From 3-manifolds to planar graphs and cycle-rooted trees

Michael Polyak

Technion

November 27, 2014

"CONFIRMING THE BELIEF THAT MUSIC AND MATH ARE RELATED, I WILL NOW SING SOME LOVELY FRENCH EQUATIONS."

• Encode 3-manifolds by planar weighted graphs

- Encode 3-manifolds by planar weighted graphs
- Pass from various presentations of 3-manifolds to graphs and back

- Encode 3-manifolds by planar weighted graphs
- Pass from various presentations of 3-manifolds to graphs and back
- Similar encodings for related objects: links in 3-manifolds, manifolds with Spin- or Spin^c-structures, elements of the mapping class group, etc.

- Encode 3-manifolds by planar weighted graphs
- Pass from various presentations of 3-manifolds to graphs and back
- Similar encodings for related objects: links in 3-manifolds, manifolds with Spin- or Spin^c-structures, elements of the mapping class group, etc.
- Encoding is not unique: finite set of simple moves on graphs (related to electrical networks)

- Encode 3-manifolds by planar weighted graphs
- Pass from various presentations of 3-manifolds to graphs and back
- Similar encodings for related objects: links in 3-manifolds, manifolds with Spin- or Spin^c-structures, elements of the mapping class group, etc.
- Encoding is not unique: finite set of simple moves on graphs (related to electrical networks)
- Various invariants of 3-manifolds transform into combinatorial invariants

- Encode 3-manifolds by planar weighted graphs
- Pass from various presentations of 3-manifolds to graphs and back
- Similar encodings for related objects: links in 3-manifolds, manifolds with Spin- or Spin^c-structures, elements of the mapping class group, etc.
- Encoding is not unique: finite set of simple moves on graphs (related to electrical networks)
- Various invariants of 3-manifolds transform into combinatorial invariants
- ullet Configuration space integrals o counting of subgraphs

- Encode 3-manifolds by planar weighted graphs
- Pass from various presentations of 3-manifolds to graphs and back
- Similar encodings for related objects: links in 3-manifolds, manifolds with Spin- or Spin^c-structures, elements of the mapping class group, etc.
- Encoding is not unique: finite set of simple moves on graphs (related to electrical networks)
- Various invariants of 3-manifolds transform into combinatorial invariants
- ullet Configuration space integrals o counting of subgraphs
- ullet Low-degree invariants o counting of rooted forests

A chainmail graph is a planar graph G, decorated with \mathbb{Z} -weights:

• Each vertex v is decorated with a weight d(v);

A chainmail graph is a planar graph G, decorated with \mathbb{Z} -weights:

• Each vertex v is decorated with a weight d(v); A vertex is balanced, if d(v) = 0 (can think about d(v) as a "defect" of v); a graph is balanced, if all of its vertices are.

- Each vertex v is decorated with a weight d(v); A vertex is balanced, if d(v) = 0 (can think about d(v) as a "defect" of v); a graph is balanced, if all of its vertices are.
- Each edge e is decorated with a weight w(e).

- Each vertex v is decorated with a weight d(v); A vertex is balanced, if d(v) = 0 (can think about d(v) as a "defect" of v); a graph is balanced, if all of its vertices are.
- Each edge e is decorated with a weight w(e). A 0-weighted edge may be erased. Multiple edges are allowed. Two edges e_1 , e_2 connecting the same pair of vertices may be redrawn as one edge of weight $w(e_1) + w(e_2)$.

- Each vertex v is decorated with a weight d(v); A vertex is balanced, if d(v) = 0 (can think about d(v) as a "defect" of v); a graph is balanced, if all of its vertices are.
- Each edge e is decorated with a weight w(e). A 0-weighted edge may be erased. Multiple edges are allowed. Two edges e_1 , e_2 connecting the same pair of vertices may be redrawn as one edge of weight $w(e_1) + w(e_2)$. Looped edges are also allowed; a looped edge may be erased.

- Each vertex v is decorated with a weight d(v); A vertex is balanced, if d(v) = 0 (can think about d(v) as a "defect" of v); a graph is balanced, if all of its vertices are.
- Each edge e is decorated with a weight w(e). A 0-weighted edge may be erased. Multiple edges are allowed. Two edges e_1 , e_2 connecting the same pair of vertices may be redrawn as one edge of weight $w(e_1) + w(e_2)$. Looped edges are also allowed; a looped edge may be erased.

Given a chainmail graph G with vertices v_i and edges e_{ij} , i, j = 1, 2, ..., n we construct a surgery link L as follows:

Example (Graphs, corresponding to some manifolds)

Given a chainmail graph G with vertices v_i and edges e_{ij} , i, j = 1, 2, ..., n we construct a surgery link L as follows:

- vertex $v_i \rightarrow$ standard planar unknot L_i
- ullet ± 1 -weighted edge e_{ij} ightarrow ± 1 -clasped ribbon linking L_i and L_j

Example (Graphs, corresponding to some manifolds)

Given a chainmail graph G with vertices v_i and edges e_{ij} , i, j = 1, 2, ..., n we construct a surgery link L as follows:

- vertex $v_i \rightarrow$ standard planar unknot L_i
- ullet ± 1 -weighted edge e_{ij} ightarrow ± 1 -clasped ribbon linking L_i and L_j

Linking numbers and framings of components are given by a graph Laplacian matrix Λ with entries

$$I_{ij} = \begin{cases} w_{ij}, & i \neq j \\ d_{ii} - \sum_{k=1}^{n} w_{ik}, & i = j \end{cases}$$

Linking numbers and framings of components are given by a graph Laplacian matrix Λ with entries

$$I_{ij} = \begin{cases} w_{ij}, & i \neq j \\ d_{ii} - \sum_{k=1}^{n} w_{ik}, & i = j \end{cases}$$

Example (Constructing a surgery link)

Different graphs and surgery links for the Poincare homology sphere

It turns out, that

Theorem

It turns out, that

Theorem

Any (closed, oriented) 3-manifold can be encoded by a chainmail graph.

 Moreover, there are simple direct constructions starting from many different presentations of a manifold:

It turns out, that

Theorem

Any (closed, oriented) 3-manifold can be encoded by a chainmail graph.

 Moreover, there are simple direct constructions starting from many different presentations of a manifold: surgery,

It turns out, that

Theorem

Any (closed, oriented) 3-manifold can be encoded by a chainmail graph.

 Moreover, there are simple direct constructions starting from many different presentations of a manifold: surgery, Heegaard decompositions,

It turns out, that

Theorem

Any (closed, oriented) 3-manifold can be encoded by a chainmail graph.

 Moreover, there are simple direct constructions starting from many different presentations of a manifold: surgery, Heegaard decompositions, plumbing,

It turns out, that

Theorem

Any (closed, oriented) 3-manifold can be encoded by a chainmail graph.

• Moreover, there are simple direct constructions starting from many different presentations of a manifold: surgery, Heegaard decompositions, plumbing, double covers of S^3 branched along a link, etc.

It turns out, that

Theorem

- Moreover, there are simple direct constructions starting from many different presentations of a manifold: surgery, Heegaard decompositions, plumbing, double covers of S^3 branched along a link, etc.
- Similar constructions work also for a variety of similar objects:

It turns out, that

Theorem

- Moreover, there are simple direct constructions starting from many different presentations of a manifold: surgery, Heegaard decompositions, plumbing, double covers of S^3 branched along a link, etc.
- Similar constructions work also for a variety of similar objects: links in 3-manifolds,

It turns out, that

Theorem

- Moreover, there are simple direct constructions starting from many different presentations of a manifold: surgery, Heegaard decompositions, plumbing, double covers of S^3 branched along a link, etc.
- Similar constructions work also for a variety of similar objects: links in 3-manifolds, 3-manifolds with *Spin* or *Spin*^c-structures,

It turns out, that

Theorem

Any (closed, oriented) 3-manifold can be encoded by a chainmail graph.

- Moreover, there are simple direct constructions starting from many different presentations of a manifold: surgery, Heegaard decompositions, plumbing, double covers of S^3 branched along a link, etc.
- Similar constructions work also for a variety of similar objects: links in 3-manifolds, 3-manifolds with Spin- or Spin^c-structures, elements of the mapping class group, etc.

Some info about M can be immediately extracted from G. In particular, M is a \mathbb{Q} -homology sphere iff $\det \Lambda \neq 0$ and then $|H_1(M)| = |\det \Lambda|$; also, signature of M is the signature sign(Λ) of Λ .

Proofs and explicit constructions ...

... No time to present here.

Calculus of chainmail graphs

An encoding of a manifold by a chainmail graph is non-unique. However, there is a finite set of simple moves which allow one to pass from one chainmail graph encoding a manifold to any other graph encoding the same manifold.

Calculus of chainmail graphs

An encoding of a manifold by a chainmail graph is non-unique. However, there is a finite set of simple moves which allow one to pass from one chainmail graph encoding a manifold to any other graph encoding the same manifold. The most interesting moves are

Calculus of chainmail graphs

An encoding of a manifold by a chainmail graph is non-unique. However, there is a finite set of simple moves which allow one to pass from one chainmail graph encoding a manifold to any other graph encoding the same manifold. The most interesting moves are

They are related to a number of topics: Kirby moves, relations in the mapping class group, electrical networks and cluster algebras, and Reidemeister moves for link diagrams (via balanced median graphs) -

Chern-Simons theory leads to a lot of knot and 3-manifold invariants. Attempts to understand the Jones polynomial in these terms led to quantum knot invariants, the Kontsevich integral, configuration space integrals and other constructions.

Chern-Simons theory leads to a lot of knot and 3-manifold invariants. Attempts to understand the Jones polynomial in these terms led to quantum knot invariants, the Kontsevich integral, configuration space integrals and other constructions. In particular,

Perturbative CS-theory $\xrightarrow{Feynman \ diagrams}$ Configuration space integrals

Chern-Simons theory leads to a lot of knot and 3-manifold invariants. Attempts to understand the Jones polynomial in these terms led to quantum knot invariants, the Kontsevich integral, configuration space integrals and other constructions. In particular,

Perturbative CS-theory $\xrightarrow{Feynman \ diagrams}$ Configuration space integrals

 Rather powerful: contain universal finite type invariants of knots and 3-manifolds

Chern-Simons theory leads to a lot of knot and 3-manifold invariants. Attempts to understand the Jones polynomial in these terms led to quantum knot invariants, the Kontsevich integral, configuration space integrals and other constructions. In particular,

Perturbative CS-theory $\xrightarrow{Feynman\ diagrams}$ Configuration space integrals

- Rather powerful: contain universal finite type invariants of knots and 3-manifolds
- Very complicated technically

Chern-Simons theory leads to a lot of knot and 3-manifold invariants. Attempts to understand the Jones polynomial in these terms led to quantum knot invariants, the Kontsevich integral, configuration space integrals and other constructions. In particular,

Perturbative CS-theory $\xrightarrow{Feynman \ diagrams}$ Configuration space integrals

- Rather powerful: contain universal finite type invariants of knots and 3-manifolds
- Very complicated technically
- Extremely hard to compute

Chern-Simons theory leads to a lot of knot and 3-manifold invariants. Attempts to understand the Jones polynomial in these terms led to quantum knot invariants, the Kontsevich integral, configuration space integrals and other constructions. In particular,

Perturbative CS-theory $\xrightarrow{Feynman\ diagrams}$ Configuration space integrals

- Rather powerful: contain universal finite type invariants of knots and 3-manifolds
- Very complicated technically
- Extremely hard to compute

We expect a similar combinatorial setup in our case: An appropriate CS-theory on graphs $\xrightarrow{\textit{discrete}}$ Discrete sums over subgraphs

Chern-Simons theory leads to a lot of knot and 3-manifold invariants. Attempts to understand the Jones polynomial in these terms led to quantum knot invariants, the Kontsevich integral, configuration space integrals and other constructions. In particular,

Perturbative CS-theory $\xrightarrow{Feynman\ diagrams}$ Configuration space integrals

- Rather powerful: contain universal finite type invariants of knots and 3-manifolds
- Very complicated technically
- Extremely hard to compute

We expect a similar combinatorial setup in our case: An appropriate CS-theory on graphs $\xrightarrow{discrete}$ Discrete sums over subgraphs

Types of subgraphs are suggested by the theory: uni-trivalent graphs for links; trivalent graphs for 3-manifolds.

This actually works! Here is the setup: we pass from the manifold M to its combinatorial counter-part \rightarrow a chainmail graph G. In both cases we use summations over similar Feynman graphs.

Vertices of a Feynman graph:
 configurations of n points in M → sets of n vertices in G

- Vertices of a Feynman graph:
 configurations of n points in M → sets of n vertices in G
- Edges of a Feynman graph:
 propagators in M → paths of edges in G

- Vertices of a Feynman graph:
 configurations of n points in M → sets of n vertices in G
- Edges of a Feynman graph:
 propagators in M → paths of edges in G
- ullet Integration over the configuration space o sum over subgraphs

- Vertices of a Feynman graph:
 configurations of n points in M → sets of n vertices in G
- Edges of a Feynman graph:
 propagators in M → paths of edges in G
- ullet Integration over the configuration space o sum over subgraphs
- ullet Compactifications and anomalies due to collisions of points in M o appearance of degenerate graphs when several vertices merge together

Let's see this on an example of the simplest non-trivial perturbative invariant, corresponding to the Feynman graph with 2 vertices, i.e., the Θ -graph:

Let's see this on an example of the simplest non-trivial perturbative invariant, corresponding to the Feynman graph with 2 vertices, i.e., the Θ -graph:

We count maps $\phi:\Theta\to {\it G}$ with weights and multiplicities.

Let's see this on an example of the simplest non-trivial perturbative invariant, corresponding to the Feynman graph with 2 vertices, i.e., the Θ -graph:

We count maps $\phi:\Theta\to G$ with weights and multiplicities. One can think about such a map as a choice of two vertices v_i and v_j of G, connected by 3 paths of edges which do not have any common internal vertices:

Let's see this on an example of the simplest non-trivial perturbative invariant, corresponding to the Feynman graph with 2 vertices, i.e., the Θ -graph:

We count maps $\phi:\Theta\to G$ with weights and multiplicities. One can think about such a map as a choice of two vertices v_i and v_j of G, connected by 3 paths of edges which do not have any common internal vertices:

Let's see this on an example of the simplest non-trivial perturbative invariant, corresponding to the Feynman graph with 2 vertices, i.e., the Θ -graph:

We count maps $\phi:\Theta\to G$ with weights and multiplicities. One can think about such a map as a choice of two vertices v_i and v_j of G, connected by 3 paths of edges which do not have any common internal vertices:

The weight $W(\phi)$ of ϕ is the product $L(\phi) \prod_{e \in \phi(G)} I_e$, where $L(\phi)$ is the minor of Λ , corresponding to all vertices of G not in $\phi(\Theta)$.

Degenerate maps should be counted as well. Such degeneracies appear when two vertices of the Θ -graph collide together to produce a figure-eight graph:

Degenerate maps should be counted as well. Such degeneracies appear when two vertices of the Θ -graph collide together to produce a figure-eight graph:

Degenerate maps should be counted as well. Such degeneracies appear when two vertices of the Θ -graph collide together to produce a figure-eight graph:

Diagonal entries of Λ also enter in the formula, when one lobe (or possibly both) of the figure-eight graph becomes a looped edge in the 4-valent vertex. The weight of such a loop in v_i is l_{ii} . E.g., for the map

Degenerate maps should be counted as well. Such degeneracies appear when two vertices of the Θ -graph collide together to produce a figure-eight graph:

Diagonal entries of Λ also enter in the formula, when one lobe (or possibly both) of the figure-eight graph becomes a looped edge in the 4-valent vertex. The weight of such a loop in v_i is l_{ii} . E.g., for the map

we have $W(\phi) = L(\phi) \cdot I_{ij} \cdot I_{jk} \cdot I_{ki} \cdot I_{ii}$. In the most degenerate cases – a triple edge or double looped edge – weights need to be slightly adjusted.

"I think you should be more explicit here in step two."

Theorem

 $\Theta(G) = \sum_{\phi} W(\phi)$ is an invariant of M. If M is a \mathbb{Q} -homology sphere (i.e., $\det \Lambda \neq 0$), we have $\Theta(G) = \pm 12|H_1(M)|(\lambda_{CW}(M) - \frac{sign(M)}{4})$, where $\lambda_C W(M)$ is the Casson-Walker invariant.

Theorem

 $\Theta(G) = \sum_{\phi} W(\phi)$ is an invariant of M. If M is a \mathbb{Q} -homology sphere (i.e., $\det \Lambda \neq 0$), we have $\Theta(G) = \pm 12|H_1(M)|(\lambda_{CW}(M) - \frac{sign(M)}{4})$, where $\lambda_C W(M)$ is the Casson-Walker invariant.

Conjecture

The next perturbative invariant can be obtained in a similar way by counting maps of \triangle and \bigcirc to G.

Note that $\Theta(G)$ is a polynomial of degree n+1 in the entries of Λ . This leads to

Conjecture

Any finite type invariant of degree d of 3-manifolds (with an appropriate normalization) is a polynomial of degree at most n + d in the entries of Λ .

Remark

Instead of counting maps $\phi:\Theta\to G$, we may count Θ -subgraphs of G, taking symmetries into account:

Remark

Instead of counting maps $\phi:\Theta\to G$, we may count Θ -subgraphs of G, taking symmetries into account:

Example

For the (negatively oriented) Poincare homology sphere one has

$$G = \stackrel{3}{\bullet} \stackrel{2}{\longrightarrow} \stackrel{5}{\bullet}$$
. Thus $\Lambda = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$, $\det \Lambda = -1$ (so M is a \mathbb{Z} -homology

sphere), $sign(\Lambda) = 0$, and to compute $\Theta(G)$ we count

Recall that the matrix Λ was defined as the graph Laplacian for the weight matrix W:

$$I_{ij} = \begin{cases} w_{ij}, & i \neq j \\ d_{ii} - \sum_{k=1}^{n} w_{ik}, & i = j \end{cases}$$

Recall that the matrix Λ was defined as the graph Laplacian for the weight matrix W:

$$I_{ij} = \begin{cases} w_{ij}, & i \neq j \\ d_{ii} - \sum_{k=1}^{n} w_{ik}, & i = j \end{cases}$$

An expression for $\Theta(M)$ in terms of the original weight matrix W (with d_{ii} on the diagonal) is even simpler.

Recall that the matrix Λ was defined as the graph Laplacian for the weight matrix W:

$$I_{ij} = \begin{cases} w_{ij}, & i \neq j \\ d_{ii} - \sum_{k=1}^{n} w_{ik}, & i = j \end{cases}$$

An expression for $\Theta(M)$ in terms of the original weight matrix W (with d_{ii} on the diagonal) is even simpler.

Namely, one should count cycle-based rooted trees instead of Θ 's:

Recall that the matrix Λ was defined as the graph Laplacian for the weight matrix W:

$$I_{ij} = \begin{cases} w_{ij}, & i \neq j \\ d_{ii} - \sum_{k=1}^{n} w_{ik}, & i = j \end{cases}$$

An expression for $\Theta(M)$ in terms of the original weight matrix W (with d_{ii} on the diagonal) is even simpler.

Namely, one should count cycle-based rooted trees instead of Θ 's:

- Weights are defined as before, except that in the root vertex v_i one uses its weight d_{ii} .
- No looped edges, no degenerate cases (except for a cycle being a double edge), simpler invariance check.

"ON THE OTHER HAND, MY REPONSIBILITY TO SOCIETY MAKES ME WANT TO STOP RIGHT HERE."