The contribution of non-coding mutations to human phenotypes and disease is unknown

Reprinted from 11 April 1975, Volume 188, pp. 107-116

Evolution at Two Levels in Humans and Chimpanzees

Evolution at Two Levels in Humans and Chimpanzees

Their macromolecules are so alike that regulatory mutations may account for their biological differences.

Wilson Lab – Understanding human gene regulation and disease with comparative genomics

1) Generating/analyzing "big" datasets to assign function to the non-coding genome

- Hemostasis (F. Gagnon, S. Mital, and C. Hayward labs)
- Puberty (M. Palmert and A. Goldenberg labs)
- Early zebrafish heart development (I. Scott lab)
- Genome biology of topoisomerases
- 2) Testing regulatory DNA function in human cells and model organisms

Wilson Lab – Understanding human gene regulation and disease with comparative genomics

1) Generate "big" datasets to assign function to the non-coding genome

- Protein-DNA and epigenomic assays
 - -ChIP-seq, ChIP-exo ... Gene expression
 - -RNA-seq

•

-high-throughput qPCR (Fluidigm BioMark with Rossant lab),

-Single cell mRNA sequencing (Fluidigm C1 system)

2) Analyze "big" datasets to assign function to the non-coding genome

- · detect differential DNA occupancy, gene expression
- Compare NGS results between species
- · Integrative analyses to assign function to the non-coding genome

3) Test regulatory DNA function in human cells and model organisms

- Targeted sequencing/cloning/reporter assays of non-coding DNA -Fluidigm Access Array microfluidic PCR
- CRISPR/Cas9 genome editing to delete/modify non-coding DNA
- Gene reporter assays in zebrafish (with Ian Scott's Lab)