and in particular, defines a tunnel.

Two Questions
1 How do we compute a possible λ > 0?
2 What is the extent of the associated tunnel, as a

function of λ > 0?
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A distance from bridges: height

Let γ = (D, ω, πA, πB) be a bridge from (A, LA) and
(B, LB).

Definition (F. Latrémolière, 2013)

The 1-level set S (D, ω) of ω is:

S (D, ω) =

{
ϕ ∈ S (D)

∣∣∣∣ ϕ((1−ω)∗(1−ω)) = 0,
ϕ((1−ω)(1−ω)∗) = 0

}
.

Our definition of bridge includes the requirement that this
set is non-empty for the pivot of the bridge, to avoid
trivialities.

The first quantity associated with bridges measure how
much of an error we make by replacing the state space of A
or B by the images of the 1-level set.
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A distance from bridges: height

Let γ = (D, ω, πA, πB) be a bridge from (A, LA) and
(B, LB).

Definition (F. Latrémolière, 2013)

The 1-level set S (D, ω) of ω is:

S (D, ω) =

{
ϕ ∈ S (D)

∣∣∣∣ ϕ((1−ω)∗(1−ω)) = 0,
ϕ((1−ω)(1−ω)∗) = 0

}
.

Our definition of bridge includes the requirement that this
set is non-empty for the pivot of the bridge, to avoid
trivialities.
The first quantity associated with bridges measure how
much of an error we make by replacing the state space of A
or B by the images of the 1-level set.
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A distance from bridges: height

Let γ = (D, ω, πA, πB) be a bridge from (A, LA) and
(B, LB). We thus introduce:

Definition (Latrémolière, 2013)

The height of γ is the maximum of:

HausmkLD
({ϕ ◦ πA : ϕ ∈ S (D, ω)}, S (A))

and the same quantity for B in place of A.

The next quantity we compute from bridges measure how
far A and B are from the perspective of the bridge
seminorm.
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A distance from bridges: height

Let γ = (D, ω, πA, πB) be a bridge from (A, LA) and
(B, LB). We thus introduce:

Definition (Latrémolière, 2013)

The height of γ is the maximum of:

HausmkLD
({ϕ ◦ πA : ϕ ∈ S (D, ω)}, S (A))

and the same quantity for B in place of A.

The next quantity we compute from bridges measure how
far A and B are from the perspective of the bridge
seminorm.
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A distance from bridges: reach

Let γ = (D, ω, πA, πB) be a bridge from (A, LA) and
(B, LB).

Definition (Latrémolière, 2013)

The reach of the bridge γ is the Hausdorff distance in D
between:

{πA(a)ω ∈ sa (A) : LA(a) 6 1} and {ωπB(b) : LB(b) 6 1} .

The reach informs us, informally, on how far the images of
the level set of ω in S (A) and S (B) are. It is, in some
sense, the distance between the images of the Lip-balls for
the bride seminorm:

bnγ (·) : d1, d2 ∈ D⊕D 7→ ‖d1ω−ωd2‖D.
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A distance from bridges: reach

Let γ = (D, ω, πA, πB) be a bridge from (A, LA) and
(B, LB).

Definition (Latrémolière, 2013)

The reach of the bridge γ is the Hausdorff distance in D
between:

{πA(a)ω ∈ sa (A) : LA(a) 6 1} and {ωπB(b) : LB(b) 6 1} .

The reach informs us, informally, on how far the images of
the level set of ω in S (A) and S (B) are. It is, in some
sense, the distance between the images of the Lip-balls for
the bride seminorm:

bnγ (·) : d1, d2 ∈ D⊕D 7→ ‖d1ω−ωd2‖D.
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The Quantum Propinquity

We can use the reach and height of a bridge to define a new
metric between Leibniz quantum compact metric spaces, or
a tunnel.

Definition (Latrémolière, 2013)

The length of a bridge is the maximum of its reach and
height.
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The Quantum Propinquity

We can use the reach and height of a bridge to define a new
metric between Leibniz quantum compact metric spaces, or
a tunnel.

Definition (Latrémolière, 2013)

The length of a bridge is the maximum of its reach and
height.

We could try to define the distance between two Leibniz
quantum compact metric spaces as the infimum of the
lengths of all bridges between them. Yet this fails to satis-
fies the triangle inequality.
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The Quantum Propinquity

We can use the reach and height of a bridge to define a new
metric between Leibniz quantum compact metric spaces, or
a tunnel.

Definition (Latrémolière, 2013)

The length of a bridge is the maximum of its reach and
height.

Instead, we define a trek between two Leibniz quantum com-
pact metric spaces (A, LA) and (B, LB) is a finite path of
bridges τ1, τ2, . . . , τn where τj ends where τj+1 starts, and τ1
starts at (A, LA) while τn ends at (B, LB). The length of a trek
is the sum of the lengths of its paths.
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The Quantum Propinquity

We can use the reach and height of a bridge to define a new
metric between Leibniz quantum compact metric spaces, or
a tunnel.

Definition (Latrémolière, 2013)

The length of a bridge is the maximum of its reach and
height.

Definition (Latrémolière, 2013)

The infimum of the length of all treks from (A, LA) to
(B, LB) is a called the quantum propinquity between (A, LA)
and (B, LB).
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The Quantum Propinquity as a distance

Theorem (Latrémolière, 2013)
The quantum propinquity is a metric on the class of Leibniz
quantum compact metric spaces which dominates the dual
propinquity, and its restriction to the classical compact metric
spaces is dominated by the Gromov-Hausdorff distance.

Proof of the comparison to the dual propinquity.

Given a bridge γ = (D, ω, πA, πB) of nonzero length
λ(γ) > 0 from (A, LA) to (B, LB), if:

L : (a, b) 7→ max
{

LA(a), LB(b),
1

λ(γ)
‖πA(a)ω−ωπB(b)‖D

}
then (A⊕B, L, ιA, ιB) is a tunnel of length λ, where ιA, ιB
are the canonical surjections.
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The Quantum Propinquity as a distance

Theorem (Latrémolière, 2013)
The quantum propinquity is a metric on the class of Leibniz
quantum compact metric spaces which dominates the dual
propinquity, and its restriction to the classical compact metric
spaces is dominated by the Gromov-Hausdorff distance.

Proof of the comparison to the dual propinquity.

Given a bridge γ = (D, ω, πA, πB) of nonzero length
λ(γ) > 0 from (A, LA) to (B, LB), if:

L : (a, b) 7→ max
{

LA(a), LB(b),
1

λ(γ)
‖πA(a)ω−ωπB(b)‖D

}
then (A⊕B, L, ιA, ιB) is a tunnel of length λ, where ιA, ιB
are the canonical surjections.
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Using Bridges for Quantum Tori

Theorem (Latrémolière, 2013)

Let d ∈ N \ {0, 1}, σ a multiplier of Zd. For each n ∈ N, let
kn ∈ N

d
∗ and σn be a multiplier of Zd

k = Zd /
knZ

d such that:
1 limn→∞ kn = (∞, . . . , ∞),
2 the unique lifts of σn to Zd as multipliers converge pointwise

to σ.
Then:

lim
n→∞

Λ∗
(

C∗
(
Zd, σ

)
, C∗

(
Zd

kn
, σn

))
= 0.

Notes on the proof.
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Using Bridges for Quantum Tori

Theorem (Latrémolière, 2013)

Let d ∈ N \ {0, 1}, σ a multiplier of Zd. For each n ∈ N, let
kn ∈ N

d
∗ and σn be a multiplier of Zd

k = Zd /
knZ

d such that:
1 limn→∞ kn = (∞, . . . , ∞),
2 the unique lifts of σn to Zd as multipliers converge pointwise

to σ.
Then:

lim
n→∞

Λ∗
(

C∗
(
Zd, σ

)
, C∗

(
Zd

kn
, σn

))
= 0.

Notes on the proof.

This result strengthens our result for distq.
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Using Bridges for Quantum Tori

Theorem (Latrémolière, 2013)

Let d ∈ N \ {0, 1}, σ a multiplier of Zd. For each n ∈ N, let
kn ∈ N

d
∗ and σn be a multiplier of Zd

k = Zd /
knZ

d such that:
1 limn→∞ kn = (∞, . . . , ∞),
2 the unique lifts of σn to Zd as multipliers converge pointwise

to σ.
Then:

lim
n→∞

Λ∗
(

C∗
(
Zd, σ

)
, C∗

(
Zd

kn
, σn

))
= 0.

Notes on the proof.

One approach is to use our old techniques and the unital nu-
clear distance (Kerr, Li). This relies on Blanchard’s subtrivi-
alization result — complicated.
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Using Bridges for Quantum Tori

Theorem (Latrémolière, 2013)

Let d ∈ N \ {0, 1}, σ a multiplier of Zd. For each n ∈ N, let
kn ∈ N

d
∗ and σn be a multiplier of Zd

k = Zd /
knZ

d such that:
1 limn→∞ kn = (∞, . . . , ∞),
2 the unique lifts of σn to Zd as multipliers converge pointwise

to σ.
Then:

lim
n→∞

Λ∗
(

C∗
(
Zd, σ

)
, C∗

(
Zd

kn
, σn

))
= 0.

Notes on the proof.

A somewhat more explicit approach uses the left regular rep-
resentation, or sum of such, on `2(Zd).
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Theorem (Latrémolière, 2013)

Let d ∈ N \ {0, 1}, σ a multiplier of Zd. For each n ∈ N, let
kn ∈ N

d
∗ and σn be a multiplier of Zd

k = Zd /
knZ

d such that:
1 limn→∞ kn = (∞, . . . , ∞),
2 the unique lifts of σn to Zd as multipliers converge pointwise

to σ.
Then:

lim
n→∞

Λ∗
(

C∗
(
Zd, σ

)
, C∗

(
Zd

kn
, σn

))
= 0.

Notes on the proof.

We construct bridges
(
`2(Zd), T, π, ρ

)
between quantum or

fuzzy tori, with π and ρ left regular representations (or
sums) and T trace class, diagonal in the canonical basis.
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Let d ∈ N \ {0, 1}, σ a multiplier of Zd. For each n ∈ N, let
kn ∈ N

d
∗ and σn be a multiplier of Zd

k = Zd /
knZ

d such that:
1 limn→∞ kn = (∞, . . . , ∞),
2 the unique lifts of σn to Zd as multipliers converge pointwise

to σ.
Then:

lim
n→∞

Λ∗
(

C∗
(
Zd, σ

)
, C∗

(
Zd

kn
, σn

))
= 0.

Notes on the proof.

While we use estimates from our original work, we can not
simply “truncate” elements using Fejer kernels, as we wish
to stay within the C*-category.
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Let d ∈ N \ {0, 1}, σ a multiplier of Zd. For each n ∈ N, let
kn ∈ N

d
∗ and σn be a multiplier of Zd

k = Zd /
knZ

d such that:
1 limn→∞ kn = (∞, . . . , ∞),
2 the unique lifts of σn to Zd as multipliers converge pointwise

to σ.
Then:

lim
n→∞

Λ∗
(

C∗
(
Zd, σ

)
, C∗

(
Zd

kn
, σn

))
= 0.

Notes on the proof.

Bridges, and in particular T, replaces, to a large extent, this
truncation process.
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Escape at Infinity

For a non-compact locally compact metric space (X, m), the
Monge-Kantorovich metric is less well-behaved:

1 it is not a metric as it may be infinite,
2 it does not metrize the weak* topology, even on closed

balls,
3 its topology is not locally compact.
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Escape at Infinity

For a non-compact locally compact metric space (X, m), the
Monge-Kantorovich metric is less well-behaved:

1 it is not a metric as it may be infinite,

2 it does not metrize the weak* topology, even on closed
balls,

3 its topology is not locally compact.

Proof.

Let δx denote the Dirac measure at x ∈ R. Let L be the
Lipschitz seminorm associated with the usual metric on R.

mkL

(
δ0, ∑

n∈N
2−n−1δ22n

)
= ∞.



The Gromov-
Hausdorff

Propinquity

Frédéric
Latrémolière,

PhD

Quantum
Compact
Metric Spaces

The Gromov-
Hausdorff
Propinquity

Locally
Compact
Quantum
Metric Spaces
Topographies

Convergence for locally
compact quantum
metric spaces

Escape at Infinity

For a non-compact locally compact metric space (X, m), the
Monge-Kantorovich metric is less well-behaved:

1 it is not a metric as it may be infinite,
2 it does not metrize the weak* topology, even on closed

balls,

3 its topology is not locally compact.

Proof.

Working in R again, we have:

∀n ∈ N mkL

(
δ0,

n
n + 1

δ0 +
1

n + 1
δn+1

)
= 1

yet
(
δ0, n

n+1 δ0 +
1

n+1 δn+1
)

n∈N weak* converges to δ0.
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Escape at Infinity

For a non-compact locally compact metric space (X, m), the
Monge-Kantorovich metric is less well-behaved:

1 it is not a metric as it may be infinite,
2 it does not metrize the weak* topology, even on closed

balls,
3 its topology is not locally compact.

Problems 1,2,3 are attributable to one main feature of the
non-compact case: probability measures can escape at
infinity.
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Escape at Infinity

For a non-compact locally compact metric space (X, m), the
Monge-Kantorovich metric is less well-behaved:

1 it is not a metric as it may be infinite,
2 it does not metrize the weak* topology, even on closed

balls,
3 its topology is not locally compact.

Problems 1,2,3 are attributable to one main feature of the
non-compact case: probability measures can escape at
infinity.
Moreover, the restriction of the Monge-Kantorovich metric
to pure states is not the original metric in general. The
natural context for the Monge-Kantorovich metric consists
of the proper metric spaces.
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A first approach

Definition (Latrémolière, 2007)

The bounded-Lipschitz distance blL associated with a Lipschitz
pair (A, LA) is defined for any ϕ, ψ ∈ S (A) as:

sup {|ϕ(a)− ψ(a)| : a ∈ sa (A), LA(a) 6 1, ‖a‖A 6 1} .
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A first approach

Definition (Latrémolière, 2007)

The bounded-Lipschitz distance blL associated with a Lipschitz
pair (A, LA) is defined for any ϕ, ψ ∈ S (A) as:

sup {|ϕ(a)− ψ(a)| : a ∈ sa (A), LA(a) 6 1, ‖a‖A 6 1} .

Theorem (Latrémolière, 2007)
Let (A, L) be a Lipschitz pair and let:

B = {a ∈ sa (A) : L(a) 6 1 and ‖a‖A 6 1}.

Then the following are equivalent:
1 blL metrizes the weak* topology of S (A),
2 For some h ∈ A, h > 0 the set hBh is norm precompact,
3 For all h ∈ A, h > 0, the set hBh is norm precompact.
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A first approach

Definition (Latrémolière, 2007)

The bounded-Lipschitz distance blL associated with a Lipschitz
pair (A, LA) is defined for any ϕ, ψ ∈ S (A) as:

sup {|ϕ(a)− ψ(a)| : a ∈ sa (A), LA(a) 6 1, ‖a‖A 6 1} .

This notion was used, for instance, by Bellissard,
Marcolli, Reihani (2010) for the study of metric
properties of spectral triples over C*-crossed-products
by Z.
This notion was also used in mathematical physics (J.
Wallet, Cagnache-d’Andrea-Martinetti)
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A first approach

Definition (Latrémolière, 2007)

The bounded-Lipschitz distance blL associated with a Lipschitz
pair (A, LA) is defined for any ϕ, ψ ∈ S (A) as:

sup {|ϕ(a)− ψ(a)| : a ∈ sa (A), LA(a) 6 1, ‖a‖A 6 1} .

However...
The bounded-Lipschitz distance only sees the space
“locally”, i.e. balls of a radius above 1 are the whole space.
We still wish to understand the Monge-Kantorovich metric.
We are back to: How do we control behavior at infinity? This
was unsolved for more than a decade!
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Dobrushin’s tightness

Dobrushin discovered a sufficient condition for metrizing
the weak* topology on well-behaved sets of probability
measures:

Theorem (Dobrushin, 1970)
Let (X, d) be a (locally compact) metric space. If a subset T of
S (C0(X)) satisfies for some x0 ∈ X:

lim
r→∞

sup
{∫

x:d(x,x0)>r
d(x0, x) dP(x) : P ∈ T

}
= 0

then the weak* topology restricted to T is metrized by the
Monge-Kantorovich metric associated to the Lipschitz seminorm
for d.

It is very challenging to extend this notion to the
noncommutative setting.



The Gromov-
Hausdorff

Propinquity

Frédéric
Latrémolière,

PhD

Quantum
Compact
Metric Spaces

The Gromov-
Hausdorff
Propinquity

Locally
Compact
Quantum
Metric Spaces
Topographies

Convergence for locally
compact quantum
metric spaces

Dobrushin’s tightness

Dobrushin discovered a sufficient condition for metrizing
the weak* topology on well-behaved sets of probability
measures:

Theorem (Dobrushin, 1970)
Let (X, d) be a (locally compact) metric space. If a subset T of
S (C0(X)) satisfies for some x0 ∈ X:

lim
r→∞

sup
{∫

x:d(x,x0)>r
d(x0, x) dP(x) : P ∈ T

}
= 0

then the weak* topology restricted to T is metrized by the
Monge-Kantorovich metric associated to the Lipschitz seminorm
for d.

It is very challenging to extend this notion to the
noncommutative setting.



The Gromov-
Hausdorff

Propinquity

Frédéric
Latrémolière,

PhD

Quantum
Compact
Metric Spaces

The Gromov-
Hausdorff
Propinquity

Locally
Compact
Quantum
Metric Spaces
Topographies

Convergence for locally
compact quantum
metric spaces

Quantum Topographic Spaces

Definition (Latrémolière, 2012)

A Lipschitz triple (A, L,M) is a Lipschitz pair (A, L) and an
Abelian C*-subalgebra M of A containing an approximate
unit for A.

Let K(M) be the collection of all compact subsets of the
Gel’fand spectrum of M and χK be the indicator function of
K in M.

Definition (Latrémolière, 2012)

A subset T of the state space S (A) of a Lipschitz triple
(A,M, L) is tame when there exists µ ∈ S (A) and
C ∈ K(M) such that µ(χC) = 1 and:

lim
K∈K(M)

sup
{
|ϕ(a− χKaχK)| :

ϕ ∈ T , a ∈ sa (uA)
L(a) 6 1, µ(a) = 0

}
= 0.
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Quantum Locally Compact Metric Spaces

Definition (Latrémolière, 2012)

A quantum locally compact metric space is a Lipschitz triple
such that:

1 For all K ∈ K(M), the set {ϕ ∈ S (A) : ϕ(χK) = 1} has
finite radius for mkL,

2 The topology induced on every tame subset of S (A)
by mkL is the weak* topology.

Example (Latrémolière, 2012)

If (C(R2
σ), L2(R2)⊗C2, D) is the Gayal, Gracia-Bondia,

Iochum, Schücker, Varilly spectral triple over the Moyal
plane C(R2

σ), then (C(R2
σ), L,Mσ) is a quantum locally

compact metric space for Mσ generated by the Harmonic
oscillator basis projections and L(a) = ‖[D, a]‖ (a ∈ C(R2

σ)).
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Definition (Latrémolière, 2012)

A quantum locally compact metric space is a Lipschitz triple
such that:

1 For all K ∈ K(M), the set {ϕ ∈ S (A) : ϕ(χK) = 1} has
finite radius for mkL,

2 The topology induced on every tame subset of S (A)
by mkL is the weak* topology.
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Characterization of quantum locally compact metric
spaces

Theorem (Latrémolière, 2012)
Let (A, L,M) be a Lipschitz triple. The following are equivalent:

1 (A, L,M) is a quantum locally compact metric space,
2 There exists a state µ ∈ S (A), K ∈ K(M) with µ(K) = 1

such that for all compactly supported a, b ∈M, the set:

{acb : c ∈ sa (uA), L(c) 6 1, µ(c) = 0}

is norm precompact,
3 For all states µ ∈ S (A) for which there exists K ∈ K(M)

with µ(K) = 1, and for all compactly supported a, b ∈M,
the set {acb : c ∈ sa (uA), L(c) 6 1, µ(c) = 0} is norm
precompact.
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Proper Quantum Metric Spaces

An analogue of proper quantum metric spaces is given by:

Definition (Latrémolière, 2014)

A quantum locally compact metric space (A, L,M) is a
strong proper quantum metric space when:

1 L is lower semi-continuous,
2 L is Leibniz,
3 there exists a compactly supported approximate unit

(en)n∈N for A in M such that limn→∞ L(en) = 0,
4 the restriction of L to M has a dense domain.

A pointed proper quantum metric space (A, L,M, µ) is a
proper quantum metric space (A, L,M) and a state µ of A
whose restriction to M is pure.



The Gromov-
Hausdorff

Propinquity

Frédéric
Latrémolière,

PhD

Quantum
Compact
Metric Spaces

The Gromov-
Hausdorff
Propinquity

Locally
Compact
Quantum
Metric Spaces
Topographies

Convergence for locally
compact quantum
metric spaces

Proper Quantum Metric Spaces

An analogue of proper quantum metric spaces is given by:
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A quantum locally compact metric space (A, L,M) is a
strong proper quantum metric space when:

1 L is lower semi-continuous,
2 L is Leibniz,
3 there exists a compactly supported approximate unit

(en)n∈N for A in M such that limn→∞ L(en) = 0,
4 the restriction of L to M has a dense domain.
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Gromov-Hausdorff Convergence

We wish to define a notion of convergence for pointed
proper quantum metric space which extends the original
Gromov-Hausdorff convergence for pointed proper metric
spaces.

Definition (Gromov, 1981)

Let (X, x) and (Y, y) be two pointed proper metric spaces.
Let δr be the infimum of ε > 0 such that for some isometric
embeddings of X, Y in some Z then:{

BX (x, r) ⊆ε Y, BY (y, r) ⊆ε X,
x and y are within ε in Z.

The Gromov-Hausdorff distance between (X, x) and (Y, y)
is the infimum of r > 0 such that δε−1 6 ε.
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The problem of lifting Lipschitz functions

A difficulty in the locally compact concerns (even though
McShane’s theorem still holds, of course):

Lipschitz Extensions

If f is a 1-Lipschitz function on a locally compact metric
space which vanishes at infinity, then it may not have a
1-Lipschitz extension which vanishes at infinity. For
instance, if X = (0, 1)× [0, 1], and Y = (0, 1)×

{ 1
2

}
, and if f

is 2 on Y, then no extension of f is both 1-Lipschitz and
vanish at infinity.

We need to rework our notion of a tunnel to accommodate
difficulties in lifting Lipschitz functions. The situation is
manageable when working with proper metric spaces, but
is surprising.
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Some notations

Definition (Latrémolière, 2014)

Let (A, LA,MA, µA) and (B, LB,MB, µB) be two pointed
proper quantum metric spaces. A passage
(D, LD,MD, πA, πB) is a quantum locally compact metric
space (D, LD,MD) with two *-morphisms πA : D� A and
πB : D� B mapping MD to MA, MB respectively..

Definition (Latrémolière, 2014)

Let (A, L,M, µ) be a pointed proper quantum metric space.
For any compact K in the Gel’fand spectrum σ(M) of M, let
pK be the indicator function of K in A∗∗. If K is the closed
ball centered at µ and radius r in σ(M) then pK is also
denoted by pr. The elements a ∈ sa (A) such that pKapK = a
are said to be locally supported.



The Gromov-
Hausdorff

Propinquity

Frédéric
Latrémolière,

PhD

Quantum
Compact
Metric Spaces

The Gromov-
Hausdorff
Propinquity

Locally
Compact
Quantum
Metric Spaces
Topographies

Convergence for locally
compact quantum
metric spaces

Some notations

Definition (Latrémolière, 2014)

Let (A, LA,MA, µA) and (B, LB,MB, µB) be two pointed
proper quantum metric spaces. A passage
(D, LD,MD, πA, πB) is a quantum locally compact metric
space (D, LD,MD) with two *-morphisms πA : D� A and
πB : D� B mapping MD to MA, MB respectively..

Definition (Latrémolière, 2014)

Let (A, L,M, µ) be a pointed proper quantum metric space.
For any compact K in the Gel’fand spectrum σ(M) of M, let
pK be the indicator function of K in A∗∗. If K is the closed
ball centered at µ and radius r in σ(M) then pK is also
denoted by pr. The elements a ∈ sa (A) such that pKapK = a
are said to be locally supported.



The Gromov-
Hausdorff

Propinquity

Frédéric
Latrémolière,

PhD

Quantum
Compact
Metric Spaces

The Gromov-
Hausdorff
Propinquity

Locally
Compact
Quantum
Metric Spaces
Topographies

Convergence for locally
compact quantum
metric spaces

Left Admissibility

Definition (Latrémolière, 2014)

Let r > 0. An left r-admissible pair (K, ε) is a compact K in
σ(MD) and ε > 0 such that for any a ∈ sa (A) with
LA(a) 6 1 and prapr = a, there exists d ∈ sa (D):

1 LD(d) = LA(a),

2 pKdpK = d,
3 pr+4επB(d)pr+4ε = πB(d),
4 We have:

{ϕ ◦ πA : ϕ ∈ S (A) : ϕ(pr)} ⊆ {ϕ ∈ S (D) : ϕ(pK) = 1}
⊆ε {ϕ ◦ πB : ϕ ∈ S (B) : ϕ(pr)}.

The notion of right admissibility is defined identically.
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Admissibility and Extent

The notions of admissibility and extent are interdependent
in this context.

Definition (Latrémolière, 2014)

Let τ = (D, LD,MD, πA, πB) be a passage from
(A, LA,MA, µA) to (B, LB,MB, µB). A pair (K, ε) is
r-admissible when it is both left and right r-admissible,
while LD restricts to a Leibniz Lip-norm on the K-locally
supported elements of D, and is lower semi-continuous.

Definition (Informal, Latrémolière, 2014)

The r-extent of a passage is the smallest ε > 0 such that
(K, ε) is r-admissible for some compact K. A passage with a
finite r-extent is called a r-tunnel.
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The topographic Propinquity

Definition (Latrémolière, 2014)

LetA,B be two pointed proper quantum metric spaces. The
r-local propinquity Λ∗r(A,B), for r > 0, betweenA and B is
the infimum of the r-extents of r-tunnels betweenA and B.

Definition (Latrémolière, 2014)

The topographic propinquity Λ∗topo(A,B) between two
pointed proper quantum metric spacesA and B is:

max

{
inf{ε > 0 : Λ∗ε−1 6 ε},

√
2

4

}
.

The topographic Gromov-Hausdorff propinquity is an
infra-metric which generalizes the dual propinquity, up to
equivalence.
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The topographic Propinquity as Inframetric

Theorem (Latrémolière, 2014)
Let A, B and D be three pointed proper quantum metric spaces.
Then:

Λ∗topo(A,B) = Λ∗topo(B,A),

Λ∗topo(A,B) 6 2
(
Λ∗topo(A,D) + Λ∗topo(D,B)

)
,

Λ∗topo(A,B) = 0 if and only if there exists a *-isomorphism
π : A→ B such that LB ◦ π = LA,
The topology induced by Λ∗topo is the same as the topology
of the dual propinquity for Leibniz quantum compact metric
spaces. Moreover, if proper metric spaces converge to some
limit for the Gromov-Hausdorff distance, then so do they for
the topographic propinquity.

Thus we have a generalized Gromov-Hausdorff convergence for
noncommutative geometry.
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Thank you!
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