

Case-base sampling for fitting and validating prognostic models

Workshop on Statistical Issues in Biomarker and Drug Co-development Fields Institute, Toronto

Olli Saarela

Dalla Lana School of Public Health, University of Toronto

November 8, 2014

 QQQ

[Outline](#page-1-0)

Outline

 \equiv 990

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

B

4 0 8

 $\mathcal{A} \left(\overline{\mathbf{H}} \right) \rightarrow \mathcal{A} \left(\overline{\mathbf{H}} \right) \rightarrow \mathcal{A} \left(\overline{\mathbf{H}} \right)$

 OQ

Time matching/risk set sampling (including Cox partial likelihood) eliminates the baseline hazard from the likelihood expression for the hazard ratios.

 Ω

- Time matching/risk set sampling (including Cox partial likelihood) eliminates the baseline hazard from the likelihood expression for the hazard ratios.
- If, however, the absolute risks are of interest, they have to be recovered using the semi-parametric Breslow estimator.

 Ω

- Time matching/risk set sampling (including Cox partial likelihood) eliminates the baseline hazard from the likelihood expression for the hazard ratios.
- If, however, the absolute risks are of interest, they have to be recovered using the semi-parametric Breslow estimator.
- Alternative approaches for fitting flexible hazard models for estimating absolute risks, not requiring this two-step approach?

 QQ

- Time matching/risk set sampling (including Cox partial likelihood) eliminates the baseline hazard from the likelihood expression for the hazard ratios.
- If, however, the absolute risks are of interest, they have to be recovered using the semi-parametric Breslow estimator.
- Alternative approaches for fitting flexible hazard models for estimating absolute risks, not requiring this two-step approach?
- There is; it originates from Mantel (1973) and Hanley & Miettinen (2009).

 QQ

イロト イ押ト イヨト イヨト

4 0 8

→ 何 ▶ → ヨ ▶ → ヨ

• Case-base sampling combined with logistic/multinomial regression provides an alternative to risk set sampling-based semi-parametric survival analysis methods.

 QQ

- Case-base sampling combined with logistic/multinomial regression provides an alternative to risk set sampling-based semi-parametric survival analysis methods.
- This enables easy fitting of smooth-in-time and non-proportional hazard models with *multiple time scales*.

 QQQ

- Case-base sampling combined with logistic/multinomial regression provides an alternative to risk set sampling-based semi-parametric survival analysis methods.
- This enables easy fitting of smooth-in-time and non-proportional hazard models with *multiple time scales*.
- Provides an alternative to Kaplan-Meier-based methods for estimating discrimination statistics (e.g. ROC, AUC, risk reclassification probabilities) from censored survival data.

 QQQ

Study base

Case series

Case-base sampling for prognostic modeling Olli Saarela (University of Toronto)

重 Nov 8, 2014 $6 / 23$

Time matching

Olli Saarela (University of Toronto) Case-base sampling for prognostic modeling

J. Nov 8, 2014 $7/23$

目

Start again

Nov 8, 2014

 299 $8/23$

重

Base series

Olli Saarela (University of Toronto)

Case-base sampling for prognostic modeling

重 Nov 8, 2014 $9 / 23$

Age as the time scale

э

 \leftarrow \Box

 \rightarrow \equiv \mathbf{p} \mathcal{A} . 重

 \sim

Base series

Base series matched by the Framingham score

 \blacksquare

 QQ

÷.

Ξ

4 0 8

4 母 > 4 目

The hazard regression can now be fitted using the conditional likelihood expression

$$
L(\theta) \equiv \prod_{i=1}^n \prod_{t \in (0,\tau]} \left(\frac{\lambda_i(t;\theta)^{\mathrm{d}N_i(t)}}{\rho_i(t) + \lambda_i(t;\theta)} \right)^{\mathrm{d}M_i(t)},
$$

where $N_i(t)$ counts the cases, and $M_i(t)$ counts both the case and base series person-moments contributed by individual *i*.

 Ω

The hazard regression can now be fitted using the conditional likelihood expression

$$
L(\theta) \equiv \prod_{i=1}^n \prod_{t \in (0,\tau]} \left(\frac{\lambda_i(t;\theta)^{\mathrm{d}N_i(t)}}{\rho_i(t) + \lambda_i(t;\theta)} \right)^{\mathrm{d}M_i(t)},
$$

where $N_i(t)$ counts the cases, and $M_i(t)$ counts both the case and base series person-moments contributed by individual *i*.

This is of logistic regression form with the offset term *ρ*i(t) accounting for the base series sampling mechanism.

 Ω

The hazard regression can now be fitted using the conditional likelihood expression

$$
L(\theta) \equiv \prod_{i=1}^n \prod_{t \in (0,\tau]} \left(\frac{\lambda_i(t;\theta)^{\mathrm{d}N_i(t)}}{\rho_i(t) + \lambda_i(t;\theta)} \right)^{\mathrm{d}M_i(t)},
$$

where $N_i(t)$ counts the cases, and $M_i(t)$ counts both the case and base series person-moments contributed by individual *i*.

- This is of logistic regression form with the offset term *ρ*i(t) accounting for the base series sampling mechanism.
- Generalizes to multinomial regression when competing causes are present.

 \overline{AB} \rightarrow \overline{AB} $\$

Model specification

 -990

イロト イ部 トイヨ トイヨト

Model specification

Consider the following specification of the hazard function:

 $\lambda_i(t;\theta) = \exp\{\theta_0 + f_1(t,\theta_1) + f_2(\text{age at baseline}_i + t, \theta_2)\}$ $+ f_3$ (troponin I_i, θ_3) $+ \theta_4 \times \text{HDL}$ cholesterol_i $+ \theta_5 \times \text{non-HDL}$ cholesterol_i $+ \theta_6 \times$ treated systolic blood pressure. $+ \theta_7 \times$ untreated systolic blood pressure. $+\theta_8 \times$ smoker_i $+ \theta_9 \times$ prevalent diabetes_i.

• Here f_1 , f_2 and f_3 are appropriate spline basis functions.

KOD KOD KED KED DAR

 \equiv 990

The likelihood expression does not feature the cumulative hazard, only the hazard function itself evaluated at a discrete number of points.

 QQ

- The likelihood expression does not feature the cumulative hazard, only the hazard function itself evaluated at a discrete number of points.
- The hazard model can be fitted using standard logistic regression procedures.

 QQ

- The likelihood expression does not feature the cumulative hazard, only the hazard function itself evaluated at a discrete number of points.
- The hazard model can be fitted using standard logistic regression procedures.
- The baseline hazard, and consequently, the absolute risk, is obtained as part of the model fit.

 QQQ

- The likelihood expression does not feature the cumulative hazard, only the hazard function itself evaluated at a discrete number of points.
- The hazard model can be fitted using standard logistic regression procedures.
- The baseline hazard, and consequently, the absolute risk, is obtained as part of the model fit.
- Easy to incorporate multiple time scales and interactions between time and other covariates.

 QQQ

- The likelihood expression does not feature the cumulative hazard, only the hazard function itself evaluated at a discrete number of points.
- The hazard model can be fitted using standard logistic regression procedures.
- The baseline hazard, and consequently, the absolute risk, is obtained as part of the model fit.
- Easy to incorporate multiple time scales and interactions between time and other covariates.
- The time effects themselves can be fitted using flexible specifications, such as regression splines (Hanley & Miettinen, 2009; Saarela & Hanley, 2014).

 Ω

イロト イ押ト イヨト イヨト

 -990

イロト イ部 トイモ トイモト

Since the hazard model specification was fully parametric, Bayesian measures of uncertainty may be calculated for any function of these parameters.

 Ω

 \leftarrow \Box

- ④ → ④ ミト ④ ミト

- Since the hazard model specification was fully parametric, Bayesian measures of uncertainty may be calculated for any function of these parameters.
- Consequently, we can obtain posterior predictive distributions for discrimination measures such as ROC curves, areas under the curve (AUC), or risk reclassification probabilities.

 Ω

- Since the hazard model specification was fully parametric, Bayesian measures of uncertainty may be calculated for any function of these parameters.
- Consequently, we can obtain posterior predictive distributions for discrimination measures such as ROC curves, areas under the curve (AUC), or risk reclassification probabilities.
- Overfitting?

 Ω

- Since the hazard model specification was fully parametric, Bayesian measures of uncertainty may be calculated for any function of these parameters.
- Consequently, we can obtain posterior predictive distributions for discrimination measures such as ROC curves, areas under the curve (AUC), or risk reclassification probabilities.
- Overfitting?
- The procedure works similarly if the risk score has been derived in another sample.

 Ω

 $\mathbf{A} = \mathbf{A}$ **B**

∢ □ ▶ ∢ 何 ▶ ∢ ∃

Consider for example sensitivity, that is, the probability of the estimated 10 -year risk $\pi(X; \theta)$ being at least some threshold risk $\pi^*,$ given the occurrence of the event during the 10 years, and data D :

$$
P(\pi(X; \theta) \geq \pi^* \mid N(10) = 1, \theta, D) = \frac{\int_X \mathbf{1}_{\{\pi(x; \theta) \geq \pi^*\}} \pi(x; \theta) P(\mathrm{d}x \mid D)}{\int_X \pi(x; \theta) P(\mathrm{d}x \mid D)}.
$$

 QQ

Consider for example sensitivity, that is, the probability of the estimated 10 -year risk $\pi(X; \theta)$ being at least some threshold risk $\pi^*,$ given the occurrence of the event during the 10 years, and data D :

$$
P(\pi(X; \theta) \geq \pi^* \mid N(10) = 1, \theta, D) = \frac{\int_X \mathbf{1}_{\{\pi(x; \theta) \geq \pi^*\}} \pi(x; \theta) P(\mathrm{d}x \mid D)}{\int_X \pi(x; \theta) P(\mathrm{d}x \mid D)}.
$$

The sources of uncertainty here are the unknown parameters *θ* of the hazard regression model, and the unknown predictive distribution $P(X | D)$ of the prognostic factors.

 QQQ

Consider for example sensitivity, that is, the probability of the estimated 10 -year risk $\pi(X; \theta)$ being at least some threshold risk $\pi^*,$ given the occurrence of the event during the 10 years, and data D :

$$
P(\pi(X; \theta) \geq \pi^* \mid N(10) = 1, \theta, D) = \frac{\int_X \mathbf{1}_{\{\pi(x; \theta) \geq \pi^*\}} \pi(x; \theta) P(\mathrm{d}x \mid D)}{\int_X \pi(x; \theta) P(\mathrm{d}x \mid D)}.
$$

- The sources of uncertainty here are the unknown parameters *θ* of the hazard regression model, and the unknown predictive distribution $P(X | D)$ of the prognostic factors.
- If we take $P(\mathrm{d} x\mid D)=\sum_{i=1}^n\frac{1}{n}$ $\frac{1}{n}\delta_{x_i}(\mathrm{d} x)$, a point estimate is given by

$$
\frac{\sum_{i=1}^n \mathbf{1}_{\{\pi(x_i;\hat{\theta})\geq \pi^*\}} \pi(x_i;\hat{\theta})}{\sum_{i=1}^n \pi(x_i;\hat{\theta})}.
$$

KID KA KID KID KID KOQO

Parametric ROC curves

Olli Saarela (University of Toronto) [Case-base sampling for prognostic modeling](#page-0-0) Nov 8, 2014 18 / 23

 Ω

Kaplan-Meier ROC curves (Heagerty et al. 2000)

÷.

 OQ

The hazard model parameters *θ* are drawn from the posterior distribution $P(d\theta | D) \propto L(\theta)P(d\theta)$.

 Ω

 $-10⁻¹$

- The hazard model parameters *θ* are drawn from the posterior distribution $P(d\theta | D) \propto L(\theta)P(d\theta)$.
- The posterior predictive distribution of the prognostic factors may be approximated by the Bayesian bootstrap (Rubin, 1981).

 Ω

- The hazard model parameters *θ* are drawn from the posterior distribution $P(d\theta | D) \propto L(\theta)P(d\theta)$.
- The posterior predictive distribution of the prognostic factors may be approximated by the Bayesian bootstrap (Rubin, 1981).
- This corresponds to $P(\text{d}x \mid D) = \sum_{i=1}^{n} w_i \delta_{x_i}(\text{d}x)$, where (w1*, . . . ,*wn) ∼ Dirichlet(1*, . . . ,* 1).

KILIKA EIKIEN EI KORA

- The hazard model parameters *θ* are drawn from the posterior distribution $P(d\theta | D) \propto L(\theta)P(d\theta)$.
- The posterior predictive distribution of the prognostic factors may be approximated by the Bayesian bootstrap (Rubin, 1981).
- This corresponds to $P(\text{d}x \mid D) = \sum_{i=1}^{n} w_i \delta_{x_i}(\text{d}x)$, where (w1*, . . . ,*wn) ∼ Dirichlet(1*, . . . ,* 1).
- The ROC curve and corresponding AUC are calculated at each realization of θ and (w_1, \ldots, w_n) .

KOD KOD KED KED DAR

Posterior AUCs for the five models

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Case-base sampling combined with logistic/multinomial regression provides an alternative to risk set sampling-based semi-parametric survival analysis methods.

 Ω

イロト イ押ト イヨト イヨト

- Case-base sampling combined with logistic/multinomial regression provides an alternative to risk set sampling-based semi-parametric survival analysis methods.
- This enables easy fitting of smooth-in-time and non-proportional hazard models with multiple time scales.

 Ω

- Case-base sampling combined with logistic/multinomial regression provides an alternative to risk set sampling-based semi-parametric survival analysis methods.
- This enables easy fitting of smooth-in-time and non-proportional hazard models with multiple time scales.
- Similarly, this provides an alternative to Kaplan-Meier-based methods for estimating discrimination statistics (e.g. ROC, AUC, risk reclassification probabilities) from censored survival data.

 Ω

◆ ロ ▶ → 何 ▶ → 三 ▶ → 三 ▶ → 三 ▶

- Case-base sampling combined with logistic/multinomial regression provides an alternative to risk set sampling-based semi-parametric survival analysis methods.
- This enables easy fitting of smooth-in-time and non-proportional hazard models with multiple time scales.
- Similarly, this provides an alternative to Kaplan-Meier-based methods for estimating discrimination statistics (e.g. ROC, AUC, risk reclassification probabilities) from censored survival data.
- Bayesian measures of uncertainty can be obtained for these.

 Ω

◆ロト ◆母ト ◆ミト → ミト

- Case-base sampling combined with logistic/multinomial regression provides an alternative to risk set sampling-based semi-parametric survival analysis methods.
- This enables easy fitting of smooth-in-time and non-proportional hazard models with multiple time scales.
- Similarly, this provides an alternative to Kaplan-Meier-based methods for estimating discrimination statistics (e.g. ROC, AUC, risk reclassification probabilities) from censored survival data.
- Bayesian measures of uncertainty can be obtained for these.
- Improving the prediction of CVD in healthy populations, beyond the classic risk factors of CVD, has been challenging.

 Ω

KONKAPRA BRADE

References

- **Hanley JA, Miettinen OS (2009). Fitting Smooth-In-Time Prognostic Risk Functions via** Logistic Regression. The International Journal of Biostatistics 5(1).
- Heagerty P, Lumley T, Pepe MS (2000). Time-Dependent ROC Curves for Censored Survival Data and a Diagnostic Marker. Biometrics 56, 337–344.
- Mantel N (1973). Synthetic Retrospective Studies and Related Topics. Biometrics 29, 479–486
- **•** Saarela O, Arjas E (2014). Non-parametric Bayesian hazard regression for chronic disease risk assessment. Scandinavian Journal of Statistics. <doi:10.1111/sjos.12125>.
- **O** Saarela O, Hanley JA (2014). Case-base methods for studying vaccination safety. Biometrics. <doi:10.1111/biom.12222>.
- Rubin, D. B. (1981). The Bayesian bootstrap. The Annals of Statistics 9, 130–134.

KOD KOD KED KED DAR