Local invariants of maps between 3-manifolds

Victor Goryunov

University of Liverpool

Conference Legacy of Vladimir Arnold

Fields Institute, Toronto 25 November 2014

History

Vassiliev finite order invariants of knots

イロト イポト イヨト イヨト

History

Vassiliev	finite order invariants of knots
Arnold	semi-local invariants of order 1
	of plane curves and fronts

<ロ> <同> <同> < 回> < 回>

History

Vassiliev	finite order invariants of knots
Arnold	semi-local invariants of order 1 of plane curves and fronts
VG, Houston Nowik	local order 1 invariants of maps of surfaces to \mathbb{R}^3

・ロト ・回ト ・ヨト ・ヨト

History

Vassiliev	finite order invariants of knots
Arnold	semi-local invariants of order 1 of plane curves and fronts
VG, Houston Nowik	local order 1 invariants of maps of surfaces to \mathbb{R}^3
Ohmoto Aicardi	local order 1 invariants of maps of surfaces to \mathbb{R}^2

<ロ> <同> <同> < 回> < 回>

Example: maps of oriented surfaces into \mathbb{R}^3

< ロ > < 同 > < 回 > < 回 > < □ > <

Example: maps of oriented surfaces into \mathbb{R}^3

3 integer invariants:

Example: maps of oriented surfaces into \mathbb{R}^3

3 **integer** invariants: numbers of triple and pinch points,

(*) *) *) *)

э

Example: maps of oriented surfaces into \mathbb{R}^3

3 **integer** invariants: numbers of triple and pinch points, and a self-linking number of a lifting of the image to $ST^*\mathbb{R}^3$

.

Example: maps of oriented surfaces into \mathbb{R}^3

3 **integer** invariants: numbers of triple and pinch points, and a self-linking number of a lifting of the image to $ST^*\mathbb{R}^3$

The latter counts a generalised number of inverse self-tangencies of the image in generic homotopies between maps

Example: maps of oriented surfaces into \mathbb{R}^3

3 **integer** invariants: numbers of triple and pinch points, and a self-linking number of a lifting of the image to $ST^*\mathbb{R}^3$

The latter counts a generalised number of inverse self-tangencies of the image in generic homotopies between maps

mod2:

4 3 5 4

Example: maps of oriented surfaces into \mathbb{R}^3

3 **integer** invariants: numbers of triple and pinch points, and a self-linking number of a lifting of the image to $ST^*\mathbb{R}^3$

The latter counts a generalised number of inverse self-tangencies of the image in generic homotopies between maps

mod2:

4th invariant, counting similar number of direct self-tangencies

Example: maps of oriented surfaces into \mathbb{R}^3

3 **integer** invariants: numbers of triple and pinch points, and a self-linking number of a lifting of the image to $ST^*\mathbb{R}^3$

The latter counts a generalised number of inverse self-tangencies of the image in generic homotopies between maps

mod2:

4th invariant, counting similar number of direct self-tangencies

Non-coorientable direct self-tangency stratum:

 invariants whose increments in generic homotopies are determined entirely by the diffeomorphism types of local bifurcations

 invariants whose increments in generic homotopies are determined entirely by the diffeomorphism types of local bifurcations of the critical value sets

- invariants whose increments in generic homotopies are determined entirely by the diffeomorphism types of local bifurcations of the critical value sets

Main result

Consider maps of an oriented closed 3-manifold M to oriented \mathbb{R}^3 .

- invariants whose increments in generic homotopies are determined entirely by the diffeomorphism types of local bifurcations of the critical value sets

Main result

Consider maps of an oriented closed 3-manifold M to oriented \mathbb{R}^3 . There are 7 linearly independent invariants over \mathbb{Z}

 invariants whose increments in generic homotopies are determined entirely by the diffeomorphism types of local bifurcations of the critical value sets

Main result

Consider maps of an oriented closed 3-manifold M to oriented \mathbb{R}^3 . There are 7 linearly independent invariants over \mathbb{Z} and 11 over \mathbb{Z}_2 .

- invariants whose increments in generic homotopies are determined entirely by the diffeomorphism types of local bifurcations of the critical value sets

Main result

Consider maps of an oriented closed 3-manifold M to oriented \mathbb{R}^3 . There are 7 linearly independent invariants over \mathbb{Z} and 11 over \mathbb{Z}_2 .

Further details and other orientation settings in

VG, *Local invariants of maps between 3-manifolds,* Journal of Topology **6** (2013) 757-776

Generic critical value sets

 $f: M^3 \to N^3$ Critical values: $\mathcal{C} \subset N$

A B + A B +

э

Generic critical value sets

 $f: M^3 \to N^3$ Critical values: $\mathcal{C} \subset N$

Smooth sheets of $\ensuremath{\mathcal{C}}$ and their transversal intersections

4 3 b

э

Generic critical value sets

 $f: M^3 \to N^3$ Critical values: $\mathcal{C} \subset N$

Smooth sheets of $\ensuremath{\mathcal{C}}$ and their transversal intersections

Co-orientation of the regular part of C:

towards its side with more local preimages

・ロン ・部 と ・ ヨ と ・ ヨ と …

Cuspidal edges: positive and negative according to the local degree of the map being ± 1

э

Cuspidal edges: positive and negative

according to the local degree of the map being ± 1

Hence signs for swallowtails:

Examples Classification Corank 2 bifurcations in codimension 1 Corank 1 catalog

Examples of local invariants

6 obvious:

- I_t , the number of triple points A_1^3 ;
- $I_{s_{\pm}}$, the numbers of positive and negative swallowtails;

$I_{c_{\pm}}$, the numbers of $A_2^{\pm}A_1$ points;

 I_{χ} , the Euler characteristic of the critical locus $\mathcal{K} \subset M$.

伺 ト イ ヨ ト イ ヨ ト

Examples Classification Corank 2 bifurcations in codimension 1 Corank 1 catalog

Linking invariant I_{Σ^2}

Victor Goryunov Local invariants of maps between 3-manifolds

(a)

Introduction Examples Generic critical value sets Classification Integer invariants Corank 2 bifurcations in codimension mod2 invariants Corank 1 catalog

Linking invariant I_{Σ^2}

 $\Sigma^2 \subset J^1(M, N)$, set of all jets with linear parts of corank ≥ 2 .

(日) (同) (三) (三)

э

Introduction Examples Generic critical value sets Classification Integer invariants Corank 2 bifurcations in codimension mod2 invariants Corank 1 catalog

Linking invariant I_{Σ^2}

 $\Sigma^2 \subset J^1(M,N)$, set of all jets with linear parts of corank ≥ 2 .

Co-orientation of Σ^2 : Take generic $j \in \Sigma^2$.

(日) (同) (三) (三)

э

Introduction Examples Generic critical value sets Classification Integer invariants Corank 2 bifurcations in codimension mod2 invariants Corank 1 catalog

Linking invariant I_{Σ^2}

 $\Sigma^2 \subset J^1(M,N)$, set of all jets with linear parts of corank ≥ 2 .

Co-orientation of Σ^2 :

Take generic $j \in \Sigma^2$. Operator $Lin(j) : \mathbb{R}^3 \to \mathbb{R}^3$ has rank 1.

イロト イポト イラト イラト

-

 $\Sigma^2 \subset J^1(M,N)$, set of all jets with linear parts of corank ≥ 2 .

Co-orientation of Σ^2 :

Take generic $j \in \Sigma^2$. Operator $Lin(j) : \mathbb{R}^3 \to \mathbb{R}^3$ has rank 1. Let $\{a_1, a_2\}$ and $\{b_1, b_2\}$ be bases of its kernel and cokernel.

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\Sigma^2 \subset J^1(M,N)$, set of all jets with linear parts of corank ≥ 2 .

Co-orientation of Σ^2 :

Take generic $j \in \Sigma^2$. Operator $Lin(j) : \mathbb{R}^3 \to \mathbb{R}^3$ has rank 1. Let $\{a_1, a_2\}$ and $\{b_1, b_2\}$ be bases of its kernel and cokernel. Set $(a_1 \otimes b_1) \land (a_1 \otimes b_2) \land (a_2 \otimes b_1) \land (a_2 \otimes b_2)$ to be the co-orientation of Σ^2 at j

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\Sigma^2 \subset J^1(M,N)$, set of all jets with linear parts of corank ≥ 2 .

Co-orientation of Σ^2 :

Take generic $j \in \Sigma^2$. Operator $Lin(j) : \mathbb{R}^3 \to \mathbb{R}^3$ has rank 1. Let $\{a_1, a_2\}$ and $\{b_1, b_2\}$ be bases of its kernel and cokernel. Set $(a_1 \otimes b_1) \land (a_1 \otimes b_2) \land (a_2 \otimes b_1) \land (a_2 \otimes b_2)$ to be the co-orientation of Σ^2 at j (independent of the order in the bases).

伺 ト イ ヨ ト イ ヨ ト

 $\Sigma^2 \subset J^1(M,N)$, set of all jets with linear parts of corank ≥ 2 .

Co-orientation of Σ^2 :

Take generic $j \in \Sigma^2$. Operator $Lin(j) : \mathbb{R}^3 \to \mathbb{R}^3$ has rank 1. Let $\{a_1, a_2\}$ and $\{b_1, b_2\}$ be bases of its kernel and cokernel. Set $(a_1 \otimes b_1) \land (a_1 \otimes b_2) \land (a_2 \otimes b_1) \land (a_2 \otimes b_2)$ to be the co-orientation of Σ^2 at j (independent of the order in the bases).

Fix generic $f_0 : M \to N$.

伺 ト イ ヨ ト イ ヨ ト

 $\Sigma^2 \subset J^1(M,N)$, set of all jets with linear parts of corank ≥ 2 .

Co-orientation of Σ^2 :

Take generic $j \in \Sigma^2$. Operator $Lin(j) : \mathbb{R}^3 \to \mathbb{R}^3$ has rank 1. Let $\{a_1, a_2\}$ and $\{b_1, b_2\}$ be bases of its kernel and cokernel. Set $(a_1 \otimes b_1) \land (a_1 \otimes b_2) \land (a_2 \otimes b_1) \land (a_2 \otimes b_2)$ to be the co-orientation of Σ^2 at j (independent of the order in the bases).

Fix generic $f_0: M \to N$. For any other generic map f_1 from the same connected component of $\Omega(M, N)$, consider its generic homotopy $\{f_t\}_{0 \le t \le 1}$.

- 4 同 6 4 日 6 4 日 6

 $\Sigma^2 \subset J^1(M,N)$, set of all jets with linear parts of corank ≥ 2 .

Co-orientation of Σ^2 :

Take generic $j \in \Sigma^2$. Operator $Lin(j) : \mathbb{R}^3 \to \mathbb{R}^3$ has rank 1. Let $\{a_1, a_2\}$ and $\{b_1, b_2\}$ be bases of its kernel and cokernel. Set $(a_1 \otimes b_1) \land (a_1 \otimes b_2) \land (a_2 \otimes b_1) \land (a_2 \otimes b_2)$ to be the co-orientation of Σ^2 at j (independent of the order in the bases).

Fix generic $f_0: M \to N$. For any other generic map f_1 from the same connected component of $\Omega(M, N)$, consider its generic homotopy $\{f_t\}_{0 \le t \le 1}$.

The images of the extensions $j^1 f_t$ define a 4-film $\varphi \subset J^1(M, N)$.

イロト イポト イラト イラト
Linking invariant I_{Σ^2}

 $\Sigma^2 \subset J^1(M,N)$, set of all jets with linear parts of corank ≥ 2 .

Co-orientation of Σ^2 :

Take generic $j \in \Sigma^2$. Operator $Lin(j) : \mathbb{R}^3 \to \mathbb{R}^3$ has rank 1. Let $\{a_1, a_2\}$ and $\{b_1, b_2\}$ be bases of its kernel and cokernel. Set $(a_1 \otimes b_1) \land (a_1 \otimes b_2) \land (a_2 \otimes b_1) \land (a_2 \otimes b_2)$ to be the co-orientation of Σ^2 at j (independent of the order in the bases).

Fix generic $f_0: M \to N$. For any other generic map f_1 from the same connected component of $\Omega(M, N)$, consider its generic homotopy $\{f_t\}_{0 \le t \le 1}$. The images of the extensions $j^1 f_t$ define a 4-film $\varphi \subset J^1(M, N)$. Orient φ as $[0, 1] \times M$.

イロト イポト イラト イラト

Linking invariant I_{Σ^2}

 $\Sigma^2 \subset J^1(M,N)$, set of all jets with linear parts of corank ≥ 2 .

Co-orientation of Σ^2 :

Take generic $j \in \Sigma^2$. Operator $Lin(j) : \mathbb{R}^3 \to \mathbb{R}^3$ has rank 1. Let $\{a_1, a_2\}$ and $\{b_1, b_2\}$ be bases of its kernel and cokernel. Set $(a_1 \otimes b_1) \land (a_1 \otimes b_2) \land (a_2 \otimes b_1) \land (a_2 \otimes b_2)$ to be the co-orientation of Σ^2 at j (independent of the order in the bases).

Fix generic $f_0: M \to N$. For any other generic map f_1 from the same connected component of $\Omega(M, N)$, consider its generic homotopy $\{f_t\}_{0 \le t \le 1}$.

The images of the extensions $j^1 f_t$ define a 4-film $\varphi \subset J^1(M, N)$. Orient φ as $[0, 1] \times M$. Due to the parallelisability of M and N, we have well-defined value

$$I_{\Sigma^2}(f_1) = \langle \varphi, \Sigma^2 \rangle + I_{\Sigma^2}(f_0)$$

イロト イポト イヨト イヨト

Introduction Generic critical value sets Integer invariants mod2 invariants Examples Classification Corank 2 bifurcations in codimension 1 Corank 1 catalog

Classification of integer-valued invariants

イロト イポト イヨト イヨト

Introduction Examples Generic critical value sets Integer invariants Corank 2 mod2 invariants Corank 1

Examples Classification Corank 2 bifurcations in codimension 1 Corank 1 catalog

Classification of integer-valued invariants

Theorem

The space of all integer-valued order 1 local invariants of maps of a closed oriented 3-manifold to an oriented 3-manifold has rank 7.

Introduction Exa Generic critical value sets Clas Integer invariants Cora mod2 invariants Cora

Examples Classification Corank 2 bifurcations in codimension 1 Corank 1 catalog

Classification of integer-valued invariants

Theorem

The space of all integer-valued order 1 local invariants of maps of a closed oriented 3-manifold to an oriented 3-manifold has rank 7. It is generated by:

.

Classification of integer-valued invariants

Theorem

The space of all integer-valued order 1 local invariants of maps of a closed oriented 3-manifold to an oriented 3-manifold has rank 7. It is generated by:

$$(I_{s_+} \pm I_{s_-})/2$$
, $(I_{c_+} + I_{c_-})/2$, I_t , $(I_t + I_{c_+})/2$, $I_{\chi}/2$, I_{Σ^2} .

.

Introduction Generic critical value sets Integer invariants mod2 invariants Examples Classification Corank 2 bifurcations in codimension 1 Corank 1 catalog

Corank 2 bifurcations in 1-parameter families

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Corank 2 bifurcations in 1-parameter families

 I_{Σ^2} changes by 1 at a positive crossing of codimension 1 strata of generic corank 2 maps $M \to \mathbb{R}^3$.

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Corank 2 bifurcations in 1-parameter families

 I_{Σ^2} changes by 1 at a positive crossing of codimension 1 strata of generic corank 2 maps $M \to \mathbb{R}^3$.

 $D_4^{-\pm}$: $(\pm(x^2-y^2)+zx-\lambda y,xy,z)$, of local degree ± 2

Corank 2 bifurcations in 1-parameter families

 I_{Σ^2} changes by 1 at a positive crossing of codimension 1 strata of generic corank 2 maps $M \to \mathbb{R}^3$.

 $D_4^{-\pm}$: (±($x^2 - y^2$) + $zx - \lambda y, xy, z$), of local degree ±2

By this transition we co-orient the D_4^{-+} stratum. The co-orientation of D_4^{--} is in the opposite direction. Both co-orientations correspond to the increase of the deformation parameter λ .

(4 同) (4 回) (4 回)

Introduction Generic critical value sets Integer invariants mod2 invariants Examples Classification Corank 2 bifurcations in codimension 1 Corank 1 catalog

 $D_4^{\pm\pm}$: $(x^2 + y^2 + zy + \lambda x, \pm xy, z)$, where \pm is the edge sign for $\lambda = 0$:

(a)

 $D_4^{\pm\pm}$: $(x^2 + y^2 + zy + \lambda x, \pm xy, z)$, where \pm is the edge sign for $\lambda = 0$:

(日) (同) (三) (三)

 $D_4^{\pm\pm}$: $(x^2 + y^2 + zy + \lambda x, \pm xy, z)$, where \pm is the edge sign for $\lambda = 0$:

Half of the right surface:

 D_4^{\pm} : $(x^2 + y^2 + zy + \lambda x, \pm xy, z)$, where \pm is the edge sign for $\lambda = 0$:

Half of the right surface:

Co-orientation:

by the sign of the swallow tails, equivalently by the increase of λ

- 4 同 6 4 日 6 4 日 6

Catalog of 1-parameter bifurcations of cork 1 maps

Uni-germs

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Multi-germs

<ロ> (日) (日) (日) (日) (日)

æ

Classification of mod2 invariants

Theorem

The space of all mod2 order 1 local invariants of maps of an oriented closed 3-manifold to oriented \mathbb{R}^3 has rank 11.

伺 ト く ヨ ト く ヨ ト

Classification of mod2 invariants

Theorem

The space of all mod2 order 1 local invariants of maps of an oriented closed 3-manifold to oriented \mathbb{R}^3 has rank 11. Its basis is formed by the 7 integer invariants reduced modulo 2, and 4 further invariants:

Image: A Image: A

Classification of mod2 invariants

Theorem

The space of all mod2 order 1 local invariants of maps of an oriented closed 3-manifold to oriented \mathbb{R}^3 has rank 11. Its basis is formed by the 7 integer invariants reduced modulo 2, and 4 further invariants:

 I_{fe} , the invariant of the framed cuspidal edge described below;

• • • • • • •

Classification of mod2 invariants

Theorem

The space of all mod2 order 1 local invariants of maps of an oriented closed 3-manifold to oriented \mathbb{R}^3 has rank 11. Its basis is formed by the 7 integer invariants reduced modulo 2, and 4 further invariants:

 I_{fe} , the invariant of the framed cuspidal edge described below;

 I_{L_+} , analogous invariant of the framed link constructed from the *positive* edges and selfintersection of C;

伺 ト イ ヨ ト イ ヨ ト

Classification of mod2 invariants

Theorem

The space of all mod2 order 1 local invariants of maps of an oriented closed 3-manifold to oriented \mathbb{R}^3 has rank 11. Its basis is formed by the 7 integer invariants reduced modulo 2, and 4 further invariants:

- I_{fe} , the invariant of the framed cuspidal edge described below;
- I_{L_+} , analogous invariant of the framed link constructed from the *positive* edges and selfintersection of C;
- $I_{L_{-}}$, same as the previous one, but with the *negative* edges used;

伺 ト イ ヨ ト イ ヨ ト

Classification of mod2 invariants

Theorem

The space of all mod2 order 1 local invariants of maps of an oriented closed 3-manifold to oriented \mathbb{R}^3 has rank 11. Its basis is formed by the 7 integer invariants reduced modulo 2, and 4 further invariants:

- I_{fe} , the invariant of the framed cuspidal edge described below;
- I_{L_+} , analogous invariant of the framed link constructed from the *positive* edges and selfintersection of C;
- $I_{L_{-}}$, same as the previous one, but with the *negative* edges used;
- I_{11} , which lacks at the moment a good geometrical interpretation.

- 4 周 ト 4 戸 ト 4 戸 ト

Classification of mod2 invariants

Theorem

The space of all mod2 order 1 local invariants of maps of an oriented closed 3-manifold to oriented \mathbb{R}^3 has rank 11. Its basis is formed by the 7 integer invariants reduced modulo 2, and 4 further invariants:

 I_{fe} , the invariant of the framed cuspidal edge described below;

- I_{L_+} , analogous invariant of the framed link constructed from the *positive* edges and selfintersection of C;
- $I_{L_{-}}$, same as the previous one, but with the *negative* edges used;
- I_{11} , which lacks at the moment a good geometrical interpretation.

The I_{L+} invariants are due to Franka Aicardi.

(人間) とうり くうり

Framed link from the cuspidal edge

э

(日) (同) (三) (三)

Framed link from the cuspidal edge

Orient arbitrarily the framed link.

Framed link from the cuspidal edge

Orient arbitrarily the framed link.

Let w be its *writhe*, that is, the algebraic number of crossings of the cores of the components in its link diagram

Framed link from the cuspidal edge

Orient arbitrarily the framed link.

Let *w* be its *writhe*, that is, the algebraic number of crossings of the cores of the components in its link diagram plus the sum of the algebraic numbers of full rotations done by the framing of each of the components around its own core.

Framed link from the cuspidal edge

Orient arbitrarily the framed link.

Let *w* be its *writhe*, that is, the algebraic number of crossings of the cores of the components in its link diagram plus the sum of the algebraic numbers of full rotations done by the framing of each of the components around its own core.

Since the number of crossings of two different components is even, *w* mod4 does not depend on the orientations of the components.

Framed link from the cuspidal edge

Orient arbitrarily the framed link.

Let *w* be its *writhe*, that is, the algebraic number of crossings of the cores of the components in its link diagram plus the sum of the algebraic numbers of full rotations done by the framing of each of the components around its own core.

Since the number of crossings of two different components is even, $w \mod 4$ does not depend on the orientations of the components. Let n be the number of components of the link.

Framed link from the cuspidal edge

Orient arbitrarily the framed link.

Let *w* be its *writhe*, that is, the algebraic number of crossings of the cores of the components in its link diagram plus the sum of the algebraic numbers of full rotations done by the framing of each of the components around its own core.

Since the number of crossings of two different components is even, $w \mod 4$ does not depend on the orientations of the components. Let n be the number of components of the link.

Theorem The mod2 invariant $I_{fe} = n + w/2$ is local.

Lemma

Consider two local modifications of a framed link:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma

Consider two local modifications of a framed link:

Assume the framing of all participating fragments is blackboard.

- 4 同 6 4 日 6 4 日 6

Lemma

Consider two local modifications of a framed link:

Assume the framing of all participating fragments is blackboard. Then the 1st move changes $(n + w/2) \mod 2$ by 1, while the 2nd preserves this number.

伺 ト イ ヨ ト イ ヨ ト

Framed link L_+ from the positive edges and selfintersection

(日) (同) (三) (三)

Framed link L_+ from the positive edges and selfintersection

Framed link L_+ from the positive edges and selfintersection

The invariant I_{L_+} is similar to I_{fe} plus half the number of triple points

イロト イポト イラト イラト
Introduction	Classification
Generic critical value sets	The cuspidal edge invariant
Integer invariants	The basic lemma
mod2 invariants	Framed link from the positive edges and selfintersection

Corollary of the last Theorem

The rank of the mod2 invariant space for maps between two oriented 3-manifolds is at least 7 and at most 11.

Non-oriented source

The setting eliminates the signs of edges and swallowtails.

同 ト イ ヨ ト イ ヨ ト

э

Non-oriented source

The setting eliminates the signs of edges and swallowtails.

Theorem

The space of all integer order 1 local invariants of maps from any closed non-orientable 3-manifold to any 3-manifold has rank 4.

4 B 6 4 B

Non-oriented source

The setting eliminates the signs of edges and swallowtails.

Theorem

The space of all integer order 1 local invariants of maps from any closed non-orientable 3-manifold to any 3-manifold has rank 4. The space is generated by

- $I_s/2$, half of the total number of swallowtails of the critical value set C,
- $I_c/2$, half of the number of A_2A_1 points of C,
 - I_t , the number of triple points of \mathcal{C} , and
- $I_{\chi}/2$, half of the Euler characteristic of the critical locus.

伺 ト イ ヨ ト イ ヨ ト

Non-oriented source

The setting eliminates the signs of edges and swallowtails.

Theorem

The space of all integer order 1 local invariants of maps from any closed non-orientable 3-manifold to any 3-manifold has rank 4. The space is generated by

- $\mathit{I_s/2}, \ half of the total number of swallowtails of the critical value set <math display="inline">\mathcal{C},$
- $I_c/2$, half of the number of A_2A_1 points of C,
 - $\textit{I}_t, \text{ the number of triple points of } \mathcal{C}, \text{ and }$
- $I_{\chi}/2$, half of the Euler characteristic of the critical locus.

Reason: the claim holds for \mathbb{R}^3 as the target, since integer I_{Σ^2} requires orientation of the source.

Introduction	Classification
Generic critical value sets	The cuspidal edge invariant
Integer invariants	The basic lemma
mod2 invariants	Framed link from the positive edges and selfintersection

Theorem

a) The space of the mod2 invariants of maps from a non-orientable 3-manifold to \mathbb{R}^3 has rank 6.

Introduction	Classification
Generic critical value sets	The cuspidal edge invariant
Integer invariants	The basic lemma
mod2 invariants	Framed link from the positive edges and selfintersection

Theorem

a) The space of the mod2 invariants of maps from a non-orientable 3-manifold to \mathbb{R}^3 has rank 6. Its basis is formed by $I_s/2$, $I_c/2$, I_t , $I_{\chi}/2$, I_{Σ^2} and $I_{\Sigma^{1,1,1,1}}$.

Introduction	Classification
Generic critical value sets	The cuspidal edge invariant
Integer invariants	The basic lemma
mod2 invariants	Framed link from the positive edges and selfintersection

Theorem

- a) The space of the mod2 invariants of maps from a non-orientable 3-manifold to \mathbb{R}^3 has rank 6. Its basis is formed by $I_s/2$, $I_c/2$, I_t , $I_{\chi}/2$, I_{Σ^2} and $I_{\Sigma^{1,1,1,1}}$.
- b) If the target is arbitrary, then the rank of the mod2 invariant space is at least 4 and at most 6.

Oriented source and non-oriented target

 I_{Σ^2} survives over \mathbb{Z} for \mathbb{R}^3 as the target.

同 ト イ ヨ ト イ ヨ ト

э

Oriented source and non-oriented target

 I_{Σ^2} survives over \mathbb{Z} for \mathbb{R}^3 as the target. Hence the space of integer invariants of maps to \mathbb{R}^3 has rank 5.

4 B K 4 B K

Oriented source and non-oriented target

 I_{Σ^2} survives over \mathbb{Z} for \mathbb{R}^3 as the target. Hence the space of integer invariants of maps to \mathbb{R}^3 has rank 5. Therefore, for an arbitrary target manifold, the rank is either 4 or 5.

Oriented source and non-oriented target

 I_{Σ^2} survives over \mathbb{Z} for \mathbb{R}^3 as the target. Hence the space of integer invariants of maps to \mathbb{R}^3 has rank 5. Therefore, for an arbitrary target manifold, the rank is either 4 or 5.

The mod2 statement is the same as for a non-oriented source.