

# Research platforms that link "omics" to biobank data – opportunities in Ontario

#### **Speaker:**

Tom Hudson Ontario Institute for Cancer Research



## How big is "BIG"?

### The Causal Complexity of Chronic Diseases

Diabetes Asthma Heart Disease Schizophrenia Cancer Multiple Sclerosis Obesity Arthritis



"webs of causation"



For common diseases, effects that we want to measure are small.

Most GWAS hits have Odds ratios in this range: 1.1 - 1.5

| Disease                   | Gene   | Polymorphism            | Approximate<br>frequency of the<br>disease<br>associated allele | Approximate<br>odds ratio<br>for disease<br>associated<br>allele | Ref   |
|---------------------------|--------|-------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|-------|
| Thrombophilia             | F5     | Leiden<br>Arg506Gln     | 0.03                                                            | 4                                                                | 12    |
| Crohn's<br>disease        | CARD15 | 3 SNPs                  | 0.06(composite)                                                 | 4.6                                                              | 67    |
| Alzheimer's<br>disease    | APOE   | ε2/3/4                  | 0.15                                                            | 3.3                                                              | 13,68 |
| Osteoporotic<br>fractures | COL1A1 | Sp1 restriction site    | 0.19                                                            | 1.3                                                              | 69,70 |
| Type 2<br>diabetes        | KCNJ11 | Glu23Lys                | 0.36                                                            | 1.23                                                             | 71    |
| Type 1<br>diabetes        | CTLA4  | Thr17Ala                | 0.36                                                            | 1.27                                                             | 72,73 |
| Graves'<br>Disease        | CTLA4  | Thr17Ala                | 0.36                                                            | 1.6                                                              | 74    |
| Type 1<br>diabetes        | INS    | 5' VNTR                 | 0.67                                                            | 1.2                                                              | 75    |
| Bladder<br>Cancer         | GSTM1  | Null (gene<br>deletion) | 0.70                                                            | 1.28                                                             | 76    |
| Type 2<br>diabetes        | PPARG  | Pro12Ala                | 0.85                                                            | 1.23                                                             | 11    |

Hattersley AT, McCarthy MI. Lancet 2005;366:1315-1323 Examples of some polymorphisms or haplotypes that have shown consistent association with complex disease

### **Genetic main effects**





Odds Ratio (log scale)

**Paul Burton** 





Odds Ratio (log scale)

**Paul Burton** 

Number of cases required (log scale)

### **Detecting rare variants**



**Global Alliance** for Genomics & Health

N ~ 10,000 for 90% power to detect variants in 1% of the population with the expected odds ratio of ~2

(assuming matched controls, equal sizes, etc)

Altshuler et al. Science (2008)

#### Adam Kiezun

# Cancer genomes have a high background mutation rate





Mike Lawrence, Petar Stojanov, Paz Polak et al. Nature (2013)

### **Completing the catalogue of cancer genes will require 100,000's of**

#### cancer genomes

Lawrence et al. Nature (2014)



For 90% power to detect 90% of genes at frequency ≥ 2%:

**Global Alliance** 

for Genomics & Health

Need mean of ~2000 samples

50 tumor types x 2,000 = 100,000 tumors

### **Detecting Biomarkers that predict drug response**



## Example: Response to RAF/MEK inhibition in *BRAFV600E* melanoma



Chapman et al., NEJM (2011)

Levi Garraway

### **Detecting biomarkers that predict drug response**



Assumptions: 50% of patient respond to a drug. We want to find a biomarker (out of 100 candidates) that predicts 80% response



**Charles Sawyers** 

### **Detecting biomarkers that predict drug response**





**Charles Sawyers** 

### **Summary for "How big is "BIG"?"**



We need to aggregate large datasets with genomic and clinical data to obtain sufficient power to:

- 1. Find germline risk alleles (10,000s / tumor type)
- Complete the catalog of cancer genes and pathways
   (>2% of patients) (1000s / tumor)
- 3. Detect biomarkers for response (100s to 1000s / tumor type / drug)

#### We must share **GENOMIC** and **CLINICAL DATA** from hundreds of thousands to **MILLIONS** of subjects!

We need to make harmonized data and results easily available to researchers/tool developers, clinicians and patients



# Overview of the Ontario Health Study



A large innovative prospective cohort in Ontario that will serve as an integrated platform for investigating the complex interplay of environmental, lifestyle and genetic factors that increase individual and community risk of developing cancer, heart disease, diabetes, asthma, depression and other common adult diseases

The Study is one of five regional initiatives being conducted across Canada for the Canadian Partnership for Tomorrow Project

Ontario Health Study
Atlantic Partnership for Tomorrow's Health
Alberta Tomorrow Project
CartaGene Quebec
BC Generations project





### Most patients participated by

### filling in an online questionnaires

|                    |               | Wel            | come Jenr                 | nifer             |          |       |
|--------------------|---------------|----------------|---------------------------|-------------------|----------|-------|
| Home               | Study         | Reports        | Science                   | News              | Info     | Media |
| Base Questionnaire | Personal Info | Consents Refer | ences Account             | Preferences Activ | ities    |       |
|                    | 0%            | Moc            | lified Base<br>uestionnai | line<br>re        | Français |       |

To answer all of the questions, including optional questions, it would be helpful if you had:

- The Drug Identification Number (DIN) of any prescription medications you are taking at this time. The DIN is located on the bottle your medication is stored in;
- Your current height and weight;
- The circumference of your waist and hips. Instructions to measure your waist and hips will be provided later in the questionnaire.

Please enter a response to each question on the screen. If there are questions you do not feel comfortable answering, please select the "Prefer not to answer" option.

If you are not sure how to answer a question, please feel free to contact us:

Call our toll-free number in Canada: 1-866-606-0686

Email us at: info@ontariohealthstudy.ca

For answers to commonly asked questions, check our website at OntarioHealthStudy.ca/en/faq

Open

Cancel

About The Study News Privacy FAQ Contact Us © Ontario Health Study 2012

Data linkages at ICES are underway

### **Biospecimen Collection** (currently 20,000)







OHS Toronto Assessment Centre

 Operating at 790 Bay Street from July 2012 through March 2014, the OHS Toronto Assessment Centre completed physical assessments and collected blood and urine samples from over 4,800 Study participants.

Blood Collection Program

 Through a Partnership with LifeLabs Medical Laboratory Services, nearly 7,000 participants have volunteered to provide a small blood sample at one of over 120 LifeLabs locations in Ontario. This program was launched in November 2012.

Local Study Centres

Beginning in 2014, the OHS will pilot and launch a series of Local Study

### **OHS Demographics**

Ethnicity



Gender: 60.9% female

Age: mean: 46.5 years median: 47.2 years

|             | OHS<br>Participants | 2006 Census |
|-------------|---------------------|-------------|
| Aboriginal  | 2.7%                | 1.9%        |
| Black       | 2.0%                | 3.7%        |
| Chinese     | 4.2%                | 4.5%        |
| South Asian | 3.7%                | 6.2%        |
| White       | 76.5%               | 72.1%       |
|             |                     |             |

### **OHS Demographics**







### Prevalence of Major Chronic Diseases in OHS

| Particip         | ants         | Females      | Males       |
|------------------|--------------|--------------|-------------|
|                  | (n= 188,015) | (n= 112,927) | (n= 75,088) |
| Hypertension     | 20.1%        | 16.2%        | 26.0%       |
|                  | (37,509)     | (18,128)     | (19,381)    |
| Heart Disease    | 3.3%         | 1.8%         | 5.5%        |
|                  | (5,460)      | (1,1721)     | (3,739)     |
| Diabetes         | 6.1%         | 4.7%         | 8.1%        |
|                  | (11,306)     | (5,268)      | (6,038)     |
| Arthritis        | 19.4%        | 20.9%        | 17.1%       |
|                  | (35,999)     | (23,271)     | (12,728)    |
| Cancer           | 8.4%         | 8.2%         | 8.6%        |
|                  | (15,565)     | (9,159)      | (6,406)     |
| Major depression | 10.3%        | 12.9%        | 6.3%        |
|                  | (19,137)     | (14,424)     | (4,713)     |

### **Smoking and Alcohol Use**



| Smoking Status                              |                  |                   |             |
|---------------------------------------------|------------------|-------------------|-------------|
|                                             | All participants | Females           | Males       |
|                                             | (n= 106,427)     | (n= 62,511)       | (n= 43,916) |
| Current Smoker                              | 23.7%            | 24.9%             | 21.9%       |
|                                             | (25,178)         | (15,554)          | (9,624)     |
| Former Smoker                               | 48.9%            | 47.8%             | 50.6%       |
|                                             | (52,079)         | (29,849)          | (22,230)    |
| Non-Smoker                                  | 27.4%            | 27.4%             | 27.5%       |
|                                             | (29,170)         | (17,108)          | (12,062)    |
|                                             | Alcohol Con      | sumption          |             |
| 12<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                  |                   |             |
|                                             | Frequency of Al  | cohol Consumption |             |

### **Physical Activity**



#### **Physical Activity Level**

|         | All Participants | Females      | Males       |
|---------|------------------|--------------|-------------|
|         | (n= 188,015)     | (n= 112,927) | (n= 75,088) |
| Low     | 4.9%             | 4.7%         | 5.3%        |
|         | (9,296)          | (5,289)      | (4,007)     |
| Medium  | 29.1%            | 30.0%        | 27.7%       |
|         | (54,643)         | (33,818)     | (20,825)    |
| High    | 23.5%            | 22.2%        | 25.5%       |
|         | (44,209)         | (25,034)     | (19,175)    |
|         | 42.5%            | 43.2%        | 41.4%       |
| Unknown | (79,867)         | (48,786)     | (31,081)    |

### Nutrition







# Challenges in handling BIG data



### GA4GH Data Working Group

Developing solutions for genome and health datasets for millions of research participants

### Data Working Group Members



| Name                      | Institution                                                                  |
|---------------------------|------------------------------------------------------------------------------|
| Richard Durbin (Co-Chair) | Wellcome Trust Sanger Institute, Cambridgeshire, United Kingdom              |
| David Haussler (Co-Chair) | University of California, Santa Cruz, United States                          |
| Ewan Birney               | European Bioinformatics Institute, Cambridgeshire, United Kingdom            |
| Gaddy Getz                | Broad Institute and Massachusetts General Hospital, Boston,<br>United States |
| Heng Li                   | Broad Institute, Boston, United States                                       |
| Gil McVean                | University of Oxford, Oxford, United Kingdom                                 |
| Nicola Mulder             | University of Cape Town, Cape Town, South Africa                             |
| David Patterson           | University of California, Berkeley, Berkeley, United States                  |
| Anthony Philippakis       | Genome Bridge LLC, Cambridge, United States                                  |
| Lincoln Stein             | Ontario Institute for Cancer Research, Toronto, Canada                       |
| Michael Baudis            | Swiss Institute of Bioinformatics, Zurich, Switzerland                       |
|                           |                                                                              |

### Big data problems to overcome



- Existing open source bioinformatics software is unprofessional, large medical centers are making the problem worse
- Major medical centers are separately hiring software engineers or using postdocs to build custom genomics pipelines
- Creates Balkanized, incompatible, inadequate systems
- Reinforces barriers to data sharing

Different Requirements for 1M Genomess for G

- Different types of data interactions:
  - Support both research and clinical practice
  - Compute within a provided cloud
  - Separately URIed, metadata-tagged parts of a single patient file supporting 3rd party mashups and tools
- New consents models, sample donor trusts the security provided
- APIs, not file formats.

•

•

•

•

Benchmarking so all can use system to improve methods, e.g. SMaSH, somatic variant calling DREAM competition

Dave Patterson, www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-211.html

### Possible Genome Commons Archit





•

•



- Very large datasets are needed to answer clinically relevant questions related to common diseases and cancer
- New technologies are needed to store, share and analyze large amounts of data to enable learning rules and patterns
- International standards need to be developed for data to be shared responsibly with researchers, clinicians, and public health organizations to accelerate progress and provide benefits to patients. [Discussed by Peter Goodhand]