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Planarizations

De�nition
A planarization is a su�ciently smooth mapping

f : U ⊂ RP2 → RP3 such that, for every line L ⊂ RP2, the set

f (U ∩ L) is planar.

De�nition
Two planarizations f : U → RP3 and g : V → RP3 are equivalent

if there is a nonempty open subset W ⊂ U ∩ V such that f = g on

W , up to projective transformations of the source and target

spaces.

Problem
Classify planarizations according to this equivalence relation.
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The Fundamental Theorem of Projective Geometry

Theorem (M�obius, 1827)

Suppose that f : RPn → RPn is a continuous one-to-one map

taking all straight lines to straight lines. Then f is a projective

transformation, i.e., a projectivization of a linear isomorphism

Rn+1 → Rn+1.

Theorem (von Staudt)

The continuity assumption is super�uous.

Remark
This theorem has local versions.
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Motivation

• An extension of the Fundamental Theorem of Projective

Geometry

• Let L be a linear system of curves (e.g., the family of all lines,

circles, conics, etc.). Studying mappings f : U ⊂ RP2 → RP2

taking line segments to curves from L is related with studying

planarizations.
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Trivial cases

De�nition
A planarization f : U → RP3 is trivial if f (U) lies in a plane.

De�nition
A planarization f : U → RP3 is co-trivial if there exists a point

a ∈ RP3 such that f (U ∩ L) is contained in a plane through a, for
every line L ⊂ RP2.
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Co-trivial planarizations



Non-trivial examples

De�nition
A quadratic rational mapping is a rational mapping

f : RP2 99K RP2 given in homogeneous coordinates by

homogeneous polynomials of degree 2:

f [x0 : x1 : x2] = [y0 : y1 : y2 : y3], yα =
2∑

i ,j=0

ai ,jα xixj .

Example

Any quadratic rational mapping is a planarization; it takes lines to

conics.
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Duality

• This is an implementation of projective duality for

planarizations.

• For every planarization f : U → RP3, there is the dual

planarization f ∗ : U∗ → RP3∗.

• The open set U∗, possibly empty, is de�ned as the set of all

lines L ∈ RP2∗ such that f (L ∩ U) lies in a unique plane PL.

• The map f ∗ sends L to PL ∈ RP3∗.
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The result

Theorem
Every planarization f : U → RP3 is equivalent to a planarization

that is

• trivial, OR

• co-trivial, OR

• quadratic, OR

• dual quadratic.
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The classi�cation

Theorem
There are 16 equivalence classes of non-(co)-trivial planarizations:

(Q1): [x : y : z ] 7→ [xy : xz : yz : x2 + y2 + z2]

(Q2): [x : y : z ] 7→ [xy : xz : yz : x2 − y2 + z2]

(Q3): [x : y : z ] 7→ [x2 + y2 : y2 + z2 : xz : yz ]

(Q4): [x : y : z ] 7→ [x2 − y2 : xy : yz : z2]

(Q5): [x : y : z ] 7→ [xz − yz : x2 : y2 : z2]

(Q6): [x : y : z ] 7→ [x2 : xz − y2 : yz : z2]

(Q7): [x : y : z ] 7→ [y2 − z2 : xy : xz : yz ]

(Q8): [x : y : z ] 7→ [xy : xz : y2 : z2]

(Q9): [x : y : z ] 7→ [xy : xz − y2 : yz : z2]

(Q10): [x : y : z ] 7→ [x2 : xy : y2 : z2] . . .



The classi�cation

(C1): [x : y : z ] 7→ [z(x2 + y2) : y(x2 + z2) : x(y2 + z2) : xyz ]

(C2): [x : y : z ] 7→ [z(x2 − y2) : y(x2 + z2) : x(y2 − z2) : xyz ]

(C3): [x : y : z ] 7→ [x2z : z(x2+y2) : x(x2+y2−z2) : y(x2+y2+z2)]

(C4): [x : y : z ] 7→ [x2y : x(x2 − y2) : z(x2 + y2) : yz2]

(C5): [x : y : z ] 7→ [x2(x + y) : y2(x + y) : z2(x − y) : xyz ]

(C6): [x : y : z ] 7→ [x3 : xy2 : 2xyz − y3 : z(xz − y2)].



Planarizations (C1) and (C2)



Planarizations (C3) and (C4)



Planarizations (C5) and (C6)


