From 3-manifolds to planar graphs and cycle-rooted trees

Michael Polyak

Technion

November 27, 2014

Michael Polyak (Technion) From 3-manifolds to planar graphs and cycle-November 27, 2014 1/17

4 **D** F

B

"CONFIRMING THE BELIEF THAT MUSIC AND MATH ARE
RELATED, I WILL NOW SING SOME LOVELY FRENCH EQUATIONS."

 $2Q$

- 3

イロト イ押ト イヨト イヨト

Encode 3-manifolds by planar weighted graphs

イロト イ部 トイモト イモト

 $E = 990^\circ$

- Encode 3-manifolds by planar weighted graphs
- Pass from various presentations of 3-manifolds to graphs and back

イロト イ押ト イヨト イヨト

 \equiv 990

- Encode 3-manifolds by planar weighted graphs
- Pass from various presentations of 3-manifolds to graphs and back
- Similar encodings for related objects: links in 3-manifolds, manifolds with Spin- or Spin^c-structures, elements of the mapping class group, etc.

イロト イ押ト イヨト イヨト

 \equiv \cap a \sim

- Encode 3-manifolds by planar weighted graphs
- Pass from various presentations of 3-manifolds to graphs and back
- Similar encodings for related objects: links in 3-manifolds, manifolds with Spin- or Spin^c-structures, elements of the mapping class group, etc.
- Encoding is not unique: finite set of simple moves on graphs (related to electrical networks)

 $=$ Ω

- Encode 3-manifolds by planar weighted graphs
- Pass from various presentations of 3-manifolds to graphs and back
- Similar encodings for related objects: links in 3-manifolds, manifolds with Spin- or Spin^c-structures, elements of the mapping class group, etc.
- Encoding is not unique: finite set of simple moves on graphs (related to electrical networks)
- Various invariants of 3-manifolds transform into combinatorial invariants

 $=$ Ω

- Encode 3-manifolds by planar weighted graphs
- Pass from various presentations of 3-manifolds to graphs and back
- Similar encodings for related objects: links in 3-manifolds, manifolds with Spin- or Spin^c-structures, elements of the mapping class group, etc.
- Encoding is not unique: finite set of simple moves on graphs (related to electrical networks)
- Various invariants of 3-manifolds transform into combinatorial invariants
- Configuration space integrals \rightarrow counting of subgraphs

イロト イ押ト イヨト イヨト

 \equiv \cap α

- Encode 3-manifolds by planar weighted graphs
- Pass from various presentations of 3-manifolds to graphs and back
- Similar encodings for related objects: links in 3-manifolds, manifolds with Spin- or Spin^c-structures, elements of the mapping class group, etc.
- Encoding is not unique: finite set of simple moves on graphs (related to electrical networks)
- Various invariants of 3-manifolds transform into combinatorial invariants
- Configuration space integrals \rightarrow counting of subgraphs
- Low-degree invariants \rightarrow counting of rooted forests

イロト イ押ト イヨト イヨト

 \equiv \cap α

A chainmail graph is a planar graph G , decorated with $\mathbb Z$ -weights:

イロト イ押 トイラト イラト

 $E = 990^\circ$

A chainmail graph is a planar graph G , decorated with $\mathbb Z$ -weights:

• Each vertex v is decorated with a weight $d(v)$;

 \equiv \cap α

イロト イ押ト イヨト イヨト

A chainmail graph is a planar graph G , decorated with \mathbb{Z} -weights:

• Each vertex v is decorated with a weight $d(v)$; A vertex is balanced, if $d(v) = 0$ (can think about $d(v)$ as a "defect" of v); a graph is balanced, if all of its vertices are.

 \equiv \cap α

A chainmail graph is a planar graph G , decorated with \mathbb{Z} -weights:

- Each vertex v is decorated with a weight $d(v)$; A vertex is balanced, if $d(v) = 0$ (can think about $d(v)$ as a "defect" of v); a graph is balanced, if all of its vertices are.
- Each edge e is decorated with a weight $w(e)$.

 \equiv \cap α

A chainmail graph is a planar graph G , decorated with \mathbb{Z} -weights:

- Each vertex v is decorated with a weight $d(v)$; A vertex is balanced, if $d(v) = 0$ (can think about $d(v)$ as a "defect" of v); a graph is balanced, if all of its vertices are.
- Each edge e is decorated with a weight $w(e)$. A 0-weighted edge may be erased. Multiple edges are allowed. Two edges e_1 , e_2 connecting the same pair of vertices may be redrawn as one edge of weight $w(e_1) + w(e_2)$.

KEL KALE KEL KEL KAR

A chainmail graph is a planar graph G , decorated with \mathbb{Z} -weights:

- Each vertex v is decorated with a weight $d(v)$; A vertex is balanced, if $d(v) = 0$ (can think about $d(v)$ as a "defect" of v); a graph is balanced, if all of its vertices are.
- Each edge e is decorated with a weight $w(e)$. A 0-weighted edge may be erased. Multiple edges are allowed. Two edges e_1 , e_2 connecting the same pair of vertices may be redrawn as one edge of weight $w(e_1) + w(e_2)$. Looped edges are also allowed; a looped edge may be erased.

KEL KALE KEL KEL KAR

A chainmail graph is a planar graph G , decorated with \mathbb{Z} -weights:

- Each vertex v is decorated with a weight $d(v)$; A vertex is balanced, if $d(v) = 0$ (can think about $d(v)$ as a "defect" of v); a graph is balanced, if all of its vertices are.
- Each edge e is decorated with a weight $w(e)$. A 0-weighted edge may be erased. Multiple edges are allowed. Two edges e_1 , e_2 connecting the same pair of vertices may be redrawn as one edge of weight $w(e_1) + w(e_2)$. Looped edges are also allowed; a looped edge may be erased.

イロメ イ何 メイヨメ イヨメーヨ

 Ω

지수는 지금에 대해 주세요?

 $2Q$

Given a chainmail graph G with vertices v_i and edges e_{ii} , $i, j = 1, 2, \ldots, n$ we consruct a surgery link L as follows:

A D D Y 4 E Y 4 E Y 1 E Y A Q O

Given a chainmail graph G with vertices v_i and edges e_{ii} , $i, j = 1, 2, \ldots, n$ we consruct a surgery link L as follows:

- vertex $v_i \rightarrow$ standard planar unknot L_i
- ± 1 -weighted edge $e_{ii} \rightarrow \pm 1$ -clasped ribbon linking L_i and L_i

KORKA ERKER EL KRENET

Given a chainmail graph G with vertices v_i and edges e_{ii} , $i, j = 1, 2, ..., n$ we consruct a surgery link L as follows:

- vertex $v_i \rightarrow$ standard planar unknot L_i
- ± 1 -weighted edge $e_{ii} \rightarrow \pm 1$ -clasped ribbon linking L_i and L_i

←ロト イ母ト イヨト イヨト

 Ω

Linking numbers and framings of components are given by a graph Laplacian matrix Λ with entries

$$
I_{ij} = \begin{cases} w_{ij}, & i \neq j \\ d_{ii} - \sum_{k=1}^n w_{ik}, & i = j \end{cases}
$$

KED KARD KED KED E VOOR

Linking numbers and framings of components are given by a graph Laplacian matrix Λ with entries

$$
I_{ij} = \begin{cases} w_{ij}, & i \neq j \\ d_{ii} - \sum_{k=1}^n w_{ik}, & i = j \end{cases}
$$

イ何 ト イヨ ト イヨト

4 **D** F

 Ω

It turns out, that

Theorem

Any (closed, oriented) 3-manifold can be encoded by a chainmail graph.

4 D F

- ← 冊 →

 \equiv

B

It turns out, that

Theorem

Any (closed, oriented) 3-manifold can be encoded by a chainmail graph.

Moreover, there are simple direct constructions starting from many different presentations of a manifold:

It turns out, that

Theorem

Any (closed, oriented) 3-manifold can be encoded by a chainmail graph.

Moreover, there are simple direct constructions starting from many different presentations of a manifold: surgery,

It turns out, that

Theorem

Any (closed, oriented) 3-manifold can be encoded by a chainmail graph.

Moreover, there are simple direct constructions starting from many different presentations of a manifold: surgery, Heegaard decompositions,

It turns out, that

Theorem

Any (closed, oriented) 3-manifold can be encoded by a chainmail graph.

Moreover, there are simple direct constructions starting from many different presentations of a manifold: surgery, Heegaard decompositions, plumbing,

It turns out, that

Theorem

Any (closed, oriented) 3-manifold can be encoded by a chainmail graph.

Moreover, there are simple direct constructions starting from many different presentations of a manifold: surgery, Heegaard decompositions, plumbing, double covers of S^3 branched along a link, etc.

 Ω

It turns out, that

Theorem

Any (closed, oriented) 3-manifold can be encoded by a chainmail graph.

- Moreover, there are simple direct constructions starting from many different presentations of a manifold: surgery, Heegaard decompositions, plumbing, double covers of S^3 branched along a link, etc.
- Similar constructions work also for a variety of similar objects:

It turns out, that

Theorem

Any (closed, oriented) 3-manifold can be encoded by a chainmail graph.

- Moreover, there are simple direct constructions starting from many different presentations of a manifold: surgery, Heegaard decompositions, plumbing, double covers of S^3 branched along a link, etc.
- Similar constructions work also for a variety of similar objects: links in 3-manifolds,

 Ω

It turns out, that

Theorem

Any (closed, oriented) 3-manifold can be encoded by a chainmail graph.

- Moreover, there are simple direct constructions starting from many different presentations of a manifold: surgery, Heegaard decompositions, plumbing, double covers of S^3 branched along a link, etc.
- Similar constructions work also for a variety of similar objects: links in 3-manifolds, 3-manifolds with Spin- or Spin^c-structures,

 Ω

It turns out, that

Theorem

Any (closed, oriented) 3-manifold can be encoded by a chainmail graph.

- Moreover, there are simple direct constructions starting from many different presentations of a manifold: surgery, Heegaard decompositions, plumbing, double covers of S^3 branched along a link, etc.
- Similar constructions work also for a variety of similar objects: links in 3-manifolds, 3-manifolds with Spin- or Spin^c-structures, elements of the mapping class group, etc.

Some info about M can be immediately extracted from G. In particular, M is a Q-homology sphere iff det $\Lambda \neq 0$ and then $|H_1(M)| = |\det \Lambda|$; also, signature of M is the signature sign(Λ) of Λ .

- a

←ロト イ母ト イヨト イヨト

Proofs and explicit constructions ...

No time to present here.

 \leftarrow \Box \rightarrow

 $2Q$

Calculus of chainmail graphs

An encoding of a manifold by a chainmail graph is non-unique. However, there is a finite set of simple moves which allow one to pass from one chainmail graph encoding a manifold to any other graph encoding the same manifold.

 Ω

Calculus of chainmail graphs

An encoding of a manifold by a chainmail graph is non-unique. However, there is a finite set of simple moves which allow one to pass from one chainmail graph encoding a manifold to any other graph encoding the same manifold. The most interesting moves are

 Ω

Calculus of chainmail graphs

An encoding of a manifold by a chainmail graph is non-unique. However, there is a finite set of simple moves which allow one to pass from one chainmail graph encoding a manifold to any other graph encoding the same manifold. The most interesting moves are

They are related to a number of topics: Kirby moves, relations in the mapping class group, electrical networks and cluster algebras, and Reidemeister moves for link diagrams (via balanced median graphs) -

Combinatorial invariants of 3-manifolds

Chern-Simons theory leads to a lot of knot and 3-manifold invariants. Attempts to understand the Jones polynomial in these terms led to quantum knot invariants, the Kontsevich integral, configuration space integrals and other constructions.

A D D Y 4 E Y 4 E Y 1 E Y A Q O

Combinatorial invariants of 3-manifolds

Chern-Simons theory leads to a lot of knot and 3-manifold invariants. Attempts to understand the Jones polynomial in these terms led to quantum knot invariants, the Kontsevich integral, configuration space integrals and other constructions. In particular,

Perturbative CS-theory *Feynman diagrams* Configuration space integrals

 η an

Perturbative CS-theory *Feynman diagrams* Configuration space integrals

Rather powerful: contain universal finite type invariants of knots and 3-manifolds

 η an

Perturbative CS-theory *Feynman diagrams* Configuration space integrals

- Rather powerful: contain universal finite type invariants of knots and 3-manifolds
- Very complicated technically

Perturbative CS-theory *Feynman diagrams* Configuration space integrals

- Rather powerful: contain universal finite type invariants of knots and 3-manifolds
- Very complicated technically
- Extremely hard to compute

Perturbative CS-theory *Feynman diagrams* Configuration space integrals

- Rather powerful: contain universal finite type invariants of knots and 3-manifolds
- Very complicated technically
- Extremely hard to compute

We expect a similar combinatorial setup in our case: An appropriate CS -theory on graphs $\frac{discrete}{Feynman\ diagrams}$ Discrete sums over subgraphs

キロ トイ何 トイヨ トイヨ トーヨー

Perturbative CS-theory *Feynman diagrams* Configuration space integrals

- Rather powerful: contain universal finite type invariants of knots and 3-manifolds
- Very complicated technically
- Extremely hard to compute

We expect a similar combinatorial setup in our case: An appropriate CS -theory on graphs $\frac{discrete}{Feynman\ diagrams}$ Discrete sums over subgraphs Types of subgraphs are suggested by the theory: uni-trivalent graphs for links; trivalent graphs for 3-manifolds.

 $\mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A} \$

イロト イ押ト イヨト イヨト

 \equiv \cap α

Vertices of a Feynman graph:

configurations of *n* points in $M \rightarrow$ sets of *n* vertices in G

イロト イ押ト イヨト イヨト

 \equiv \cap α

- Vertices of a Feynman graph: configurations of *n* points in $M \rightarrow$ sets of *n* vertices in G
- Edges of a Feynman graph: propagators in $M \rightarrow$ paths of edges in G

KEL KALE KEL KEL KAR

- Vertices of a Feynman graph: configurations of *n* points in $M \rightarrow$ sets of *n* vertices in G
- Edges of a Feynman graph: propagators in $M \rightarrow$ paths of edges in G
- Integration over the configuration space \rightarrow sum over subgraphs

KORKA ERKER EL KRENET

- Vertices of a Feynman graph: configurations of *n* points in $M \rightarrow$ sets of *n* vertices in G
- Edges of a Feynman graph: propagators in $M \rightarrow$ paths of edges in G
- Integration over the configuration space \rightarrow sum over subgraphs
- Compactifications and anomalies due to collisions of points in $M \rightarrow$ appearance of degenerate graphs when several vertices merge together

KED KARD KED KED E VOOR

Let's see this on an example of the simplest non-trivial perturbative invariant, corresponding to the Feynman graph with 2 vertices, i.e., the Θ-graph:

4 **D** F

ミドマミド

 \equiv \cap α

Let's see this on an example of the simplest non-trivial perturbative invariant, corresponding to the Feynman graph with 2 vertices, i.e., the Θ-graph:

We count maps $\phi : \Theta \to G$ with weights and multiplicities.

Let's see this on an example of the simplest non-trivial perturbative invariant, corresponding to the Feynman graph with 2 vertices, i.e., the Θ-graph:

We count maps $\phi : \Theta \to G$ with weights and multiplicities. One can think about such a map as a choice of two vertices v_i and v_i of G, connected by 3 paths of edges which do not have any common internal vertices:

Let's see this on an example of the simplest non-trivial perturbative invariant, corresponding to the Feynman graph with 2 vertices, i.e., the Θ-graph:

We count maps $\phi : \Theta \to G$ with weights and multiplicities. One can think about such a map as a choice of two vertices v_i and v_i of G, connected by 3 paths of edges which do not have any common internal vertices:

Let's see this on an example of the simplest non-trivial perturbative invariant, corresponding to the Feynman graph with 2 vertices, i.e., the Θ-graph:

We count maps $\phi : \Theta \to G$ with weights and multiplicities. One can think about such a map as a choice of two vertices v_i and v_i of G, connected by 3 paths of edges which do not have any common internal vertices:

The weight $W(\phi)$ of ϕ is the product $L(\phi) \prod_{e \in \phi(G)} l_e$, where $L(\phi)$ is the minor of Λ , corresponding to all vertices of G not in $\phi(\Theta)$.

・ロト イ母 トイヨ トイヨ トー ヨ

Degenerate maps should be counted as well. Such degeneracies appear when two vertices of the Θ-graph collide together to produce a figure-eight graph:

 \leftarrow m \rightarrow

B. OQ

Degenerate maps should be counted as well. Such degeneracies appear when two vertices of the Θ-graph collide together to produce a figure-eight graph:

 -1 -1

 Ω

Degenerate maps should be counted as well. Such degeneracies appear when two vertices of the Θ-graph collide together to produce a figure-eight graph:

Diagonal entries of Λ also enter in the formula, when one lobe (or possibly both) of the figure-eight graph becomes a looped edge in the 4-valent vertex. The weight of such a loop in v_i is l_{ii} . E.g., for the map

 Ω

Degenerate maps should be counted as well. Such degeneracies appear when two vertices of the Θ-graph collide together to produce a figure-eight graph:

Diagonal entries of Λ also enter in the formula, when one lobe (or possibly both) of the figure-eight graph becomes a looped edge in the 4-valent vertex. The weight of such a loop in v_i is l_{ii} . E.g., for the map

we have $W(\phi) = L(\phi) \cdot I_{ii} \cdot I_{ik} \cdot I_{ki} \cdot I_{ii}$. In the most degenerate cases – a triple edge or double looped edge – weights need to be slightly adjusted.

 \equiv \cap α

 \Box \rightarrow \land \Box \rightarrow \land \Box \rightarrow

"I think you should be more explicit here in step two."

 \leftarrow \Box \rightarrow

- 4 母

 \sim

 $2Q$

Þ

重

Theorem

 $\Theta(\mathsf{G}) = \sum_{\phi} \mathsf{W}(\phi)$ is an invariant of M. If M is a $\mathbb Q$ -homology sphere (i.e., $\det\Lambda\neq 0$), we have $\Theta(G)=\pm 12|H_1(M)|(\lambda_{CW}(M)-\frac{sign(M)}{4})$ $\frac{n(w)}{4}$), where λ _CW(M) is the Casson-Walker invariant.

 $\mathbb{B} \rightarrow \mathbb{R} \oplus \mathbb{R} \rightarrow \mathbb{R} \oplus \mathbb{R}$

 Ω

Theorem

 $\Theta(\mathsf{G}) = \sum_{\phi} \mathsf{W}(\phi)$ is an invariant of M. If M is a $\mathbb Q$ -homology sphere (i.e., $\det\Lambda\neq 0$), we have $\Theta(G)=\pm 12|H_1(M)|(\lambda_{CW}(M)-\frac{sign(M)}{4})$ $\frac{n(w)}{4}$), where λ _CW(M) is the Casson-Walker invariant.

Conjecture

The next perturbative invariant can be obtained in a similar way by counting maps of \triangle and \bigcirc to G.

Note that $\Theta(G)$ is a polynomial of degree $n+1$ in the entries of Λ. This leads to

Conjecture

Any finite type invariant of degree d of 3-manifolds (with an appropriate normalization) is a polynomial of degree at most $n + d$ in the entries of Λ .

Remark

Instead of counting maps $\phi : \Theta \to G$, we may count Θ -subgraphs of G, taking symmetries into account:

4 D F

 $\rightarrow \equiv$ \rightarrow - 30 Ω

Remark

Instead of counting maps $\phi : \Theta \to G$, we may count Θ -subgraphs of G, taking symmetries into account:

Example

For the (negatively oriented) Poincare homology sphere one has $G=\stackrel{3}{\bullet} \stackrel{2}{\bullet} \stackrel{5}{\bullet}$. Thus $\Lambda=\left(\begin{array}{cc} 1 & 2 \ 2 & 3 \end{array}\right)$, det $\Lambda=-1$ (so M is a $\mathbb Z$ -homology sphere), sign(Λ) = 0, and to compute $\Theta(G)$ we count 2 \cdot (\bullet + $\$ $\Theta(G) = 2 \cdot (1 \cdot 2^2 + 3 \cdot 2^2) + (1^2 + 2)(-3) + (3^2 + 2)(-1) + 2 \cdot (2^3 - 2) = 24$ and obtain $\lambda_{CW}(M) = -2$.

Recall that the matrix Λ was defined as the graph Laplacian for the weight matrix W :

$$
I_{ij} = \begin{cases} w_{ij}, & i \neq j \\ d_{ii} - \sum_{k=1}^n w_{ik}, & i = j \end{cases}
$$

イロト イ押ト イヨト イヨト

 \equiv 990

Recall that the matrix Λ was defined as the graph Laplacian for the weight matrix W :

$$
I_{ij} = \begin{cases} w_{ij}, & i \neq j \\ d_{ii} - \sum_{k=1}^n w_{ik}, & i = j \end{cases}
$$

An expression for $\Theta(M)$ in terms of the original weight matrix W (with d_{ii} on the diagonal) is even simpler.

KEL KALE KEL KEL KAR

Recall that the matrix Λ was defined as the graph Laplacian for the weight matrix W :

$$
I_{ij} = \begin{cases} w_{ij}, & i \neq j \\ d_{ii} - \sum_{k=1}^n w_{ik}, & i = j \end{cases}
$$

An expression for $\Theta(M)$ in terms of the original weight matrix W (with d_{ii} on the diagonal) is even simpler.

Namely, one should count cycle-based rooted trees instead of Θ's:

 Ω

Recall that the matrix Λ was defined as the graph Laplacian for the weight matrix W :

$$
I_{ij} = \begin{cases} w_{ij}, & i \neq j \\ d_{ii} - \sum_{k=1}^n w_{ik}, & i = j \end{cases}
$$

An expression for $\Theta(M)$ in terms of the original weight matrix W (with d_{ii} on the diagonal) is even simpler.

Namely, one should count cycle-based rooted trees instead of Θ's:

- Weights are defined as before, except that in the root vertex v_i one uses its weight d_{ii} .
- No looped edges, no degenerate cases (except for a cycle being a double edge), simpler invariance check. イロト イ押ト イヨト イヨト

 η an

"ON THE OTHER HAND MY RESPONSIBILITY
TO SOCIETY MAKES ME WANT TO STOP
RIGHT HERE."

イロト イ部 トイモト イモト

 \equiv