ARNOLD STABILITY of TIME-OSCILLATING FLOWS Legacy of Vladimir Arnold Fields Institute, November, 2014

Prof. V. A. Vladimirov

University of York University of Cambridge Sultan Qaboos University Novosibirsk State University

December 2, 2014

I like this great photo of Vladimir Igorevich

Prof. V. A. Vladimirov[2mm] University of York University of

ARNOLD STABILITY of [3mm] TIME-OSCILLATING FLOW

- Oscillating flows appear in various applications: geophysics, coastal engineering, self-swimming, medicine, machinery ... One can say that oscillating flows are the most important in applied hydrodynamics ...
- The flow oscillations can be caused by various factors such as oscillating boundaries, surface waves, acoustic waves, MHD waves, etc.
- Our aim is to present asymptotic/averaging models for oscillating fluid flows with the use of the multi-scale (two-timing) method.

< E > E

SUMMARY:

- We consider relatively 'weak' averaged flows, interacting with the flow oscillations.
- The distinctive property of the averaged flows is: they possess an additional advection with the drift velocity.
- All our consideration is Eulerian. The drift velocity is Lagrangian characteristic of a flow, however in our consideration it naturally appears in an Eulerian procedure.
- The relations to the Stokes drift, Langmuir circulations, acoustics, and MHD dynamo are discussed.

- Our models represent examples of Hamiltonian systems and interesting areas of exploiting of Arnold's ideas in Hydrodynamics.
- The averaged equations and boundary conditions possess the energy-type integral, which allows us to consider some 'energy-related' results.
- We have derived a number of results such as the energy variational principle, the second variation of energy, and some Arnold-type stability criteria for averaged flows.

(日) (日) (日)

Oscillating Flows in bio-applications:

Slide 4A

A ■

Oscillating Flows in med-applications:

Prof. V. A. Vladimirov 2mm University of York University of

ARNOLD STABILITY of [3mm] TIME-OSCILLATING FLOW

Slide 4B

Oscillating Flows in turbine-applications: Slide 4C

Prof. V. A. Vladimirov[2mm] University of York University of ARNOLD STABILITY of [3mm] TIME-OSCILLATING FLOW

• 3 >

Drift motion brings impressive income: Slide 4D

Langmuir Circulations in a lake:

Slide 4E

Prof. V. A. Vladimirov[2mm] University of York University of ARNOLD S

ARNOLD STABILITY of [3mm] TIME-OSCILLATING FLOWS

3D Vortex Dynamics in Oscillating Domain Slide 5

A homogeneous inviscid incompressible fluid in a 3D domain Qwith oscillating boundary ∂Q . Velocity $\mathbf{u}^{\dagger} = \mathbf{u}^{\dagger}(\mathbf{x}^{\dagger}, t^{\dagger})$, vorticity $\boldsymbol{\omega}^{\dagger} \equiv \nabla^{\dagger} \times \mathbf{u}^{\dagger}$

$$\frac{\partial \boldsymbol{\omega}^{\dagger}}{\partial t^{\dagger}} + [\boldsymbol{\omega}^{\dagger}, \mathbf{u}^{\dagger}]^{\dagger} = 0, \quad \nabla^{\dagger} \cdot \mathbf{u}^{\dagger} = 0$$

where 'dags' mark dimensional variables, and square brackets stand for the commutator. The boundary condition at ∂Q is

$$dF^\dagger/dt^\dagger=0$$
 at $F^\dagger(\mathbf{x}^\dagger,t^\dagger)=0$

The characteristic scales of velocity, length, and two additional time-scales

$$U^{\dagger}, L^{\dagger}, T^{\dagger}_{fast}, T^{\dagger}_{slow}$$

Vortex Dynamics in 3D Oscillating Domain Slide 6

ARNOLD STABILITY of [3mm] TIME-OSCILLATING FLOW

Slide 7

Two independent dimensionless parameters

 $T_{\text{fast}} \equiv T_{\text{fast}}^{\dagger}/T^{\dagger}, \quad T_{\text{slow}} \equiv T_{\text{slow}}^{\dagger}/T^{\dagger}, \quad \text{where} \quad T^{\dagger} \equiv L^{\dagger}/U^{\dagger}$

 T_{fast} – the given period of oscillations, the frequency of oscillations

$$\sigma^{\dagger} \equiv 1/T^{\dagger}_{\mathsf{fast}}, \quad \sigma \equiv T^{\dagger}/T^{\dagger}_{\mathsf{fast}}$$

The dimensionless independent variables

$$\mathbf{x} \equiv \mathbf{x}^{\dagger}/L^{\dagger}, \quad t \equiv t^{\dagger}/T^{\dagger}$$

The dimensionless 'fast time' τ and 'slow time' s:

$$au \equiv t/T_{
m fast} = \sigma t, \qquad s \equiv t/T_{
m slow} \equiv St, \qquad S \equiv T^{\dagger}/T_{
m slow}^{\dagger}$$

Attention! T_{slow}^{\dagger} is NOT given! It is unknown!

Oscillating velocity

Slide 8

We consider the oscillatory solutions

 $\mathbf{u}^{\dagger} = A U^{\dagger} \mathbf{u}(\mathbf{x}, \mathbf{s}, \tau)$

where τ -dependence is 2π -periodic, *s*-dependence is general, A – the dimensionless amplitude of velocity.

Dimensionless variables and the chain rule give

$$\left(\frac{\partial}{\partial \tau} + \frac{S}{\sigma}\frac{\partial}{\partial s}\right)\boldsymbol{\omega} + \frac{A}{\sigma}[\boldsymbol{\omega}, \mathbf{u}] = 0$$

where \boldsymbol{s} and τ are still mutually dependent variables.

An auxiliary assumption: we operate with s and τ as mutually independent variables; justification of it often can be given a posteriori by the estimation of the errors/residuals in the equation, rewritten back to the original variable t.

Image: A image: A

Two independent small parameters

In the two-timing method the basic small parameter is

 $T_{
m slow}/T_{
m fast} = S/\sigma$

Slide 10

The term ∂ω/∂τ must be dominating, in order to form an evolution equation. Hence, generally, we take two independent small parameters ε₁, ε₂ as:

$$\boldsymbol{\omega}_{\tau} + \varepsilon_1 \boldsymbol{\omega}_s + \varepsilon_2 [\boldsymbol{\omega}, \mathbf{u}] = 0; \ \varepsilon_1 \equiv \frac{S}{\sigma} \ll 1, \ \varepsilon_2 \equiv \frac{A}{\sigma} \leq 1$$

- ε_1 is ratio of two characteristic time scales;
- ε_2 is the ratio of amplitude over frequency. Note: the amplitude itself can be huge!
- Asymptotic solutions correspond to the limit (ε₁, ε₂) → (0, 0).

Distinguished Limits

- There are infinitely many asymptotic pathes $(\varepsilon_1, \varepsilon_2) \rightarrow (0, 0)$. QUESTION: Is the number of different asymptotic solutions also infinite?
- We accept that the *distinguished limit* is given by such a path $(\varepsilon_1, \varepsilon_2) \rightarrow (0, 0)$ that allows us to build a self-consistent asymptotic procedure, leading to the finite/valid solution in any approximation.
- ANSWER: By the method of trial and errors one can find that there are only two pathes, which allow to build such solutions:

$$\begin{split} \varepsilon_1 &= \varepsilon_2 \equiv \varepsilon : \quad \boldsymbol{\omega}_\tau + \varepsilon \boldsymbol{\omega}_s + \varepsilon [\boldsymbol{\omega}, \mathbf{u}] = \mathbf{0} \\ \varepsilon_1 &= \varepsilon_2^2 \equiv \varepsilon^2 : \quad \boldsymbol{\omega}_\tau + \varepsilon^2 \boldsymbol{\omega}_s + \varepsilon [\boldsymbol{\omega}, \mathbf{u}] = \mathbf{0} \end{split}$$

The second case leads to the Weak Vortex Dynamics (WVD). Any systematic procedure of finding all possible distinguished limits is unknown: it can be classified as an experimental mathematics (Arnold). This is why pure mathematicians do not like this research area. → 프 ▶ - 프 ARNOLD STABILITY of [3mm] TIME-OSCILLATING FLOW

Notations

Slide 12

Any function $f = f(\mathbf{x}, s, \tau)$ in this paper is:

- f = O(1) and all x-, s-, and τ -derivatives of f are also O(1).
- $f(\mathbf{x}, \mathbf{s}, \tau) = f(\mathbf{x}, \mathbf{s}, \tau + 2\pi)$
- The averaging operation is

$$\langle f \rangle \equiv rac{1}{2\pi} \int_{ au_0}^{ au_0+2\pi} f(\mathbf{x},s, au) \, d au, \qquad orall au_0$$

- The *tilde-functions* (or purely oscillating functions) is such that $\tilde{f}(\mathbf{x}, s, \tau) = \tilde{f}(\mathbf{x}, s, \tau + 2\pi)$, with $\langle \tilde{f} \rangle = 0$,
- The class of bar-functions is defined as

$$\overline{f}: \quad \overline{f}_{ au} \equiv 0, \quad \overline{f}(\mathbf{x}, s) = \langle \overline{f}(\mathbf{x}, s)
angle$$

• The tilde-integration keeps the result in the tilde-class:

$$\widetilde{f}^{\tau} \equiv \int_0^{\tau} \widetilde{f}(\mathbf{x}, s, \sigma) \, d\sigma - \frac{1}{2\pi} \int_0^{2\pi} \left(\int_0^{\mu} \widetilde{f}(\mathbf{x}, s, \sigma) \, d\sigma \right) d\mu.$$

Weak Vortex Dynamics procedure

Slide 13

We are looking for the solutions as regular series

$$egin{aligned} & oldsymbol{\omega}_{ au}+arepsilon[oldsymbol{\omega},\mathbf{u}]+arepsilon^2oldsymbol{\omega}_s=0, & arepsilon
ightarrow 0 \ & oldsymbol{(\omega,u)}=\sum_{k=0}^\inftyarepsilon^k(oldsymbol{\omega}_k,\mathbf{u}_k), & k=0,1,2,\dots \end{aligned}$$

Our choice: the leading terms for the mean vorticity and mean velocity vanishes:

$$\overline{\boldsymbol{\omega}}_0 \equiv 0 \quad \overline{\mathbf{u}}_0 \equiv 0$$

It means that relatively weak vorticity develops on the background of a wave motion.

The zero approximation is $\tilde{\omega}_{0\tau} = 0$, its unique solution (within the tilde-class) is $\tilde{\omega}_0 \equiv 0$. Then full vorticity vanishes

$${oldsymbol \omega}_0\equiv 0$$

Hence the flow in zero approximation is purely oscillatory and potential.

Weak Vortex Dynamics procedure

The equation of second approximation is

$$\widetilde{\boldsymbol{\omega}}_{2 au} = -[\overline{\boldsymbol{\omega}}_1, \widetilde{\boldsymbol{\mathsf{u}}}_0]$$

which yields

$$\widetilde{\boldsymbol{\omega}}_2 = [\widetilde{\boldsymbol{u}}_0^{ au}, \overline{\boldsymbol{\omega}}_1], \quad \overline{\boldsymbol{\omega}}_2 = \ \mbox{?}$$

The equation of third approximation is

$$\widetilde{\boldsymbol{\omega}}_{3\tau} + \overline{\boldsymbol{\omega}}_{1s} + [\boldsymbol{\omega}_2, \widetilde{\boldsymbol{\mathsf{u}}}_0] + [\overline{\boldsymbol{\omega}}_1, \boldsymbol{\mathsf{u}}_1] = 0$$

Its bar-part is

$$\overline{\omega}_{1s} + [\overline{\omega}_1, \overline{\mathbf{u}}_1] + \langle [\widetilde{\omega}_2, \widetilde{\mathbf{u}}_0] \rangle = 0$$

which can be transformed to:

$$egin{aligned} \overline{\omega}_{1s} + [\overline{\omega}_1, \overline{\mathbf{u}}_1 + \overline{\mathbf{V}}_0] = 0 \ \overline{\mathbf{V}}_0(\mathbf{x}) \equiv rac{1}{2} \langle [\widetilde{\mathbf{u}}_0, \widetilde{\mathbf{u}}_0^{ au}]
angle \end{aligned}$$

Slide 14

Weak Vortex Dynamics procedure

Slide 15

After the dropping of subscripts and bars we get the WVD model

$$\boldsymbol{\omega}_s + [\boldsymbol{\omega}, \mathbf{w}] = 0, \quad ext{where} \quad \mathbf{w} \equiv \mathbf{u} + \overline{\mathbf{V}}_0$$

which shows that the averaged vorticity is 'frozen' into the 'velocity+drift'.

The oscillating boundary is given by an exact expression

$$F(\mathbf{x},t) = \overline{F}_0(\mathbf{x},s) + \varepsilon \widetilde{F}_1(\mathbf{x},s, au) = 0$$

The same steps applied to dF/dt = 0 lead to

$$\overline{F}_{0s} + \mathbf{w} \cdot \nabla \overline{F}_0 = 0, \quad \mathbf{w} \equiv \mathbf{u} + \overline{\mathbf{V}}_0$$

When $\overline{F}_{0s} = 0$, it gives the averaged no-leak condition:

$$\mathbf{w} \cdot \overline{\mathbf{n}}_0 = 0$$
 or $\mathbf{u} \cdot \overline{\mathbf{n}}_0 = -\overline{\mathbf{V}}_0 \cdot \overline{\mathbf{n}}_0$ at $\overline{F}_0(\mathbf{x}) = 0$

The boundary conditions are valid not at the real boundary, but at its averaged position.

Lagrangian property in Eulerian description Slide 16

The advection of an averaged vector-field is

$$\boldsymbol{\omega}_s + [\boldsymbol{\omega}, (\mathbf{u} + \overline{\mathbf{V}}_0)] = 0$$

which shows that the averaged vorticity is 'frozen' into the 'velocity+drift'.

► The advection of an averaged scalar-field appears as

$$\overline{F}_{0s} + (\mathbf{u} + \overline{\mathbf{V}}_0) \cdot \nabla \overline{F}_0 = 0$$

- 日本 - 日本 -

► One can see that the Lagrangian property (the drift velocity V₀) naturally appears in the Eulerian description after the averaging over oscillations.

Weak Vortex Dynamics Equations

Slide 17

Hence the problem for the purely oscillating boundaries ∂Q can be formulated as

$$\mathbf{u}_s + (\mathbf{u} \cdot
abla) \mathbf{u} + \boldsymbol{\omega} imes \overline{\mathbf{V}}_0 = -
abla p, \quad
abla \cdot \mathbf{u} = 0 \quad \text{in} \quad Q_0$$

With the leak boundary condition:

$$\mathbf{u}\cdot\overline{\mathbf{n}}_0=-\overline{\mathbf{V}}_0\cdot\overline{\mathbf{n}}_0$$
 at ∂Q_0

The boundary conditions are valid not at the real boundary, but at its averaged position.

The drift velocity is to be recovered from an independent problem

$$\overline{\boldsymbol{\mathsf{V}}}_0(\boldsymbol{\mathsf{x}}) \equiv \frac{1}{2} \langle [\widetilde{\boldsymbol{\mathsf{u}}}_0, \widetilde{\boldsymbol{\mathsf{u}}}_0^\tau] \rangle$$

where \tilde{u}_0 represents the solution of previous approximation $\tilde{u}_{0\tau} = -\nabla p_0$ and div $\tilde{u}_0 = 0$ with appropriate boundary conditions.

Examples of Weak Vortex Dynamics

Slide 18

(b) Oscillating pistons in U - tube.

(d) Acoustic wave

ARNOLD STABILITY of [3mm] TIME-OSCILLATING FLOW

Image: A image: A

Stokes Drift

Slide 19

The *dimensional* solution for a plane potential travelling gravity wave is

$$\mathbf{u}_0^\dagger = U^\dagger \widetilde{\mathbf{u}}_0, \quad \widetilde{\mathbf{u}}_0 = \exp(k^\dagger z^\dagger) \left(egin{array}{c} \cos(k^\dagger x^\dagger - au) \ \sin(k^\dagger x^\dagger - au) \end{array}
ight)$$

 $U^{\dagger} = k^{\dagger}g^{\dagger}a^{\dagger}/\sigma^{\dagger}$ where σ^{\dagger} , a^{\dagger} , and g^{\dagger} are dimensional frequency, spatial wave amplitude, and gravity. Then

$$\widetilde{\mathbf{u}}_0 = e^z \left(\begin{array}{c} \cos(x- au) \\ \sin(x- au) \end{array}
ight), \quad \overline{\mathbf{V}}_0 = e^{2z} \left(\begin{array}{c} 1 \\ 0 \end{array}
ight)$$

The dimensional version

$$\overline{\mathbf{V}}_{0}^{\dagger} = \frac{U^{2}k^{\dagger}}{\sigma^{\dagger}}e^{2k^{\dagger}z^{\dagger}} \left(\begin{array}{c}1\\0\end{array}\right)$$

which agrees with the classical expression for the drift velocity.

Stokes Drift

Slide 20

wave phase : 1 / T = 3.000

Drift motion of a material particle due to a surface wave.

Langmuir Circulations

Slide 21

Transactionally invariant averaged flows + plane potential travelling gravity wave; (x, y, z) be such that $\overline{\mathbf{V}}_0 = (U, 0, 0)$, $U = e^{2z}$, $\overline{\mathbf{u}}_1 = (u, v, w)$. Then the component form of (1) is

$$u_{s} + vu_{y} + wu_{z} = 0$$

$$v_{s} + uv_{y} + wv_{z} - Uu_{y} = -\overline{p}_{y}$$

$$w_{s} + vw_{y} + ww_{z} - Uu_{z} = -\overline{p}_{z}$$

$$v_{y} + w_{z} = 0$$

it can be rewritten as

$$v_{s} + vv_{y} + wv_{z} = -\overline{P}_{y} - \rho\Phi_{y}$$
$$w_{s} + vw_{y} + ww_{z} = -\overline{P}_{z} - \rho\Phi_{z}$$
$$v_{y} + w_{z} = 0$$
$$\rho_{s} + u\rho_{x} + v\rho_{y} = 0$$

where $\rho \equiv u$, $\Phi \equiv U = e^{2z}$, and \overline{P} is a new modified pressure. It is equivalent to an incompressible stratified fluid $\Box \to \langle \overline{\sigma} \rangle \land \overline{z} \to \langle \overline{z} \rangle \land \overline{z} \to \langle \overline{z} \rangle$

Qualitative pattern of Langmuir Circulations Slide 22

The effective 'gravity field' $\mathbf{g} = -\nabla \Phi = (0, 0, -2e^{2z})$ is non-homogeneous. Nevertheless longitudinal vortices appear as a 'Taylor instability' of an inversely stratified equilibrium which corresponds to (u, v, w) = (u(z), 0, 0) with any increasing function $u(z) \equiv \rho(z)$.

Qualitative pattern of Langmuir circulations

Langmuir Circulations

Generation of Langmuir circulations is equivalent to the Rayleigh-Taylor instability of a fluid with an inverse density stratification.

Prof. V. A. Vladimirov[2mm] University of York University of

ARNOLD STABILITY of [3mm] TIME-OSCILLATING FLOWS

Surprisingly, the averaged equations for acoustics are the same as for incompressible fluid

$$\begin{split} \mathbf{u}_{s} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \boldsymbol{\omega} \times \overline{\mathbf{V}}_{0} &= -\nabla \rho, \quad \nabla \cdot \mathbf{u} = 0 \quad \text{in} \quad Q_{0} \\ \mathbf{u} \cdot \overline{\mathbf{n}}_{0} &= -\overline{\mathbf{V}}_{0} \cdot \overline{\mathbf{n}}_{0} \quad \text{at} \quad \partial Q_{0} \\ \overline{\mathbf{V}}_{0} &\equiv \frac{1}{2} \langle [\widetilde{\mathbf{u}}_{0}, \widetilde{\mathbf{u}}_{0}^{\tau}] \rangle \end{split}$$

Slide 24

The difference is: $\overline{\mathbf{V}}_0$ can be NOT solenoidal! Also one can suggest that by a proper configuration of acoustic wave, one can obtain almost ANY field of $\overline{\mathbf{V}}_0(\mathbf{x})$

• E •

For the incompressible MHD the averaged equations are

$$\begin{split} \boldsymbol{\omega}_s + [\boldsymbol{\omega}, \mathbf{u} + \mathbf{V}] - [\mathbf{j}, \mathbf{h}] &= 0, \quad \mathbf{j} = \operatorname{curl} \mathbf{h} \\ \mathbf{h}_s + [\mathbf{h}, \mathbf{u} + \mathbf{V}] &= 0, \quad \operatorname{div} \mathbf{u} = 0, \quad \operatorname{div} \mathbf{h} = 0 \\ \overline{\mathbf{V}}_0 &\equiv \langle [\widetilde{\mathbf{u}}_0, \widetilde{\mathbf{u}}_0^{\tau}] \rangle / 2 \end{split}$$

It can be derived by similar consideration. This system of equations is studying now for so-called MHD Stokes drift dynamo. The question about a general MHD-dynamo is completely open.

Slide 26

The 'energy' integral for the averaged WVD motion can be written as:

$$E = E(s) = \frac{1}{2} \int_Q (\mathbf{u} + \overline{\mathbf{V}}_0)^2 d\mathbf{x} = \text{const}, \qquad d\mathbf{x} \equiv dx_1 dx_2 dx_3$$

One can show that its s-derivative can be written as

$$\frac{dE}{ds} = -\int_{Q} \left(p + \frac{\mathbf{u}^{2}}{2} \right) (\mathbf{u} + \overline{\mathbf{V}}_{0}) \cdot \overline{\mathbf{n}}_{0} d\mathbf{x} = 0$$

which is zero due to the BC.

Image: A image: A

WVD: Isovorticity condition

According to (1) vorticity is 'frozen' into $\mathbf{u} + \overline{\mathbf{V}}_0$. It allows us to use the slightly generalized **Arnold isovorticity condition in its differential form**

$$\begin{split} \mathbf{u}_{\theta} &= \mathbf{f} \times \boldsymbol{\omega} + \nabla \alpha, \quad \text{div} \, \mathbf{u} = 0, \quad \text{div} \, \mathbf{f} = 0; \quad \text{in} \quad Q_0 \\ (\mathbf{u} + \overline{\mathbf{V}}_0) \cdot \overline{\mathbf{n}}_0 &= 0, \quad \mathbf{f} \cdot \overline{\mathbf{n}}_0 = 0 \quad \text{at} \quad \partial Q_0 \end{split}$$

where $\mathbf{u}(\mathbf{x}, \theta)$ is the unknown function, $\mathbf{f} = \mathbf{f}(\mathbf{x}, \theta)$ is an arbitrary given solenoidal function, θ is a scalar parameter along an isovortical trajectory, subscript θ stands for the related partial derivative. Function $\alpha(\mathbf{x}, \theta)$ is to be determined from the condition div $\mathbf{u} = 0$. The initial data at $\theta = 0$ for $\mathbf{u}(\mathbf{x}, \theta)$ (1) correspond to a steady flow

$$\mathbf{u}(\mathbf{x},0) = \mathbf{U}(\mathbf{x}), \quad \boldsymbol{\omega}(\mathbf{x},0) = \mathbf{\Omega}(\mathbf{x})$$

where $\mathbf{U}(\mathbf{x})$ and $\Omega(\mathbf{x})$ represent the steady solutions $(\partial/\partial s = 0)$ with 'no-leak' boundary conditions.

ARNOLD STABILITY of [3mm] TIME-OSCILLATING FLOW

Slide 28

御 と く き と く き と … き

Differentiation of E with respect $\boldsymbol{\theta}$ produces the zero of first variation

$$E_{ heta}\Big|_{ heta=0} = \int_{Q_0} \mathbf{f}\left(\mathbf{\Omega} imes \mathbf{W}
ight) d\mathbf{x} = 0, \quad \mathbf{W} \equiv \mathbf{U} + \overline{\mathbf{V}}_0$$

which vanishes for any function **f** by the virtue of equations of motions and boundary conditions for the steady flow. This equality gives us the variational principle: **any steady flow represents a stationary point on the isovortical sheet**. The only difference from the classical Arnold's result is the modified definition of the isovorticity condition.

Slide 29

(4回) (注) (注) (注) (注)

$$E_{ heta heta}\Big|_{ heta=0} = \int_{Q_0} \left(\mathbf{u}_{ heta}^2 + (\mathbf{W} imes \mathbf{f})\cdot oldsymbol{\omega}_{ heta}
ight)_{ heta=0} d\mathbf{x}$$

It shows that the stationary point of the energy functional in the 3D case always represents a saddle point. Stability conditions for the steady plane flows: $W_1 = \partial \Psi / \partial x_2$, $W_2 = -\partial \Psi / \partial x_1$. The second variation is

$$E_{\theta\theta}\Big|_{\theta=0} = \int_{Q_0} \left(\mathbf{u}_{\theta}^2 - \frac{d\Psi}{d\Omega}\omega_{\theta}^2\right)_{\theta=0} dx_1 dx_2$$

where $\Psi = \Psi(\Omega)$ characterises the considered plane steady flow. Then, similar to the Arnold cases the inequalities with two constants C^- , C^+ and $C^- < -d\Psi/d\Omega < C^+$ give both sufficient linear and nonlinear stability conditions.

Discussion:

Slide 30

- We have introduced a class of fluid flow models, which is characterised by an additional advection with the drift velocity, which appears as an arbitrary given function. All these models have been obtained by regular asymptotic procedures.
- The drift velocity is not small, it is of the same order of magnitude as the averaged Eulerian velocity.
- These models include vortex dynamics, acoustics, and MHD; all they have important applications.

- The WVD was discovered by Craik and Leibovich in 1978 (CL-equation); they were focused on the description of Langmuir circulations generated by surface waves.
- Our main achievement is a drastic simplification of the derivation of WVD. The usual derivation of WVD equations is performed with the use of the GLM (by M. E. McIntyre). We introduce the WVD in its natural simplicity and generality. Our derivation is accessible to the 2nd year UG students.

Discussion:

Slide 32

- All considered models are Hamiltonian. Darryl Holm did it for the WVD in the GLM form, which is somehow different from ours. We leave the developing of the related Hamiltonian structures to the 'Hamiltonian community'.
- The discussed analogy with stratification immediately leads to the Richardson type stability criteria ...
- A possibility of the finite-time singularity in the WVD vorticity field can be studied.
- Viscosity and/or density stratification can be routinely added to the WVD equations...

(2012) MHD drift equation: from Langmuir circulations to MHD dynamo? *J.Fluid Mech.* **698**, 51-61.

- (2013) An asymptotic model in acoustics: Acoustic-drift equation. *J.Acoust.Soc.Am.*: 134 (5), 3419-3424.
- (2013) On the self-propulsion velocity of an *N*-sphere micro-robot. *JFM Rapids*, 716, R1-1.
- (2013) Dumbbell micro-robot driven by flow oscillation. *JFM Rapids*, 717, R8-1.
- (2010) Admixture and drift in oscillating fluid flows. E-print: arXiv: 1009,4058v1
- (2008) Viscous flows in a half space caused by tangential vibrations on its boundary. *Studies in Appl. Math.* **121**, 337
- (2005) Vibrodynamics of pendulum and submerged solid. *J. Math. Fluid Mech.*, **7**, 397-412.

Many thanks for many interesting discussions to my friends and colleagues:

- Professor H.K.Moffatt, FRS
- Professor K.I.Ilin,
- Professor M.R.E. Proctor, FRS and
- Professor D.W. Hughes.

Thanks

for your kind attention!!!