Maps that take lines to plane curves

Vsevolod Petruschenko, Vladlen Timorin*

*Faculty of Mathematics National Research University Higher School of Economics

Fields Institute, Toronto, November 28, 2014

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Planarizations

Definition A planarization is a sufficiently smooth mapping $f: U \subset \mathbb{R}P^2 \to \mathbb{R}P^3$ such that, for every line $L \subset \mathbb{R}P^2$, the set $f(U \cap L)$ is planar.

Definition

Two planarizations $f: U \to \mathbb{RP}^3$ and $g: V \to \mathbb{RP}^3$ are equivalent if there is a nonempty open subset $W \subset U \cap V$ such that f = g on W, up to projective transformations of the source and target spaces.

(日) (四) (日) (日) (日)

Problem

Classify planarizations according to this equivalence relation.

Planarizations

Definition A planarization is a sufficiently smooth mapping $f: U \subset \mathbb{R}P^2 \to \mathbb{R}P^3$ such that, for every line $L \subset \mathbb{R}P^2$, the set $f(U \cap L)$ is planar.

Definition

Two planarizations $f: U \to \mathbb{R}P^3$ and $g: V \to \mathbb{R}P^3$ are equivalent if there is a nonempty open subset $W \subset U \cap V$ such that f = g on W, up to projective transformations of the source and target spaces.

ション ふゆ く 山 マ チャット しょうくしゃ

Problem

Classify planarizations according to this equivalence relation.

Planarizations

Definition A planarization is a sufficiently smooth mapping $f: U \subset \mathbb{R}P^2 \to \mathbb{R}P^3$ such that, for every line $L \subset \mathbb{R}P^2$, the set $f(U \cap L)$ is planar.

Definition

Two planarizations $f: U \to \mathbb{R}P^3$ and $g: V \to \mathbb{R}P^3$ are equivalent if there is a nonempty open subset $W \subset U \cap V$ such that f = g on W, up to projective transformations of the source and target spaces.

ション ふゆ く 山 マ チャット しょうくしゃ

Problem

Classify planarizations according to this equivalence relation.

The Fundamental Theorem of Projective Geometry

Theorem (Möbius, 1827)

Suppose that $f : \mathbb{RP}^n \to \mathbb{RP}^n$ is a continuous one-to-one map taking all straight lines to straight lines. Then f is a projective transformation, i.e., a projectivization of a linear isomorphism $\mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$.

ション ふゆ く 山 マ チャット しょうくしゃ

Theorem (von Staudt)

The continuity assumption is superfluous.

Remark

This theorem has local versions.

The Fundamental Theorem of Projective Geometry

Theorem (Möbius, 1827)

Suppose that $f : \mathbb{RP}^n \to \mathbb{RP}^n$ is a continuous one-to-one map taking all straight lines to straight lines. Then f is a projective transformation, i.e., a projectivization of a linear isomorphism $\mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$.

ション ふゆ く 山 マ チャット しょうくしゃ

Theorem (von Staudt)

The continuity assumption is superfluous.

Remark This theorem has local versions.

The Fundamental Theorem of Projective Geometry

Theorem (Möbius, 1827)

Suppose that $f : \mathbb{RP}^n \to \mathbb{RP}^n$ is a continuous one-to-one map taking all straight lines to straight lines. Then f is a projective transformation, i.e., a projectivization of a linear isomorphism $\mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$.

ション ふゆ く 山 マ チャット しょうくしゃ

Theorem (von Staudt)

The continuity assumption is superfluous.

Remark

This theorem has local versions.

Classical geometers

August Möbius 1790–1868

Karl Georg Christian von Staudt 1798–1867

イロト イロト イヨト イヨト

Motivation

- An extension of the Fundamental Theorem of Projective Geometry
- Let L be a linear system of curves (e.g., the family of all lines, circles, conics, etc.). Studying mappings f : U ⊂ ℝP² → ℝP² taking line segments to curves from L is related with studying planarizations.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Motivation

- An extension of the Fundamental Theorem of Projective Geometry
- Let L be a linear system of curves (e.g., the family of all lines, circles, conics, etc.). Studying mappings f : U ⊂ ℝP² → ℝP² taking line segments to curves from L is related with studying planarizations.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Trivial cases

Definition A planarization $f: U \to \mathbb{R}P^3$ is trivial if f(U) lies in a plane.

Definition

A planarization $f : U \to \mathbb{RP}^3$ is co-trivial if there exists a point $a \in \mathbb{RP}^3$ such that $f(U \cap L)$ is contained in a plane through a, for every line $L \subset \mathbb{RP}^2$.

Trivial cases

Definition

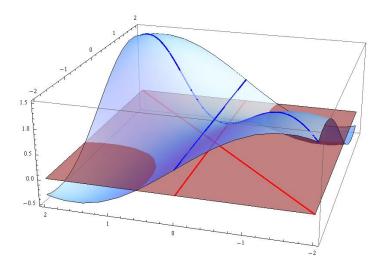
A planarization $f: U \to \mathbb{R}P^3$ is trivial if f(U) lies in a plane.

Definition

A planarization $f: U \to \mathbb{RP}^3$ is co-trivial if there exists a point $a \in \mathbb{RP}^3$ such that $f(U \cap L)$ is contained in a plane through a, for every line $L \subset \mathbb{RP}^2$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Co-trivial planarizations



Non-trivial examples

Definition

A quadratic rational mapping is a rational mapping $f : \mathbb{RP}^2 \dashrightarrow \mathbb{RP}^2$ given in homogeneous coordinates by homogeneous polynomials of degree 2:

$$f[x_0: x_1: x_2] = [y_0: y_1: y_2: y_3], \quad y_\alpha = \sum_{i,j=0}^2 a_\alpha^{i,j} x_i x_j.$$

Example

Any quadratic rational mapping is a planarization; it takes lines to conics.

ション ふゆ アメリア メリア しょうくしゃ

Non-trivial examples

Definition

A quadratic rational mapping is a rational mapping $f : \mathbb{RP}^2 \dashrightarrow \mathbb{RP}^2$ given in homogeneous coordinates by homogeneous polynomials of degree 2:

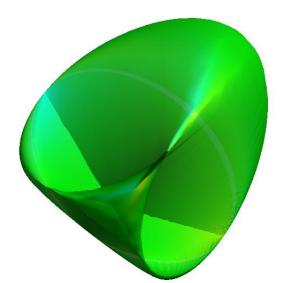
$$f[x_0: x_1: x_2] = [y_0: y_1: y_2: y_3], \quad y_\alpha = \sum_{i,j=0}^2 a_\alpha^{i,j} x_i x_j.$$

Example

Any quadratic rational mapping is a planarization; it takes lines to conics.

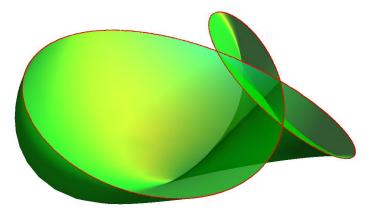
ション ふゆ アメリア メリア しょうくしゃ

A Steiner surface

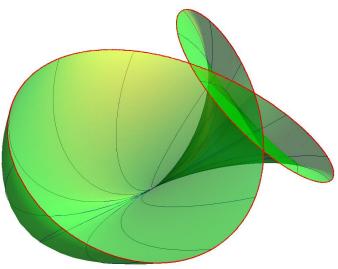


▲臣▶ ▲臣▶ 臣 のへで

A Steiner surface



A Steiner surface



- This is an implementation of projective duality for planarizations.
- For every planarization $f: U \to \mathbb{RP}^3$, there is the dual planarization $f^*: U^* \to \mathbb{RP}^{3*}$.
- The open set U*, possibly empty, is defined as the set of all lines L ∈ ℝP^{2*} such that f(L ∩ U) lies in a unique plane P_L.

ション ふゆ アメリア メリア しょうくしゃ

• The map f^* sends L to $P_L \in \mathbb{RP}^{3*}$.

- This is an implementation of projective duality for planarizations.
- For every planarization $f: U \to \mathbb{RP}^3$, there is the dual planarization $f^*: U^* \to \mathbb{RP}^{3*}$.
- The open set U*, possibly empty, is defined as the set of all lines L ∈ ℝP^{2*} such that f(L ∩ U) lies in a unique plane P_L.

ション ふゆ アメリア メリア しょうくしゃ

• The map f^* sends L to $P_L \in \mathbb{RP}^{3*}$.

- This is an implementation of projective duality for planarizations.
- For every planarization $f: U \to \mathbb{RP}^3$, there is the dual planarization $f^*: U^* \to \mathbb{RP}^{3*}$.
- The open set U^{*}, possibly empty, is defined as the set of all lines L ∈ ℝP^{2*} such that f(L ∩ U) lies in a unique plane P_L.

ション ふゆ アメリア メリア しょうくしゃ

• The map f^* sends L to $P_L \in \mathbb{RP}^{3*}$.

- This is an implementation of projective duality for planarizations.
- For every planarization $f: U \to \mathbb{RP}^3$, there is the dual planarization $f^*: U^* \to \mathbb{RP}^{3*}$.
- The open set U^{*}, possibly empty, is defined as the set of all lines L ∈ ℝP^{2*} such that f(L ∩ U) lies in a unique plane P_L.

ション ふゆ アメリア メリア しょうくの

• The map f^* sends L to $P_L \in \mathbb{R}\mathrm{P}^{3*}$.

Theorem

Every planarization $f:U\to \mathbb{R}\mathrm{P}^3$ is equivalent to a planarization that is

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

- trivial, OR
- co-trivial, OR
- quadratic, OR
- dual quadratic.

Theorem

Every planarization $f:U\to \mathbb{R}\mathrm{P}^3$ is equivalent to a planarization that is

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

- trivial, OR
- co-trivial, OR
- quadratic, OR
- dual quadratic.

Theorem

Every planarization $f:U\to \mathbb{R}\mathrm{P}^3$ is equivalent to a planarization that is

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

- trivial, OR
- co-trivial, OR
- quadratic, OR
- dual quadratic.

Theorem

Every planarization $f:U\to \mathbb{R}\mathrm{P}^3$ is equivalent to a planarization that is

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- trivial, OR
- co-trivial, OR
- quadratic, OR
- dual quadratic.

Theorem

Every planarization $f:U\to \mathbb{R}\mathrm{P}^3$ is equivalent to a planarization that is

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- trivial, OR
- co-trivial, OR
- quadratic, OR
- dual quadratic.

The classification

Theorem

There are 16 equivalence classes of non-(co)-trivial planarizations:

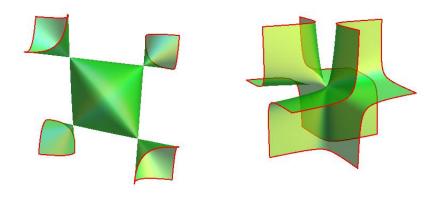
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

$$\begin{array}{ll} (Q_{1}): & [x:y:z] \mapsto [xy:xz:yz:x^{2}+y^{2}+z^{2}] \\ (Q_{2}): & [x:y:z] \mapsto [xy:xz:yz:x^{2}-y^{2}+z^{2}] \\ (Q_{3}): & [x:y:z] \mapsto [x^{2}+y^{2}:y^{2}+z^{2}:xz:yz] \\ (Q_{4}): & [x:y:z] \mapsto [x^{2}-y^{2}:xy:yz:z^{2}] \\ (Q_{5}): & [x:y:z] \mapsto [xz-yz:x^{2}:y^{2}:z^{2}] \\ (Q_{6}): & [x:y:z] \mapsto [x^{2}:xz-y^{2}:yz:z^{2}] \\ (Q_{7}): & [x:y:z] \mapsto [y^{2}-z^{2}:xy:xz:yz] \\ (Q_{8}): & [x:y:z] \mapsto [xy:xz:y^{2}:z^{2}] \\ (Q_{9}): & [x:y:z] \mapsto [x^{2}:xy:y^{2}:z^{2}] \\ (Q_{10}): & [x:y:z] \mapsto [x^{2}:xy:y^{2}:z^{2}] \\ \ldots \end{array}$$

The classification

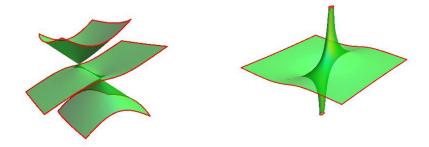
$$\begin{array}{ll} (C_1): & [x:y:z] \mapsto [z(x^2+y^2):y(x^2+z^2):x(y^2+z^2):xyz] \\ (C_2): & [x:y:z] \mapsto [z(x^2-y^2):y(x^2+z^2):x(y^2-z^2):xyz] \\ (C_3): & [x:y:z] \mapsto [x^2z:z(x^2+y^2):x(x^2+y^2-z^2):y(x^2+y^2+z^2)] \\ (C_4): & [x:y:z] \mapsto [x^2y:x(x^2-y^2):z(x^2+y^2):yz^2] \\ (C_5): & [x:y:z] \mapsto [x^2(x+y):y^2(x+y):z^2(x-y):xyz] \\ (C_6): & [x:y:z] \mapsto [x^3:xy^2:2xyz-y^3:z(xz-y^2)]. \end{array}$$

Planarizations (C_1) and (C_2)

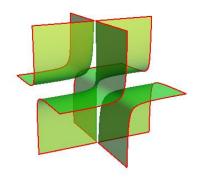


▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 - 釣�?

Planarizations (C_3) and (C_4)



Planarizations (C_5) and (C_6)



▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで