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Vortex filaments in R3

◮ one vortex filament:

linear stationary, with uniform vortex strength γ = 1

b(s) = (0, 0, s)

It generates a flow field in R3 described by

u = (∂x2
ψ,−∂x1

ψ, 0)

where the velocity field is given by a stream function

ψ = 1
2

log(x2
1 + x2

2) =
1
2

log(|z|2)

and z = x1 + ix2 are complex horizontal coordinates.



Vortex filament pairs

Two exactly parallel linear vortex filaments evolve as described by

point vortices in R2

◮ Opposite vorticity γ1 = 1 = −γ2, initial configuration

b1(s) = (1
2
a + i0, s) , b2(s) = (− 1

2
a + i0, s)

then ballistic linear evolution

b1(s, t) = (1
2
a + i

t

a
, s) , b2(s, t) = (− 1

2
a + i

t

a
, s)

◮ Same vorticity γ1 = 1 = γ2 with the above initial configuration

have circular orbits with angular frequency ω = a−2

b1(s, t) = (1
2
aeit/a2

, s) , b2(s, t) = (1
2
aei(t/a2+π), s)



◮ Question: Consider two near-vertical vortex filaments, slightly

perturbed from exactly vertical. Do there persist similar orbital

motions, whose time evolution is periodic or quasi-periodic.

Configuration to be 2π periodic in the vertical x3 variables.

◮ In ‘center of vorticity’ coordinates, the horizontal separation of

the two vortex filaments is

w(s, t) = x1(s, t) + ix2(s, t)

In a frame rotating with angular frequency ω

i∂tw + ∂2
s w − ωw +

w

|w|2 = 0 (1)

the Klein, Majda & Damodaran model of near parallel vortex

filaments.

◮ NB: For configurations which are greatly deformed from

vertical, this is not an accurate approximation



Hamiltonian PDE

◮ This is a PDE in the form of a Hamiltonian system

Set w = a + v(s, t) with a ∈ R and v(s, t) a perturbation term,

i∂tv + ∂2
s v − ω(a + v) +

a + v

|a + v|2 = 0 (2)

by the choice ω = a−2 then v = 0 is stationary

◮ The Hamiltonian is

H =

∫ 2π

0

1
2
|∂sv|2 +

1

2a2
|a + v|2 − 1

2
log |a + v|2 ds (3)

Writing v(s, t) = X(s, t) + iY(s, t) the dynamics are given by

Hamilton’s canonical equations

∂tX = gradYH

∂tY = −gradXH

◮ Small ‖v‖H1 solutions exist globally in time (C. Kenig, G. Ponce

& L. Vega (2003), V. Banica & E. Miot (2012))



Linearized equations

◮ The tangent plane approximation is given by the linearization

The linearized equations at equilibrium (X,Y) = 0 are derived

from the quadratic Hamiltonian

H(2) =

∫ 2π

0

1
2

[

(∂sX)
2 + (∂sY)

2 +
2

a2
X2

]

ds (4)

◮ Linearized equations

∂tX = gradYH(2) = −∂2
s Y

∂tY = −gradXH(2) = ∂2
s X − 2

a2
X



Linear flow

◮ Writing in a Fourier basis and using the Plancherel identity

X(s) = (1/
√

2π)
∑

k∈Z X̂keiks

Y(s) = (1/
√

2π)
∑

k∈Z Ŷkeiks

H(2) =
∑

k∈Z

1
2

(

(k2 +
2

a2
)|X̂k|2 + k2|Ŷk|2

)

An infinte series of uncoupled harmonic oscillators, with

frequencies ωk(a) = ±k
√

k2 + (2/a2).

◮ The solution operator, or the linear flow

(

X(s, t)
Y(s, t)

)

= Φ(t)

(

X(s, 0)
Y(s, 0)

)

=
∑

k∈Z

eiks

(

cos(ωkt) k2 sin(ωkt)/ωk

−ωk sin(ωkt)/k2 cos(ωkt)

)(

X̂k

Ŷk

)

Angles evolve with linear motion θk 7→ θk + tωk



Elementary facts

◮ All solutions are Periodic, or Quasi-Periodic, or in general

Almost Periodic functions of time

◮ More specifically, for initial data (X0,Y0) the active

wavenumbers are K := {k : (X̂0
k , Ŷ

0
k ) 6= 0}

The dimension of the frequency basis is

m := dimQ

(

spanQ{ωk : k ∈ K}
)

◮ Orbit space consists of tori

orbit(X0,Y0) = {Φ(t)(X0,Y0) : t ∈ R} = Tm

Periodic (P): m = 1

Quasi-Periodic (QP): 1 < m < +∞
Almost Periodic (AP): m = +∞
NB: For generic a then ωk(a) satisfy 1 ≤ m ≤ +∞



Elementary facts

◮ Energy is conserved

H(2)(X,Y) = 1
2

∑

k∈Z

(

X̂k

Ŷk

)(

k2 + 2
a2 0

0 k2

)(

X̂k

Ŷk

)

= H(2)(Φ(t)(X,Y)) = 1
2

∑

k∈Z

(

X̂k

Ŷk

)

Φ(t)T

(

k2 + 2
a2 0

0 k2

)

Φ(t)

(

X̂k

Ŷk

)

◮ Indeed each action variable is conserved

Ik =

√

k2 + (2/a2)

2|k| |Xk|2 +
|k|

2
√

k2 + (2/a2)
|Yk|2

d

dt

(

Φk(t)
T

(

k2 + 2
a2 0

0 k2

)

Φk(t)

)

= 0

Hence all Sobolev energy norms are preserved

H(2) =
∑

k∈Z

ωkIk , ‖(X,Y)‖2
r :=

∑

k

|k|2rIk



Natural general questions

1. Whether any solutions of the nonlinear problem are Periodic,

Quasi Periodic or Almost Periodic

This refers to the KAM theory for PDEs

2. Whether the action variables Ik(z) are approximately conserved

(averaging theory), giving upper bounds on growth of action

variables, or on higher Sobolev norms

This is in the realm of averaging theory for PDEs, including

Birkhoff normal forms and Nekhoroshev stability

3. Whether there exist some solutions which exhibit a growing

lower bound on the growth of the action variables

These would be cascade orbits, related to the question of Arnold

diffusion



Results

Theorem (C Garcia, WC & CR Yang (2012))

There exist Cantor families of periodic (i.e. m = 1) solutions of the

vortex filament equations (2) near the uniformly rotating solution

v = 0

Theorem (C Garcia, WC & CR Yang (in progress))

Given wavenumbers k1, . . . km there is a set a ∈ A of full measure and

an ε0 = ε0(a, k1, . . . km) such that for a Cantor set of amplitudes

(b1, . . . bm) ∈ Bε0
⊆ Cm there exist QP solutions of (2) with m-many

Q independent frequencies Ωj(b), of the form

v(s, t) =

m
∑

j=1

bje
ikjseiΩj(b)t +O(ε2)

Actually, these two theorems hold for any central configuration of

vortices. The case of more complex configurations of near-vertical

vortices is part of our future research program.



Hamiltonian PDEs

◮ Flow in phase space, where z ∈ H a Hilbert space with inner

product 〈X,Y〉H,

∂tz = JgradzH(z) , z(x, 0) = z0(x) , (5)

◮ Symplectic form

ω(X,Y) = 〈X, J−1Y〉H , JT = −J .

◮ The flow z(x, t) = ϕt(z
0(x)), defined for z ∈ H0 ⊆ H

◮ Theorem
The flow of (5) preserves the Hamiltonian function:

H(ϕt(z)) = H(z) , z ∈ H0

Proof: d
dt

H(ϕt(z)) = 〈gradzH, ż〉 = 〈gradzH, JgradzH(z)〉 = 0 .



Invariant tori

◮ Mapping a torus S(θ) : Tm
θ 7→ H to be flow invariant

S(θ + tΩ) = ϕt(S(θ))

Angles evolve linearly, with frequency vector Ω ∈ Rm

◮ This implies that both

∂tS = Ω · ∂θS , and ∂tS = J gradzH(S)

hence

Ω · ∂θS = J gradzH(S) (6)

◮ Problem of KAM tori: Solve (6) for (S(θ),Ω).
This is generally a small divisor problem.

Rewrite (6) in self-adjoint form

J−1Ω · ∂θS − gradzH(S) = 0 . (7)



Invariant tori - linear theory - small divisors

◮ The tangent space approximation for the mapping S

Linearize at S, set δS = Z and use the self adjoint form

Ω · J−1∂θZ − ∂2
z H(S)Z = F (8)

Frequencies of the linearized flow are ωk = ±k
√

k2 + (2/a2).

◮ The eigenvalues of (8), the linearized operator for a solution with

m temporal quasi-periods Ω = (Ω1, . . .Ωm) ∈ Rm

λ±jk := k2 +
1

a2
±

√

(Ω · j)2 +
1

a4

Eigenvalues λ±jk are the small divisors.

Analysis: resolvant expansion methods developed by Fröhlich &

Spencer, WC & Wayne, Bourgain, Berti & Bolle, . . .



Space of torus mappings

Consider the space of mappings S ∈ X := {S(θ) : Tm 7→ H}
◮ Define average action functionals

Ij(S) =
1

2

∫

Tm

〈S, J−1∂θj
S〉 dθ

δSIj = J−1∂θj
S

The moment map for mappings

◮ The average Hamiltonian

H(S) =

∫

Tm

H(S(θ)) dθ

δSH = gradzH(S)



A variational formulation

Consider the subvariety of X defined by fixed actions

Ma = {S ∈ X : I1(S) = a1, . . . Im(S) = am} ⊆ X

Variational principle: critical points of H(S) on Ma correspond to

solutions of equation (7), with Lagrange multiplier Ω.

NB: All of H(S), Ij(S) and Ma are invariant under the action of the

torus Tm; that is τα : S(θ) 7→ S(θ + α) , α ∈ Tm.



Two questions

◮ Two questions.

1. Do critical points exist on Ma?

Note that the following operators are degenerate on the space of

mappings X :

Ω · J−1∂θS , Ω · J−1∂θS − δ2
SH(0)

2. How to understand questions of multiplicity of solutions?

◮ Answers – proposal in some cases:

1. Use infinite dimensional KAM theory or the Nash – Moser

method, with parameters

The latter relies on solutions of the linearized equations, via

resolvant expansions (Fröhlich – Spencer estimates)

2. Morse – Bott theory of critical Tm orbits.



The linearized vortex filament equations
Illustrate this with the linearized vortex filament equations

◮ The quadratic Hamiltonian

H(2) =

∫ 2π

0

1
2

[

(∂sX)
2 + (∂sY)

2 +
2

a2
X2

]

ds

with frequencies ωk = ±k
√

k2 + (2/a2)
◮ Linearized equations for an invariant torus

Ω · ∂θX = gradYH(2) = −∂2
s Y

Ω · ∂θY = −gradXH(2) = ∂2
s X − 2

a2
X

◮ Fourier representation of torus mappings S(θ) : Tm 7→ H

S(x, θ) =
∑

k∈Z

Sk(θ)e
iks =

∑

k∈Z,j∈Zm

Sjkeij·θeiks

Eigenvalues λ±jk (Ω) = k2 + 1
a2 ±

√

(Ω · j)2 + 1
a4



Null space

◮ Choose (ωk1
, . . . ωkm) linear frequencies, and a frequency vector

Ω0 = (Ω0
1, . . .Ω

0
m) solving the resonance relations

λ−jk (Ω
0) = 0 .

◮ This identifies a null eigenspace in the space of mappings

X1 ⊆ X .

Proposition

X1 ⊆ X is even dimensional; dim(X1) = 2M ≥ 2m. It is possibly

infinite dimensional

◮ Nonresonant case: M = m.

◮ Resonant case: M > m.



Lyapunov - Schmidt decomposition

◮ Decompose X = {S : Tm 7→ M} = X1 ⊕ X2 = QX ⊕ PX .

◮ Equation (7) is equivalent to

Q
(

J−1Ω · ∂θS − gradzH(S)
)

= 0 , (9)

P
(

J−1Ω · ∂θS − gradzH(S)
)

= 0 . (10)

◮ Decompose the mappings S = S1 + S2 as well.

◮ Small divisor problem for S2 = S2(S1,Ω), which one solves for

(S1,Ω) ∈ E a Cantor set.



Variational problem reduced to a link

It remains to solve the Q-equation (9). This can be posed variationally

(with analogy to Weinstein - Moser theory).

◮ Define

I
1
j (S1) = Ij(S1 + S2(S1,Ω))

H
1
(S1) = H(S1 + S2(S1,Ω))

M1
a = {S1 ∈ X1 : I

1
j (S1) = aj , j = 1 . . .m}

◮ Critical points of H
1
(S1) on M1

a are solutions of (9) with action

vector a.



equivariant Morse – Bott theory

The group Tm acts on M1
a leaving H

1
(S1) invariant.

One seeks critical Tm orbits.

Question: How many critical orbits of H
1

on M1
a?

Depends upon its topology.

Conjecture (a reasonable guess)

For given a there exist integers p1, . . . pm such that
∑

j pj = M and

M1
a ≃ ⊗m

j=1S
2pj−1



Check this fact, in endpoint cases.

◮ Periodic orbits m = 1, resonant case M > 1.

M1
a ≃ S2M−1 , M1

a/T
1 ≃ CPw(M − 1)

This restates the estimate of Weinstein and Moser

#{critical T1 orbits} ≥ M

◮ Nonresonant quasi-periodic orbits m = M.

M1
a ≃ ⊗M

j=1S
1 , M1

a/T
m ≃ a point

In case this corresponds to a Lagrangian KAM torus

Percival’s variational principle.



equivariant Morse – Bott theory

◮ The case m = 2 ≤ M occurs in the problem of doubly periodic

traveling wave patterns on the surface of water.

M1
a ≃ S2p−1 ⊗ S2(M−p)−1

◮ The case m = M − 1

M1
a ≃ S1 ⊗ · · · ⊗ S3



topology of links

Theorem (Chaperon, Bosio & Meersmann (2006))

The topology of links M1
a can be complex. There are cases in which

M1
a ≃ #q

ℓ=1(S
2pℓ1−1 ⊗ · · · ⊗ S2pℓk−1) ,

∑

j

pℓj = M

Furthermore, there are more complex quantities than this.

Proof: combinatorics and cohomolological calculations.

Conjecture (revised opinion)

The number of distinct critical Tm orbits of H
1

on M1
a is bounded

below:

#{critical orbits of H
1

on M1
a} ≥ (M − m + 1) .



Thank you
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