Subsymmetric sequences in large Banach spaces

Christina Brech Joint with J. Lopez-Abad and S. Todorcevic

Universidade de São Paulo

Toronto 2015

A sequence (x_k) in a Banach space X is subsymmetric if there is $C \ge 1$ such that for all $(\lambda_i)_{i=1}^l$ and all increasing sequences $(k_i)_{i=1}^l$ and $(n_i)_{i=1}^l$ we have that

$$\left\|\sum_{i=1}^{l}\lambda_{i}x_{k_{i}}\right\|\leq C\left\|\sum_{i=1}^{l}\lambda_{i}x_{n_{i}}\right\|.$$

A sequence (x_k) in a Banach space X is subsymmetric if there is $C \ge 1$ such that for all $(\lambda_i)_{i=1}^l$ and all increasing sequences $(k_i)_{i=1}^l$ and $(n_i)_{i=1}^l$ we have that

$$\|\sum_{i=1}^{l}\lambda_i x_{k_i}\| \leq C \|\sum_{i=1}^{l}\lambda_i x_{n_i}\|.$$

Examples

• The unit bases of c_0 and ℓ_p , $1 \leq p < \infty$ are subsymmetric.

A sequence (x_k) in a Banach space X is subsymmetric if there is $C \ge 1$ such that for all $(\lambda_i)_{i=1}^l$ and all increasing sequences $(k_i)_{i=1}^l$ and $(n_i)_{i=1}^l$ we have that

$$\|\sum_{i=1}^l \lambda_i x_{k_i}\| \leq C \|\sum_{i=1}^l \lambda_i x_{n_i}\|.$$

Examples

- The unit bases of c_0 and ℓ_p , $1 \leq p < \infty$ are subsymmetric.
- The unit basis of the Schreier space has no subsymmetric subsequence.

A sequence (x_k) in a Banach space X is subsymmetric if there is $C \ge 1$ such that for all $(\lambda_i)_{i=1}^l$ and all increasing sequences $(k_i)_{i=1}^l$ and $(n_i)_{i=1}^l$ we have that

$$\|\sum_{i=1}^l \lambda_i x_{k_i}\| \leq C \|\sum_{i=1}^l \lambda_i x_{n_i}\|.$$

Examples

- The unit bases of c_0 and ℓ_p , $1 \le p < \infty$ are subsymmetric.
- The unit basis of the Schreier space has no subsymmetric subsequence.
- The Tsirelson space is a reflexive Banach space with no subsymmetric sequences.

A sequence (x_k) in a Banach space X is subsymmetric if there is $C \ge 1$ such that for all $(\lambda_i)_{i=1}^l$ and all increasing sequences $(k_i)_{i=1}^l$ and $(n_i)_{i=1}^l$ we have that

$$\|\sum_{i=1}^l \lambda_i x_{k_i}\| \leq C \|\sum_{i=1}^l \lambda_i x_{n_i}\|.$$

Examples

- The unit bases of c_0 and ℓ_p , $1 \le p < \infty$ are subsymmetric.
- The unit basis of the Schreier space has no subsymmetric subsequence.
- The Tsirelson space is a reflexive Banach space with no subsymmetric sequences.

Ramsey principles imply that large uncountable structures have infinite **indiscernible** sequences.

- What is the minimal cardinal κ such that any Banach space of density κ has a subsymmetric sequence?
- What is the minimal cardinal κ such that any reflexive Banach space of density κ has a subsymmetric sequence?

Define

 $\mathfrak{ns} = \min\{\kappa : \text{every Banach space of density } \kappa \text{ has a subsymmetric seq.}\}$

and

 $\mathfrak{ns}_{refl} = \min\{\kappa : \text{every refl. Banach space of density } \kappa \text{ has a subsymmetric seq.}\}.$

What is the minimal cardinal κ such that any Banach space of density κ has a subsymmetric sequence?

- - E

What is the minimal cardinal κ such that any Banach space of density κ has a subsymmetric sequence?

• Ketonen, 1974: Any Banach space of density equal to the ω -Erdös cardinal has subsymmetric sequences.

What is the minimal cardinal κ such that any Banach space of density κ has a subsymmetric sequence?

- Ketonen, 1974: Any Banach space of density equal to the ω -Erdös cardinal has subsymmetric sequences.
- Odell, 1985: There is a Banach space of density 2^ω with no subsymmetric sequences.

What is the minimal cardinal κ such that any **reflexive** Banach space of density κ has a subsymmetric sequence?

What is the minimal cardinal κ such that any **reflexive** Banach space of density κ has a subsymmetric sequence?

• Ketonen, 1974: Any Banach space of density equal to the ω -Erdös cardinal has subsymmetric sequences.

What is the minimal cardinal κ such that any **reflexive** Banach space of density κ has a subsymmetric sequence?

- Ketonen, 1974: Any Banach space of density equal to the ω -Erdös cardinal has subsymmetric sequences.
- Argyros, Motakis, 2014: There is a reflexive Banach space of density 2^{ω} with no subsymmetric sequences.

What is the minimal cardinal κ such that any **reflexive** Banach space of density κ has a subsymmetric sequence?

- Ketonen, 1974: Any Banach space of density equal to the ω -Erdös cardinal has subsymmetric sequences.
- Argyros, Motakis, 2014: There is a reflexive Banach space of density 2^{ω} with no subsymmetric sequences.
- B., Lopez-Abad, Todorcevic, 2014: For every κ smaller than the first inaccessible cardinal, there is a reflexive Banach space of density κ with no subsymmetric sequences.

Given an index set I, a family \mathcal{F} of finite subsets of I containing the singletons is said to be:

- hereditary if $t \subseteq s \in \mathcal{F}$ implies $t \in \mathcal{F}$;
- **compact** if is compact as a subspace of 2¹;
- large if for every infinite set M of I and every $k \ge 1$, $\mathcal{F} \cap [M]^k \neq \emptyset$.

Given an index set I, a family \mathcal{F} of finite subsets of I containing the singletons is said to be:

- hereditary if $t \subseteq s \in \mathcal{F}$ implies $t \in \mathcal{F}$;
- **compact** if is compact as a subspace of 2¹;
- large if for every infinite set M of I and every $k \ge 1$, $\mathcal{F} \cap [M]^k \neq \emptyset$.

Remark: The Schreier family

$$\mathcal{S} = \{ s \in [\omega]^{<\omega} : |s| \le \min s \}$$

is a compact, large and hereditary family on ω .

Given an index set I, a family \mathcal{F} of finite subsets of I containing the singletons is said to be:

- hereditary if $t \subseteq s \in \mathcal{F}$ implies $t \in \mathcal{F}$;
- **compact** if is compact as a subspace of 2¹;
- large if for every infinite set M of I and every $k \ge 1$, $\mathcal{F} \cap [M]^k \neq \emptyset$.

Remark: The Schreier family

$$\mathcal{S} = \{ s \in [\omega]^{<\omega} : |s| \le \min s \}$$

is a compact, large and hereditary family on ω .

Given a large compact and hereditary family \mathcal{F} on I, define in $c_{00}(I)$ the following norm:

$$\|x\|_{\mathcal{F}} = \max\{\|x\|_{\infty}, \sup\{\sum_{n \in s} |x_n| : s \in \mathcal{F}\}\}.$$

Given an index set I, a family \mathcal{F} of finite subsets of I containing the singletons is said to be:

- hereditary if $t \subseteq s \in \mathcal{F}$ implies $t \in \mathcal{F}$;
- **compact** if is compact as a subspace of 2¹;
- large if for every infinite set M of I and every $k \ge 1$, $\mathcal{F} \cap [M]^k \neq \emptyset$.

Remark: The Schreier family

$$\mathcal{S} = \{ s \in [\omega]^{<\omega} : |s| \le \min s \}$$

is a compact, large and hereditary family on ω .

Given a large compact and hereditary family \mathcal{F} on I, define in $c_{00}(I)$ the following norm:

$$\|x\|_{\mathcal{F}} = \max\{\|x\|_{\infty}, \sup\{\sum_{n \in s} |x_n| : s \in \mathcal{F}\}\}.$$

Let $X_{\mathcal{F}}$ be the completion of $(c_{00}(\kappa), \|\cdot\|_{\mathcal{F}})$.

Theorem (Lopez-Abad, Todorcevic, 2013)

Given an infinite cardinal κ , TFAE:

- κ is not ω-Erdös;
- there is a non-trivial weakly-null sequence (x_α)_{α<κ} with no subsymmetric basic subsequence;
- there are large compact and hereditary families on κ .

Theorem (Lopez-Abad, Todorcevic, 2013)

Given an infinite cardinal κ , TFAE:

- κ is not ω-Erdös;
- there is a non-trivial weakly-null sequence (x_α)_{α<κ} with no subsymmetric basic subsequence;
- there are large compact and hereditary families on κ .

However, the space $X_{\mathcal{F}}$ has subsymmetric subsequences.

Theorem (B., Lopez-Abad, Todorcevic, 2014)

For every κ smaller than the first inaccessible cardinal, there is a reflexive Banach space of density κ with no subsymmetric sequences.

- 4 同 ト 4 ヨ ト 4 ヨ

Theorem (B., Lopez-Abad, Todorcevic, 2014)

For every κ smaller than the first inaccessible cardinal, there is a reflexive Banach space of density κ with no subsymmetric sequences.

Interpolation method

Theorem (B., Lopez-Abad, Todorcevic, 2014)

For every κ smaller than the first inaccessible cardinal, there is a reflexive Banach space of density κ with no subsymmetric sequences.

- Interpolation method
- Tsirelson space

Theorem (B., Lopez-Abad, Todorcevic, 2014)

For every κ smaller than the first inaccessible cardinal, there is a reflexive Banach space of density κ with no subsymmetric sequences.

- Interpolation method
- Tsirelson space
- CL-sequences

Consider:

- $c_{00}(\kappa)$ the vector space of finitely supported functions from κ into \mathbb{R} ;
- e_{α} the element of $c_{00}(\kappa)$ which values 1 at α and 0 elsewhere.

Consider:

- $c_{00}(\kappa)$ the vector space of finitely supported functions from κ into \mathbb{R} ;
- e_{α} the element of $c_{00}(\kappa)$ which values 1 at α and 0 elsewhere. Given:
 - || · ||_X a norm on c₀₀(ω) such that (e_n) is a 1-unconditional basic sequence in the completion X of (c₀₀(ω), || · ||_X);
 - (|| · ||_n)_n a sequence of norms on c₀₀(κ) such that (e_α) is a C-unconditional basic sequence in the completion X_n of (c₀₀(κ), || · ||_n).

・ 同 ト ・ ヨ ト ・ ヨ ト

Consider:

- $c_{00}(\kappa)$ the vector space of finitely supported functions from κ into \mathbb{R} ;
- e_{α} the element of $c_{00}(\kappa)$ which values 1 at α and 0 elsewhere. Given:
 - || · ||_X a norm on c₀₀(ω) such that (e_n) is a 1-unconditional basic sequence in the completion X of (c₀₀(ω), || · ||_X);
 - (|| · ||_n)_n a sequence of norms on c₀₀(κ) such that (e_α) is a C-unconditional basic sequence in the completion X_n of (c₀₀(κ), || · ||_n).

Define the norm $||x||_{\mathfrak{X}} = ||\sum_{n} \frac{||x||_{n}}{2^{n+1}} e_{n}||_{X}$.

Consider:

- $c_{00}(\kappa)$ the vector space of finitely supported functions from κ into \mathbb{R} ;
- e_{α} the element of $c_{00}(\kappa)$ which values 1 at α and 0 elsewhere. Given:
 - || · ||_X a norm on c₀₀(ω) such that (e_n) is a 1-unconditional basic sequence in the completion X of (c₀₀(ω), || · ||_X);
 - (|| · ||_n)_n a sequence of norms on c₀₀(κ) such that (e_α) is a C-unconditional basic sequence in the completion X_n of (c₀₀(κ), || · ||_n).

Define the norm $||x||_{\mathfrak{X}} = ||\sum_n \frac{||x||_n}{2^{n+1}} e_n ||_X$.

Let \mathfrak{X} be the completion of $(c_{00}(\kappa), \|\cdot\|_{\mathfrak{X}})$.

Consider:

- $c_{00}(\kappa)$ the vector space of finitely supported functions from κ into \mathbb{R} ;
- e_{α} the element of $c_{00}(\kappa)$ which values 1 at α and 0 elsewhere. Given:
 - || · ||_X a norm on c₀₀(ω) such that (e_n) is a 1-unconditional basic sequence in the completion X of (c₀₀(ω), || · ||_X);
 - (|| · ||_n)_n a sequence of norms on c₀₀(κ) such that (e_α) is a C-unconditional basic sequence in the completion X_n of (c₀₀(κ), || · ||_n).

Define the norm $||x||_{\mathfrak{X}} = ||\sum_n \frac{||x||_n}{2^{n+1}} e_n ||_X$.

Let \mathfrak{X} be the completion of $(c_{00}(\kappa), \|\cdot\|_{\mathfrak{X}})$. (e_{α}) is a *C*-unconditional basis.

イロト 不得 とうせい かほとう ほ

Take X = T the Tsirelson space

Image: A matrix and a matrix

э

Take X = T the Tsirelson space and define the norms $\|\cdot\|_n$ using CL-sequences

Image: A image: A

Take X = T the Tsirelson space and define the norms $\|\cdot\|_n$ using CL-sequences and prove that:

• \mathfrak{X} contains no copies of c_0 or ℓ_1 and conclude that \mathfrak{X} is reflexive;

- \mathfrak{X} contains no copies of c_0 or ℓ_1 and conclude that \mathfrak{X} is reflexive;
- any subsymmetric sequence has
 - either a "relevant part" which is in one of the X_n's;
 - ▶ or a "relevant part" which is in *T*;

- \mathfrak{X} contains no copies of c_0 or ℓ_1 and conclude that \mathfrak{X} is reflexive;
- any subsymmetric sequence has
 - either a "relevant part" which is in one of the X_n's;
 - ▶ or a "relevant part" which is in *T*;
- the second alternative cannot hold;

- \mathfrak{X} contains no copies of c_0 or ℓ_1 and conclude that \mathfrak{X} is reflexive;
- any subsymmetric sequence has
 - either a "relevant part" which is in one of the X_n's;
 - ▶ or a "relevant part" which is in *T*;
- the second alternative cannot hold;
- the first alternative would give us a subsymmetric weakly null disjointly supported sequence in X_n , which in turn will give us a sequence in X_{n+1} equivalent to the unit basis of ℓ_1 .

CL-sequences

 \mathcal{F} is \mathcal{G} -large if every infinite sequence (s_n) in \mathcal{G} has an infinite subsequence $(s_n)_{n \in M}$ such that $\bigcup_{i \in t} s_i \in \mathcal{F}$ for every $t \in \mathcal{S}$, where \mathcal{S} is the Schreier family.

A sequence of families (\mathcal{F}_n) is **consecutively large** (CL) if:

•
$$\mathcal{F}_0 = [\kappa]^{\leq} 1;$$

• each \mathcal{F}_n is compact and hereditary;

- $\mathcal{F}_n \subseteq \mathcal{F}_{n+1}$;
- \mathcal{F}_{n+1} is \mathcal{F}_n -large.

CL-sequences

Example:

 $\mathcal{F} \oplus \mathcal{G} = \{ s \cup t : s \in \mathcal{F}, t \in \mathcal{G} \text{ and } \max s < \min t \}$

 $\mathcal{F} \otimes \mathcal{G} = \{s_1 \cup \cdots \cup s_n : (s_i) \subseteq \mathcal{F}, \quad \max s_i < \min s_{i+1}\}$

and $\{\min s_1, \ldots, \min s_n\} \in \mathcal{G}\}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Stepping up from κ to 2^κ

If \mathcal{F} is a family on κ and \mathcal{T} is a tree of height κ , let

 $\mathcal{C}(\mathcal{F}) = \{ c \subseteq T : c \text{ is a chain and } \{ ht(t) : t \in c \} \in \mathcal{F} \}.$

Stepping up from κ to 2^κ

If \mathcal{F} is a family on κ and \mathcal{T} is a tree of height κ , let

 $\mathcal{C}(\mathcal{F}) = \{ c \subseteq T : c \text{ is a chain and } \{ ht(t) : t \in c \} \in \mathcal{F} \}.$

- If \mathcal{F} is hereditary, then $\mathcal{C}(\mathcal{F})$ is hereditary.
- If \mathcal{F} is compact, then $\mathcal{C}(\mathcal{F})$ is compact.
- If (*F_n*) is CL-sequence on *κ*, then (*C*(*F_n*)) is CL-sequence on chains of *T*.

Key lemma

Lemma

If T supports a CL-sequence on chains of T and the set of immediate successors of every node of T supports a CL-sequence, then T supports a CL-sequence.

Given a family C on chains of T and, for each t ∈ T, a family At on the immediate successors of t, let F(C, (At)t∈T) be the family on T of all s ⊆ T such that every chain in the "generated subtree" belongs to C and for every t ∈ T, the set of "immediate successors" of t with respect to s belong to At.

Key lemma

Lemma

If T supports a CL-sequence on chains of T and the set of immediate successors of every node of T supports a CL-sequence, then T supports a CL-sequence.

- Given a family C on chains of T and, for each t ∈ T, a family At on the immediate successors of t, let F(C, (At)t∈T) be the family on T of all s ⊆ T such that every chain in the "generated subtree" belongs to C and for every t ∈ T, the set of "immediate successors" of t with respect to s belong to At.
- Given CL-sequences (\mathcal{C}_n) on chains of T and, for each $t \in T$, CL-sequences (\mathcal{A}_t^n) on the immediate successors of t, we define suitable $(\overline{\mathcal{C}}_n)$ and $(\overline{\mathcal{A}}_t^n)$ such that $\mathcal{F}_n = \mathcal{F}(\overline{\mathcal{C}}_n, (\overline{\mathcal{A}}_t^n)_{t \in T})$ is a CL-sequence on T.

・ロト ・四ト ・ヨト ・ヨト

Final remarks

Theorem (B., Lopez-Abad, Todorcevic, 2014)

For every κ smaller than the first ω -Mahlo cardinal, there is a reflexive Banach space of density κ with no subsymmetric sequences.

Final remarks

Theorem (B., Lopez-Abad, Todorcevic, 2014)

For every κ smaller than the first ω -Mahlo cardinal, there is a reflexive Banach space of density κ with no subsymmetric sequences.

So, first ω -Mahlo cardinal $\leq \mathfrak{ns}_{refl} \leq \omega$ -Erdös cardinal.

Final remarks

Theorem (B., Lopez-Abad, Todorcevic, 2014)

For every κ smaller than the first ω -Mahlo cardinal, there is a reflexive Banach space of density κ with no subsymmetric sequences.

So, first ω -Mahlo cardinal $\leq \mathfrak{ns}_{refl} \leq \omega$ -Erdös cardinal.

Lemma

If a regular inaccessible cardinal κ supports a small C-sequence and every $\lambda < \kappa$ supports a CL-sequence, then κ supports a CL-sequence.