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Diffusion in a billiard with periodic obstacles

(“Windtree model” of P. and T. Ehrenfest; 1912)
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Consider a billiard on the plane with Z2-periodic rectangular obstacles.

Old Theorem (V. Delecroix, P. Hubert, S. Lelièvre, 2011). For all parameters

of the obstacle, for almost all initial directions, and for any starting point, the

billiard trajectory escapes to infinity with the rate t2/3. That is,
max0≤τ≤t (distance to the starting point at time τ) ∼ t2/3.

Here “23 ” is the Lyapunov exponent of certain “renormalizing” dynamical system

associated to the initial one.

Remark. Changing the height and the width of the obstacle we get quite

different billiards, but this does not change the diffusion rate!
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Changing the shape of the obstacle
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Almost Old Theorem (V. Delecroix, A. Z., 2014). Changing the shape of the

obstacle we get a different diffusion rate. Say, for a symmetric obstacle with

4m− 4 angles 3π/2 and with 4m angles π/2 the diffusion rate is

(2m)!!

(2m+ 1)!!
∼
√
π

2
√
m

as m→∞ .

Note that once again the diffusion rate depends only on the number of the

corners, but not on the lengths of the sides, or other details of the shape of the

obstacle.
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From a billiard to a surface foliation
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Consider a rectangular billiard. Instead of reflecting the trajectory we can reflect

the billiard table. The trajectory unfolds to a straight line. Folding back the

copies of the billiard table we project this line to the original trajectory. At any

moment the ball moves in one of four directions defining four types of copies of

the billiard table. Copies of the same type are related by a parallel translation.

Displacement as intersection number
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Consider a rectangular billiard. Instead of reflecting the trajectory we can reflect

the billiard table. The trajectory unfolds to a straight line. Folding back the

copies of the billiard table we project this line to the original trajectory. At any

moment the ball moves in one of four directions defining four types of copies of

the billiard table. Copies of the same type are related by a parallel translation.

A B A

D
C

D

A B A

Identifying the equivalent patterns by a parallel translation we obtain a torus;

the billiard trajectory unfolds to a “straight line” on the corresponding torus.

Displacement as intersection number



From the windtree billiard to a surface foliation
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Similarly, taking four copies of our Z2-periodic windtree billiard we can unfold it

to a foliation on a Z2-periodic surface. Taking a quotient over Z2 we get a

compact flat surface endowed with a foliation in “straight lines”. Vertical and

horizontal displacement of the ball at time t is described by the intersection

numbers c(t) ◦ v and c(t) ◦ h of the cycle c(t) obtained by closing up the

endpoints of the billiard trajectory after time t with the cycles

h = h00 + h10 − h01 − h11 and v = v00 − v10 + v01 − v11.

h00

h01

h10

h11

v00 v10

v01 v11

Very flat metric. Automorphisms
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Dehn twist and deformations of a flat torus
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Cut a torus along a horizon-

tal circle.
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y

R
2/Z2 = T

2 −−−−→
fh

T
2 = R

2/Z2

Dehn twist corresponds to the linear map f̂h : R2 → R
2 with the matrix

(

1 1
0 1

)

.

a

a

b bc

a

a

b bc

a

a

c cb
=

It maps the square pattern of the torus to a parallelogram pattern. Cutting and

pasting appropriately we can transform the new pattern to the initial square one.



Arnold’s cat (Fibonacci) diffeomorphism
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Consider a composition

of two Dehn twists g = fv ◦ fh = ◦
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Pseudo-Anosov diffeomorphisms
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Consider eigenvectors ~vu and ~vs of the linear transformation A =

(

1 1
1 2

)

with eigenvalues λ = (3 +
√
5)/2 ≈ 2.6 and 1/λ = (3−

√
5)/2 ≈ 0.38.

Consider two transversal foliations on the original torus in directions ~vu, ~vs. We

have just proved that expanding our torus T2 by factor λ in direction ~vu and

contracting it by the factor λ in direction ~vs we get the original torus.

Definition. Surface automorphism homogeneously expanding in direction of

one foliation and homogeneously contracting in direction of the transverse

foliation is called a pseudo-Anosov diffeomorphism.

Consider a one-parameter family of flat tori obtained from the initial square

torus by a continuous deformation expanding with a factor et in directions ~vu
and contracting with a factor et in direction ~vs. By construction such

one-parameter family defines a closed curve in the space of flat tori: after the

time t0 = log λu it closes up and follows itself.

Observation. Pseudo-Anosov diffeomorphisms define closed curves (actually,

closed geodesics) in the moduli spaces of Riemann surfaces.
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• By a composition of homothety and

rotation we can place the shortest

vector of the lattice to the horizontal

unit vector.

• Consider the lattice point

closest to the origin and

located in the upper

half-plane.

• This point is located

outside of the unit disc.

• It necessarily lives inside

the strip −1/2 ≤ x ≤ 1/2.

We get a fundamental domain in the space of lattices, or, in other words, in the

moduli space of flat tori.



Moduli space of tori
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neighborhood of a
cusp = subset of
tori having short
closed geodesic

The corresponding modular surface is not compact: flat tori representing

points, which are close to the cusp, are almost degenerate: they have a very

short closed geodesic. It also have orbifoldic points corresponding to tori with

extra symmetries.

Geodesic flow



Very flat surface of genus 2
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Identifying the opposite sides of a regular octagon we get a flat surface of

genus two. All the vertices of the octagon are identified into a single conical

singularity. We always consider such a flat surface endowed with a

distinguished (say, vertical) direction. By construction, the holonomy of the flat

metric is trivial. Thus, the vertical direction at a single point globally defines

vertical and horizontal foliations.
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Group action
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The group SL(2,R) acts on the each spaceH1(d1, . . . , dn) of flat surfaces of

unit area with conical singularities of prescribed cone angles 2π(di + 1). This
action preserves the natural measure on this space. The diagonal subgroup
(

et 0
0 e−t

)

⊂ SL(2,R) induces a natural flow onH1(d1, . . . , dn) called the

Teichmüller geodesic flow.

Keystone Theorem (H. Masur; W. A. Veech, 1992). The action of the groups

SL(2,R) and

(

et 0
0 e−t

)

is ergodic with respect to the natural finite measure

on each connected component of every spaceH1(d1, . . . , dn).
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Theorem of Masur and Veech claims that taking at random an octagon as

below we can contract it horizontally and expand vertically by the same factor

et to get arbitrary close to, say, regular octagon.

−→
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Magic of Masur—Veech Theorem
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Theorem of Masur and Veech claims that taking at random an octagon as

below we can contract it horizontally and expand vertically by the same factor

et to get arbitrary close to, say, regular octagon.

−→ =

The first modification of the polygon changes the flat structure while the second

one just changes the way in which we unwrap the flat surface.
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Asymptotic cycle for a torus
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Consider a leaf of a measured foliation on a surface. Choose a short

transversal segment X . Each time when the leaf crosses X we join the

crossing point with the point x0 along X obtaining a closed loop. Consecutive

return points x1, x2, . . . define a sequence of cycles c1, c2, . . . .

The asymptotic cycle is defined as limn→∞
cn

n
= c ∈ H1(T

2;R).

Theorem (S. Kerckhoff, H. Masur, J. Smillie, 1986.) For any flat surface

directional flow in almost any direction is uniquely ergodic.

This implies that for almost any direction the asymptotic cycle exists and is the

same for all points of the surface.

Flow as an asymptotic cycle
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n
= c ∈ H1(T

2;R).

Theorem (S. Kerckhoff, H. Masur, J. Smillie, 1986.) For any flat surface

directional flow in almost any direction is uniquely ergodic.

This implies that for almost any direction the asymptotic cycle exists and is the

same for all points of the surface.

Flow as an asymptotic cycle



Asymptotic cycle in the pseudo-Anosov case
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Consider a model case of the foliation in direction of the expanding eigenvector

~vu of the Anosov map g : T2 → T
2 with Dg = A =

(

1 1
1 2

)

. Take a closed

curve γ and apply to it k iterations of g. The images g
(k)
∗ (c) of the

corresponding cycle c = [γ] get almost collinear to the expanding eigenvector

~vu of A, and the corresponding curve g(k)(γ) closely follows our foliation.

Direction of the expanding
eigenvector ~vu of A = Dg
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Asymptotic flag: empirical description
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cN

H1(S;R) ≃ R
2g

x1
x2

x3

x4

x5

x2g
To study a deviation of cycles

cN from the asymptotic cycle

consider their projections

to an orthogonal hyperscreen

Direction of the
asymptotic cycle

S



Asymptotic flag: empirical description
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cN

H1(S;R) ≃ R
2g

x1
x2

x3

x4

x5

x2g
The projections accumulate

along a straight line

inside the hyperscreen

Direction of the
asymptotic cycle

S



Asymptotic flag: empirical description
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cN

H1(S;R) ≃ R
2g

x1
x2

x3

x4

x5

x2g

Asymptotic plane L2

Direction of the
asymptotic cycle

S



Asymptotic flag: empirical description
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cN

‖cN‖λ2

‖cN‖λ3

H1(S;R) ≃ R
2g

x1
x2

x3

x4

x5

x2g

Asymptotic plane L2

Direction of the
asymptotic cycle

S



Asymptotic flag
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Theorem (A. Z. , 1999) For almost any surface S in any stratum

H1(d1, . . . , dn) there exists a flag of subspaces

L1 ⊂ L2 ⊂ · · · ⊂ Lg ⊂ H1(S;R) such that for any j = 1, . . . , g − 1

lim sup
N→∞

log dist(cN , Lj)

logN
= λj+1

and

dist(cN , Lg) ≤ const,

where the constant depends only on S and on the choice of the Euclidean

structure in the homology space.

The numbers 1 = λ1 > λ2 > · · · > λg are the top g Lyapunov exponents of

the Hodge bundle along the Teichmüller geodesic flow on the corresponding

connected component of the stratumH(d1, . . . , dn).

The strict inequalities λg > 0 and λ2 > · · · > λg, and, as a corollary, strict

inclusions of the subspaces of the flag, are difficult theorems proved later by

G. Forni (2002) and by A. Avila–M. Viana (2007).
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Geometric interpretation of multiplicative ergodic theorem:

spectrum of “mean monodromy”

24 / 29

Consider a vector bundle endowed with a flat connection over a manifold Xn.

Having a flow on the base we can take a fiber of the vector bundle and

transport it along a trajectory of the flow. When the trajectory comes close to

the starting point we identify the fibers using the connection and we get a linear

transformation A(x, 1) of the fiber; the next time we get a matrix A(x, 2), etc.
The multiplicative ergodic theorem says that when the flow is ergodic a “matrix

of mean monodromy” along the flow

Amean := lim
N→∞

(A∗(x,N) · A(x,N))
1

2N

is well-defined and constant for almost every starting point.

Lyapunov exponents correspond to logarithms of eigenvalues of this “matrix of

mean monodromy”.
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Hodge bundle and Gauss–Manin connection
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Consider a natural vector bundle over the stratum with a fiber H1(S;R) over a
“point” (S, ω), called the Hodge bundle. It carries a canonical flat connection

called Gauss—Manin connection: we have a lattice H1(S;Z) in each fiber,

which tells us how we can locally identify the fibers. Thus, Teichmüller flow on

H1(d1, . . . , dn) defines a multiplicative cocycle acting on fibers of this bundle.

The monodromy matrices of this cocycle are symplectic which implies that the

Lyapunov exponents are symmetric:

λ1 ≥ λ2 ≥ · · · ≥ λg ≥ −λg ≥ · · · ≥ −λ2 ≥ −λ1

Morally, one can pretend that instead of the Teichmüller geodesic flow on the

stratumH1(d1, . . . , dn) we have a single closed geodesic passing through

almost every point. We pretend that it defines some universal pseudo-Anosov

diffeomorphism one and the same for almost all flat surfaces in

H1(d1, . . . , dn), and that the Lyapunov exponents are the logarithms of the

eigenvalues of this universal pseudo-Anosov diffeomorphism.
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Formula for the Lyapunov exponents
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Theorem (A. Eskin, M. Kontsevich, A. Z., 2014) The Lyapunov exponents

λi of the Hodge bundle H1
R

along the Teichmüller flow restricted to an

SL(2,R)-invariant suborbifold L ⊆ H1(d1, . . . , dn) satisfy:

λ1 + λ2 + · · ·+ λg =
1

12
·

n
∑

i=1

di(di + 2)

di + 1
+

π2

3
· carea(L) .

The proof is based on the initial Kontsevich formula + analytic Riemann-Roch

theorem + analysis of det∆flat under degeneration of the flat metric.

Theorem (A. Eskin, H. Masur, A. Z., 2003) For L = H1(d1, . . . , dn) one has

carea(H1(d1, . . . , dn)) =
∑

Combinatorial types
of degenerations

(explicit combinatorial factor)·

·
∏k

j=1VolH1(adjacent simpler strata)

VolH1(d1, . . . , dn)
.
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Invariant measures and orbit closures
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Fantastic Theorem (A. Eskin, M. Mirzakhani, 2014). The closure of any

SL(2,R)-orbit is a suborbifold. In period coordinates H1(S, {zeroes};C) any
SL(2,R)-suborbifold is represented by an affine subspace.

Any ergodic SL(2,R)-invariant measure is supported on a suborbifold. In

period coordinates this suborbifold is represented by an affine subspace, and

the invariant measure is just a usual affine measure on this affine subspace.

Developement (A. Wright, 2014) Effective methods of construction of orbit

closures.

Theorem (J. Chaika, A. Eskin, 2014). For any given flat surface S almost all

vertical directions define a Lyapunov-generic point in the orbit closure of SL(2,R) · S.

Solution of the generalized windtree problem (V. Delecroix–A. Z., 2014).

Notice that any “windtree flat surface” S is a cover of a surface S0 in the

hyperelliptic locus L in genus 1, and that the cycles h and v are induced from

S0. Prove that the orbit closure of S0 is L. Using the volumes of the strata in

genus zero, compute carea(L). Using the formula for
∑

λi = λ1 compute λ1.
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Artistic image of a billiard in a polygon
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Varvara Stepanova. Joueurs de billard. Thyssen Museum, Madrid














