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PART I

VARIABLE SELECTION WITH INTERVAL-CENSORED RESPONSES

OUTLINE 1



PROGNOSTIC HUMAN LEUKOCYTE ANTIGENS IN PSORIATIC ARTHRITIS

• The University of Toronto Psoriatic Arthritis Clinic is a tertiary referral

clinic comprised of 1300 patients with extensive longitudinal follow-up on

disease progression and collection of genetic and serum samples.

• Patients with psoriatic arthritis are classified as suffering from arthritis mu-

tilans if they have 5 or more damaged joints

• Patients are scheduled to be radiologically assessed every two years.

• The time for the development of arthritis mutilans is unknown because it is

subject to interval-censoring.

IMMEDIATE GOAL

Interest lies in identifying HLA markers that predict onset of arthritis mutilans.
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JOINT DAMAGE AND MARKER VALUES IN CONTINUOUS TIME
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JOINT DAMAGE AND MARKER VALUES IN CONTINUOUS TIME
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AVAILABLE DATA DUE TO INTERMITTENT ASSESSMENTS
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DATA FOR RESPONSE MODEL

| | |

PsA ONSET

HLA  DATA  (X)

L R

CENSORING  INTERVAL

DATA FOR ASSESSMENT PROCESS

Z(sj) denotes marker of inflammation

wj = sj − sj−1, j = 1, 2, . . . are waiting times

| | | | | | |

PsA  ONSET s1 s2 s3 s4 s5 s6

HLA DATA (X) Z(s1) Z(s2) Z(s3) Z(s4) Z(s5) Z(s6)
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SEMI-PARAMETRIC ESTIMATES OF WAITING TIME DISTRIBUTIONS
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ESTIMATE
1

OF DISTRIBUTION OF TIME TO ARTHRITIS MUTILANS
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1Turnbull BW (1976). The empirical distribution function with arbitrarily grouped, censored and truncated data, Journal of the Royal Statistical Society. Series

B (Methodological) 38, 290-295.
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PENALIZED REGRESSION FOR FAILURE TIME DATA

• logL(β) is the log likelihood or log partial likelihood

• Consider a penalized “likelihood” function

logLPEN(β) = logL(β)−

p∑

j=1

πγ,λ(βj) (1.1)

• πγ,λ(·) is a penalty function

• (γ, λ) are tuning parameters

• λ = (λ1, . . . , λp)
′ if we use different penalties for each variable
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SOME PARTICULAR PENALTY FUNCTIONS

The L2 penalty πλ(|β|) = λ|β|2 gives ridge regression 2

The L1 penalty πλ(|β|) = λ|β| yields the LASSO 3

SMOOTHLY CLIPPED ABSOLUTE DEVIATION (SCAD) PENALTY

The smoothly clipped absolute deviation (SCAD) 4 penalty has the form

ADAPTIVE LASSO

The adaptive LASSO 5 with penalty has the form

πλ(|βj|) = λ|βj|τj ,

with small weights τj chosen for large coefficients and large weights for small

2Hoerl AE and Kennard RW (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12 (1), 55–67.
3Tibshirani R (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1), 267–288.
4Fan J and Li R (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96

(456), 1348–1360.
5Zou H (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101 (476), 1418–1429.
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PENALIZED REGRESSION WITH INTERVAL-CENSORED DATA

• For individual i, Di = {(Li, Ri), Xi}, where Xi is a p× 1 covariate vector

• Data consists of D = {Di, i = 1, 2, . . . ,m}

OBSERVED DATA LOG-LIKELIOOD

logL ∝
m∑

i=1

log [F(Li|Xi)−F(Ri|Xi)]

where F(s|X) is the survivor function

PENALIZED OBSERVED DATA LOG-LIKELIOOD

logLpenalized ∝

m∑

i=1

log [F(Li|Xi)−F(Ri|Xi)]−

p∑

j=1

πγ,λ(βj)
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PENALIZED REGRESSION WITH INTERVAL CENSORED DATA

| | | | | |

b0 b1 b2 b3 bk−1 bk

B1 B2 B3 Bk

Breakpoints 0 = b0 < · · · < bK = ∞ define Bk = [bk−1, bk), k = 1, . . . , K.

If Ik(u) = I(u ∈ Bk) and Sk(u) =
∫ u

0 I(v ∈ Bk)dv then

h(s; θ) =

K∏

k=1

(ρk exp (x′iβ))
Ik(u)

where θ = (ρ′, β′)′, ρ = (ρ1, . . . , ρK)
′ and β = (β1, . . . , βp)

′

COMPLETE DATA LIKELIHOOD

logLc(θ) =

m∑

i=1

K∑

k=1

{Ik(ui) [log(ρk) +X ′
iβ]− Sk(ui)ρk exp(X

′
iβ)}
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AN EM ALGORITHM
6

WITH PENALIZED REGRESSION

THE EXPECTATION STEP

Take the conditional expectation of penalized complete data log-likelihood

Q(θ; θr−1) = E
[
logLc(θ)|D; θr−1

]
−

p∑

j=1

πα,λ(βj)

If

ĝrik = E
[
Ik(ui)|Di; θ

r−1
]

Ŝr
ik = E

[
Sk(ui)|Di; θ

r−1
]

then

Q(θ; θr−1) =

m∑

i=1

K∑

k=1

[
ĝrik(log(ρk) +X ′

iβ)− Ŝr
ikρk exp(X

′
iβ)

]
−

p∑

j=1

πγ,λ(βj)

6Dempster AP, Laird NM and Rubin DB (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society.

Series B (Methodological), 39(1), 1–38.
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MAXIMIZATION STEP

Let

• Zij = I(j = k), j = 2, . . . , K, Zik = (1, Zi2, . . . , ZiK)
′

• α1 = log(ρ1), αj = log(ρj)− log(ρ1), j = 2, . . . , K

Then Q(θ; θr−1) is

m∑

i=1

K∑

k=1

[
ĝrik(Z

′
ikα +X ′

iβ)− Ŝr
ik exp(Z

′
ikα +X ′

iβ)
]
−

p∑

j=1

πγ,λ(βj)

With a pseudo dataset we can maximize Q(θ; θr−1) using standard software for

penalized regression (e.g. glmnet(.), SIS(.))
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SELECTION OF OPTIMAL PENALTY λOPT

• The criterion for selecting the optimal λ is similar to the traditional cross-

validation.

• We partition the dataset into R subsamples T 1, . . . , TR.

• T r and T − T r are rth testing and training sets.

• For a given λ, the cross-validation statistic is

ĈV (λ) =

R∑

r=1

logL(θ−r(λ))− logL−r(θ−r(λ)).

• L−r is the observed likelihood for the rth training dataset.

• θ−r(λ) is the estimate for the rth training data.

• The optimal λ maximizes ĈV (λ).
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EMPIRICAL STUDIES – NORMAL COVARIATES m = 1000, p = 100

µ = 10 µ = 20

Method TP(10) FP(90) MSE (SD) TP(10) FP(90) MSE (SD)

Shape parameter: κ = 1

LASSO P-EM 10.00 14.80 0.312 (0.126) 10.00 14.83 0.261 (0.105)

MID 10.00 13.05 1.346 (0.286) 10.00 12.05 0.912 (0.251)

ALASSO P-EM 10.00 0.12 0.057 (0.047) 10.00 0.07 0.047 (0.040)

MID 9.69 0.30 0.953 (0.328) 10.00 1.57 0.499 (0.201)

SCAD P-EM 9.98 0.36 0.059 (0.073) 9.99 0.24 0.050 (0.048)

MID 9.39 0.96 0.946 (0.354) 9.91 1.01 0.521 (0.213)

FORWARD 10.00 9.17 0.218 (0.088) 10.00 9.50 0.201 (0.082)

BACKWARD 10.00 15.35 0.322 (0.130) 10.00 14.80 0.289 (0.099)

Shape parameter: κ = 1.25

LASSO P-EM 10.00 14.88 0.291 (0.118) 10.00 14.13 0.245 (0.109)

MID 10.00 15.28 1.037 (0.271) 10.00 12.94 0.685 (0.216)

ALASSO P-EM 9.99 0.23 0.055 (0.050) 10.00 0.08 0.045 (0.031)

MID 9.75 0.29 0.724 (0.327) 10.00 1.25 0.314 (0.160)

SCAD P-EM 9.98 0.29 0.055 (0.052) 9.99 0.13 0.044 (0.036)

MID 9.53 0.76 0.741 (0.336) 9.97 0.91 0.317 (0.167)

FORWARD 10.00 8.66 0.324 (0.089) 10.00 8.81 0.313 (0.089)

BACKWARD 10.00 14.35 0.383 (0.092) 10.00 14.17 0.363 (0.092)
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EMPIRICAL STUDIES – BINARY COVARIATES, m = 1000, p = 100

µ = 10 µ = 20

Method TP(10) FP(90) MSE (SD) TP(10) FP(90) MSE (SD)

Shape parameter: κ = 1

LASSO P-EM 10.00 12.49 0.304 (0.068) 10.00 15.30 0.201 (0.052)

MID 10.00 17.64 0.690 (0.117) 10.00 19.01 0.436 (0.086)

ALASSO P-EM 9.88 0.82 0.071 (0.067) 9.98 0.26 0.039 (0.033)

MID 9.18 0.78 0.491 (0.149) 9.83 0.49 0.255 (0.097)

SCAD P-EM 9.94 0.54 0.063 (0.063) 10.00 0.10 0.038 (0.031)

MID 9.02 0.96 0.505 (0.166) 9.79 0.40 0.254 (0.102)

FORWARD 10.00 11.14 0.244 (0.078) 10.00 11.09 0.183 (0.057)

BACKWARD 10.00 15.18 0.299 (0.083) 10.00 14.64 0.231 (0.064)

Shape parameter: κ = 1.25

LASSO P-EM 10.00 12.04 0.277 (0.064) 10.00 15.65 0.186 (0.053)

MID 9.99 18.15 0.609 (0.100) 10.00 17.91 0.374 (0.074)

ALASSO P-EM 9.98 0.59 0.051 (0.042) 10.00 0.22 0.034 (0.023)

MID 9.59 0.60 0.404 (0.116) 9.97 0.26 0.186 (0.064)

SCAD P-EM 10.00 0.48 0.053 (0.038) 10.00 0.16 0.033 (0.021)

MID 9.54 0.93 0.414 (0.118) 9.95 0.42 0.186 (0.064)

FORWARD 10.00 10.86 0.198 (0.060) 10.00 10.81 0.180 (0.045)

BACKWARD 10.00 14.49 0.233 (0.064) 10.00 13.76 0.195 (0.052)
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Box plots of the error for the estimated regression coefficients β̂k−βk, k = 5, 22, 95, 96, for each penalty function

for datasets with correlated binary covariates (p = 100) with κ = 1.25, µ = 20.
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APPLICATION TO UNIVERSITY OF TORONTO PSA COHORT

LASSO ALASSO SCAD

P-EM MID P-EM MID P-EM MID

HLA Marker β s.e.(β) β s.e.(β) β s.e.(β) β s.e.(β) β s.e.(β) β s.e.(β)

HLA-A11 -0.135 0.199 -0.280 0.263 -0.516 0.629 -0.556 0.836 -1.021 0.746 -0.922 0.947

HLA-A25 -0.232 0.288 -3.265 0.707 -3.229 1.529

HLA-A29 -0.216 0.254 -0.502 0.353 -1.388 1.284 -1.385 1.440 -1.605 2.376 -1.658 2.482

HLA-A30 0.101 0.260 0.494 0.417 0.494 0.525

HLA-B27 0.249 0.232 0.397 0.272 0.588 0.356 0.595 0.547 0.763 0.312 0.725 0.425

HLA-C04 -0.012 0.134 -0.170 0.233 -0.578 0.492 -0.569 1.086 -0.637 0.611

HLA-DQB1-02 0.134 0.164 0.270 0.205 0.514 0.307 0.503 0.540 0.609 0.276 0.623 0.415

HLA-DRB1-10 -2.713 1.007 -2.714 1.725
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FINDINGS

Some old (HLA-B27, HLA-DQB1-02) and some new markers identified for

future study.

NEXT STEPS - VALIDATION

There are three other cohorts in which we can validate this predictive model

including registries in :

Ireland 7

Spain 8

Newfoundland 9

Issues of variation in the genetic composition of these cohorts may affect

accuracy of predictive model

7Winchester R, Minevich G, Steshenko V, Kirby B, Kane D, Greenberg DA, FitzGerald O. (2012). HLA associations reveal genetic heterogeneity in psoriatic

arthritis and in the psoriasis phenotype. Arthritis Rheum. 64(4), 1134-44.
8Queiro R, Torre JC, González S, López-Larrea C, Tinturé T, López-Lagunas I (2003). HLA antigens may influence the age of onset of psoriasis and psoriatic

arthritis. J Rheumatol. 30(3), 505-5077.
9Rahman P, Roslin NM, Pellett FJ, Lemire M, Greenwood CM, Beyene J, Pope A, Peddle L, Paterson AD, Uddin M, Gladman DD (2011). High resolution

mapping in the major histocompatibility complex region identifies multiple independent novel loci for psoriatic arthritis. Ann Rheum Dis. 70(4), 690-694.

I. VARIABLE SELECTION WITH INTERVAL-CENSORED RESPONSES 21



PART II

ESTIMATING ACCURACY OF PREDICTIVE MODELS WITH

INTERVAL-CENSORED RESPONSE TIMES
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ASSESSING PREDICTIVE ACCURACY WITH CENSORED DATA

There has been much work on measuring predictive performance with right-

censored survival data 10 11 12 13 14 15

One can focus on survival time or survival status at t0

Measures can be based on explained variation, misclassification rate, etc.

Censoring makes validation assessment challenging since some individuals

will not be possible to classify with respect to the response in the validation

sample

10Rosthoj S, Keiding N (2004). Explained variation and predictive accuracy in general parametric statistical models: the role of model misspecification. Lifetime

Data Analysis 10, 461–472.
11Gerds TA, Schumacher M (2006). Consistent estimation of the expected Brier score in general survival models with right-censored event times. Biometrical

Journal 48, 1029–1040.
12Efron B (2004). The estimation of prediction error: covariance penalties and cross-validation. Journal of the American Statistician Association 99, 619–632.
13Molinaro AM, Simon R, Pfeiffer RM. Prediction error estimation: a comparison of resampling methods. Bioinformatics 21, 3301–3307.
14Korn EL, Simon R (1990). Measures of explained variation for survival data. Statistics in Medicine 9, 487–503.
15Lawless JF, Yuan Y (2010). Estimation of prediction error for survival models. Statistics in Medicine, 16, 262-274.
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ESTIMATING PREDICTIVE ACCURACY

| | |

0 T t0

PsA ONSET

X

ARTHRITIS

MUTILANS

TIME

HORIZON

Y(t0) = I(t < t0) = 1

We aim to predict Y (t0) = I(T ≤ t0), the event status at a time t0

Let Ỹ (θ) = I(F (t0|X ; θ) > 0.5) be the prediction

Predictive accuracy can be measured by the mean squared error loss

PE = E
{(

Y − Ỹ (X ; θ)
)2}

(2.1)

With a sample of size m this is normally estimated as

1

m

m∑

i=1

(Yi − Ỹi(Xi; θ))
2 .

If ∆i = I(Yi is known),

P̂E =
1

m

m∑

i=1

∆i · (Yi − Ỹi(Xi; θ))
2 .
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POSSIBLE COMBINATIONS OF (Y,∆)

| |

0 t0
TIME
HORIZON

D

C

B

A

CASES

Y = 1

Y = 1

Y = 0

Y = 0

∆ = 1

∆ = 0

∆ = 0

∆ = 1
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INVERSE PROBABILITY OR CENSORING WEIGHTS

Note

E

{
1

m

m∑

i=1

∆i · (Yi − Ỹi(Xi; θ))
2

}
(2.2)

=
1

m

m∑

i=1

EYi,Xi

[
E∆i|Yi,Xi

{
∆i · (Yi − Ỹi(Xi; θ))

2|Yi, Xi

}]

=
1

m

m∑

i=1

EYi,Xi

[
P (∆i = 1|Yi, Xi) (Yi − Ỹi(Xi; θ))

2
]

So we consider an inverse probability weighted version

1

m

m∑

i=1

∆i

P (∆i = 1|?)

(
Yi − Ỹi(Xi; θ)

)2
. (2.3)

The challenges is now to specify and estimate P (∆ = 1|?).
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INTRODUCING AND RECALLING SOME NOTATION

• N(u) =

∞∑

j=1

I(sj ≤ u) counts the number of assessments

• C(u) = I(u ≤ C) indicates in cohort

• X is the set of fixed HLA markers

• Z̄(u) = {Z(s0), Z(s1), . . . , Z(sN(u−))} is time-dependent marker history

• H(s) = {(dN(u), C(u)), 0 < u < s,X, Z̄(s)} is the partial history at s
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MODEL ASSUMPTIONS

EVENT PROCESS

h(t|X) = lim
∆t↓0

P (T < t +∆t|T ≥ t,X)

∆t

INTENSITY FOR INSPECTION PROCESS

λ(t|H(t)) = lim
∆t↓0

P (∆N(t) = 1|H(t))

∆t

INTENSITY FOR CENSORING (WITHDRAWAL) PROCESS

λc(t|H(t)) = lim
∆t↓0

P (C < t +∆t|H(t))

∆t
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MODELING THE CENSORING AND INSPECTION PROCESS

COMPETING RISK FOR EVENT OCCURRENCE

t0

|

WITHDRAWAL (C)

jth ASSESSMENT ( sj )

EVENT (T)

COMPETING RISK FOLLOWING EVENT

sj−1

|

T

|

WITHDRAWAL (C)

jth ASSESSMENT ( sj )

TIME  HORIZON ( t0 )
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With intermittent inspection (SMAR) 16 and random censoring

P (∆ = 1|Y (t0) = 1,H(t0), X)

∫ t0

0

{∫ t0

t

λ(u|H(u)) exp

(
−

[∫ u

t

λ(v|H(v)) dv +

∫ u

0

λc(v|H(v)) dv

])
du

}
f (t|T < t0, X) dt

P (∆ = 1|Y (t0) = 0,H(t0), X)

∫ ∞

t0

λ(u|H(u)) exp

(
−

[∫ u

t0

λ(v|H(v)) + h(v|X) dv +

∫ u

0

λc(v|H(v)) dv

])
du

16Hogan JW, Roy J and Korkontzelou C (2004) Handling dropouts in longitudinal studies. Statistics in Medicine, 23, 1455–1497.
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Summary of the empirical average of PE; Number of simulations = 100; Num-

ber of subjects per simulation = 1000

Q25 Q50 Q75

α−1

0
α1 METHOD TRUE BIAS ESE TRUE BIAS ESE TRUE BIAS ESE

0.10 0 Unweighted 0.2454 -0.0094 0.0140 0.3275 -0.0131 0.0141 0.2460 -0.0327 0.0134

Weighted 0.2454 -0.0019 0.0144 0.3275 -0.0017 0.0149 0.2460 0.0004 0.0164

0.25 0 Unweighted 0.2454 -0.0173 0.0141 0.3275 -0.0291 0.0147 0.2460 -0.0752 0.0147

Weighted 0.2454 -0.0020 0.0153 0.3275 -0.0025 0.0176 0.2460 0.0028 0.0212

0.10 log 1.1 Unweighted 0.2454 -0.0093 0.0144 0.3275 -0.0126 0.0161 0.2460 -0.0289 0.0143

Weighted 0.2454 -0.0016 0.0148 0.3275 -0.0002 0.0168 0.2460 0.0021 0.0166

0.25 log 1.1 Unweighted 0.2454 -0.0144 0.0124 0.3275 -0.0283 0.0169 0.2460 -0.0737 0.0133

Weighted 0.2454 0.0020 0.0140 0.3275 0.0004 0.0185 0.2460 -0.0002 0.0205
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DISCUSSION

• In observational cohorts visit process may be non-ignorable (i.e. the obser-

vation process may not been SMAR) and use of inverse intensity weighting
17 could be important for model building.

• Important work to be done in assessing marker effects on progression in

cancer trials as progression times are interval censored.

• Methodological work needed for assessing predictive accuracy of models

in competing risk settings

• Multistate models are useful for this goal

17Lin H, Scharfstein DO, and Rosenheck RA (2004). Analysis of longitudinal data with irregular, outcomedependent followup. Journal of the Royal Statistical

Society: Series B (Statistical Methodology) 66(3), 791-813.
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