Quotients of strongly proper posets, and related topics

Sean Cox

Virginia Commonwealth University scox9@vcu.edu

Forcing and its Applications Retrospective Workshop, March 2015

Joint work with John Krueger.

The principle ISP(ω_2):

- introduced by Weiss
- follows from PFA (Viale-Weiss), and many consequences of PFA factor through ISP(ω_2).
- Conjecture (Viale-Weiss): ISP(ω₂) is consistent with large continuum (i.e. > ω₂).

The principle ISP(ω_2):

- introduced by Weiss
- follows from PFA (Viale-Weiss), and many consequences of PFA factor through ISP(ω_2).
- Conjecture (Viale-Weiss): ISP(ω₂) is consistent with large continuum (i.e. > ω₂).

Theorem (C.-Krueger 2014)

Proved the conjecture of Viale-Weiss. Developed general theory of **quotients** of strongly proper forcings.

1 Approximation property and guessing models

- 2 Strongly proper forcings and their quotients
- 3 an application: the Viale-Weiss conjecture
- ④ Specialized guessing models, and a question

Definition (Hamkins)

Let (W, W') be transitive models of set theory such that:

- $W \subset W'$
- μ is regular in W

We say (W, W') has the μ -approximation property iff whenever:

- $X \in W';$
- **2** X is a bounded subset of W;
- $\exists \forall z \in W \ |z|^W < \mu \implies z \cap X \in W$

then $X \in W$.

Definition (Hamkins)

Let (W, W') be transitive models of set theory such that:

- $W \subset W'$
- μ is regular in W

We say (W, W') has the μ -approximation property iff whenever:

- $X \in W';$
- **2** X is a bounded subset of W;
- $\exists \forall z \in W \ |z|^W < \mu \implies z \cap X \in W$

then $X \in W$.

We will focus on the case $\mu = \omega_1$ throughout this talk.

Definition (Viale-Weiss)

M is ω_1 -guessing, denoted $M \in G_{\omega_1}$, iff $|M| = \omega_1 \subset M$ and (H_M, V) has the ω_1 -approximation property (where H_M is transitive collapse of *M*).

Definition (Viale-Weiss)

 $\mathsf{ISP}(\omega_2)$ is the statement: for all regular $\theta \geq \omega_2$:

 $\mathcal{G}_{\omega_1} \cap \mathcal{P}_{\omega_2}(\mathcal{H}_{ heta})$ is stationary

Definition (Viale-Weiss)

M is ω_1 -guessing, denoted $M \in G_{\omega_1}$, iff $|M| = \omega_1 \subset M$ and (H_M, V) has the ω_1 -approximation property (where H_M is transitive collapse of *M*).

Definition (Viale-Weiss)

 $\mathsf{ISP}(\omega_2)$ is the statement: for all regular $\theta \geq \omega_2$:

 $G_{\omega_1} \cap P_{\omega_2}(H_{ heta})$ is stationary

Theorem (Viale-Weiss)

The Proper Forcing Axiom (PFA) implies $ISP(\omega_2)$.

Definition (Viale-Weiss)

M is ω_1 -guessing, denoted $M \in G_{\omega_1}$, iff $|M| = \omega_1 \subset M$ and (H_M, V) has the ω_1 -approximation property (where H_M is transitive collapse of *M*).

Definition (Viale-Weiss)

 $\mathsf{ISP}(\omega_2)$ is the statement: for all regular $\theta \geq \omega_2$:

 $\mathcal{G}_{\omega_1} \cap \mathcal{P}_{\omega_2}(\mathcal{H}_{ heta})$ is stationary

Theorem (Viale-Weiss)

The Proper Forcing Axiom (PFA) implies $ISP(\omega_2)$.

Generalization of theorems of Baumgartner, Krueger

Consequences of PFA that factor through ISP

- *TP*(*ω*₂)
- Every tree of height and size ω₁ has at most ω₁ many cofinal branches (in particular no Kurepa trees)
 - together with $2^{\omega_1} = \omega_2$ this yields $\Diamond^+(S_1^2)$ (Foreman-Magidor)
- Failure of □(θ) for all θ ≥ ω₂ (Weiss; actually failure of weaker forms of square)
- SCH (Viale)
- $IA_{\omega_1} \neq^* Unif_{\omega_1}$ and stronger separations (Krueger)
- Laver Diamond at ω_2 (Viale from PFA, Cox from ISP plus $2^\omega=\omega_2)$

Consequences of PFA that factor through ISP

- *TP*(*ω*₂)
- Every tree of height and size ω₁ has at most ω₁ many cofinal branches (in particular no Kurepa trees)
 - together with $2^{\omega_1} = \omega_2$ this yields $\Diamond^+(S_1^2)$ (Foreman-Magidor)
- Failure of □(θ) for all θ ≥ ω₂ (Weiss; actually failure of weaker forms of square)
- SCH (Viale)
- $IA_{\omega_1} \neq^* Unif_{\omega_1}$ and stronger separations (Krueger)
- Laver Diamond at ω_2 (Viale from PFA, Cox from ISP plus $2^\omega=\omega_2$)

Even more consequences of *PFA* factor through "specialized" ISP; more on that later.

Let T be a tree of height ω_2 and width $< \omega_2$. By stationarity of G_{ω_1} there is an $M \in G_{\omega_1}$ such that $M \prec (H_{\omega_3}, \in, T)$. Let $\sigma : H_M \to M \prec H_{\omega_3}$ be inverse of collapsing map of M; let

$$lpha:={\sf M}\cap\omega_2={\sf crit}(\sigma)$$
 and ${\sf T}_{{\sf M}}:=\sigma^{-1}({\sf T})$

Our goal is to prove that $H_M \models "T_M$ has a cofinal branch".

Let T be a tree of height ω_2 and width $< \omega_2$. By stationarity of G_{ω_1} there is an $M \in G_{\omega_1}$ such that $M \prec (H_{\omega_3}, \in, T)$. Let $\sigma : H_M \to M \prec H_{\omega_3}$ be inverse of collapsing map of M; let

$$lpha:={\sf M}\cap\omega_2={\sf crit}(\sigma)$$
 and ${\sf T}_{{\sf M}}:=\sigma^{-1}({\sf T})$

Our goal is to prove that $H_M \models "T_M$ has a cofinal branch".

Since (H_M, V) has the ω_1 -approximation property, it suffices to find (in V) a cofinal b through T_M such that every proper initial segment of b is an element of H_M . But since T is thin, then $T_M = T | \alpha$. Pick any t on the α -th level of T; then $t \downarrow$ is a cofinal branch through $T_M = T | \alpha$ and every proper initial segment is of course in H_M . Approximation property and guessing models

2 Strongly proper forcings and their quotients

- 3 an application: the Viale-Weiss conjecture
- ④ Specialized guessing models, and a question

A suborder $\mathbb P$ of $\mathbb Q$ is *regular* iff maximal antichains in $\mathbb P$ remain maximal antichains in $\mathbb Q.$

A suborder $\mathbb P$ of $\mathbb Q$ is *regular* iff maximal antichains in $\mathbb P$ remain maximal antichains in $\mathbb Q.$

Definition

Suppose \mathbb{P} is a regular suborder of \mathbb{Q} and $G_{\mathbb{P}}$ is \mathbb{P} -generic. In $V[G_{\mathbb{P}}]$ the (possibly nonseparative) quotient $\mathbb{Q}/G_{\mathbb{P}}$ is the set of $q \in \mathbb{Q}$ which are compatible with every member of $G_{\mathbb{P}}$. Order is inherited from \mathbb{Q} .

$$\mathbb{Q} \sim \mathbb{P} * \check{\mathbb{Q}} / \dot{G}_{\mathbb{P}}$$

A suborder $\mathbb P$ of $\mathbb Q$ is *regular* iff maximal antichains in $\mathbb P$ remain maximal antichains in $\mathbb Q.$

Definition

Suppose \mathbb{P} is a regular suborder of \mathbb{Q} and $G_{\mathbb{P}}$ is \mathbb{P} -generic. In $V[G_{\mathbb{P}}]$ the (possibly nonseparative) quotient $\mathbb{Q}/G_{\mathbb{P}}$ is the set of $q \in \mathbb{Q}$ which are compatible with every member of $G_{\mathbb{P}}$. Order is inherited from \mathbb{Q} .

$$\mathbb{Q} \sim \mathbb{P} * \check{\mathbb{Q}} / \dot{G}_{\mathbb{P}}$$

Important variation: " \mathbb{P} is regular in \mathbb{Q} below q"

The following notion is due to Mitchell.

Definition

Given a poset \mathbb{P} and a model M, a condition $p \in \mathbb{P}$ is an (M, \mathbb{P}) strong master condition iff " $M \cap \mathbb{P}$ is a regular suborder of \mathbb{P} below p".

(we focus only on countable *M*)

The following notion is due to Mitchell.

Definition

Given a poset \mathbb{P} and a model M, a condition $p \in \mathbb{P}$ is an (M, \mathbb{P}) strong master condition iff " $M \cap \mathbb{P}$ is a regular suborder of \mathbb{P} below p".

(we focus only on countable *M*)

" \mathbb{P} is strongly proper": defined similarly to properness, using strong master condition instead of master condition.

Examples and properties of strongly proper forcings

Examples:

- Todorcevic's finite ∈-collapse
- Baumgartner's adding a club with finite conditions
- adding any number of Cohen reals
- Various (pure) side condition posets of Mitchell, Friedman, Neeman, Krueger, and others.

Examples and properties of strongly proper forcings

Examples:

- Todorcevic's finite \in -collapse
- Baumgartner's adding a club with finite conditions
- adding any number of Cohen reals
- Various (pure) side condition posets of Mitchell, Friedman, Neeman, Krueger, and others.

Key properties (Mitchell):

- absorbs $Add(\omega)$
- $(V, V^{\mathbb{P}})$ has the ω_1 -approximation property

Examples:

- Todorcevic's finite ∈-collapse
- Baumgartner's adding a club with finite conditions
- adding any number of Cohen reals
- Various (pure) side condition posets of Mitchell, Friedman, Neeman, Krueger, and others.

Key properties (Mitchell):

- absorbs $\operatorname{Add}(\omega)$
- $(V, V^{\mathbb{P}})$ has the ω_1 -approximation property

Remark: To get ω_1 approx, suffices to be strongly proper wrt *stationarily many* countable models.

Suppose $1_{\mathbb{P}}$ forces that \dot{b} is a **new** subset of θ and that $z \cap \dot{b} \in V$ for every *V*-countable set *z*. Let $M \prec (H_{\theta^+}, \in, \dot{b}, ...)$ be countable and let *p* be a strong master condition for *M*. Since *M* is countable then by assumption $\check{M} \cap \dot{b}$ is forced to be in the ground model. Let $p' \leq p$ decide this value.

Suppose $1_{\mathbb{P}}$ forces that \dot{b} is a **new** subset of θ and that $z \cap \dot{b} \in V$ for every *V*-countable set *z*. Let $M \prec (H_{\theta^+}, \in, \dot{b}, ...)$ be countable and let *p* be a strong master condition for *M*. Since *M* is countable then by assumption $\check{M} \cap \dot{b}$ is forced to be in the ground model. Let $p' \leq p$ decide this value.

Let p'|M be a reduct of p' into $M \cap \mathbb{P}$. Since \dot{b} is forced to be new and $\dot{b}, p'|M \in M$, then there are $r, s \in M$ below p'|M which disagree about some member of M being an element of \dot{b} . Then clearly they cannot both be compatible with a condition which decides $\check{M} \cap \dot{b}$. In particular they cannot both be compatible with p'. Contradiction.

Question

Suppose \mathbb{Q} is strongly proper and \mathbb{P} is a regular suborder. When does the quotient $\mathbb{Q}/\dot{G}_{\mathbb{P}}$ have the following properties?

- strongly proper "wrt V models"?
- *ω*₁-approximation property?

Question

Suppose \mathbb{Q} is strongly proper and \mathbb{P} is a regular suborder. When does the quotient $\mathbb{Q}/\dot{G}_{\mathbb{P}}$ have the following properties?

- strongly proper "wrt V models"?
- ω_1 -approximation property?

Remark: There are well-known examples of quotients of proper forcings that aren't proper.

From now on we only deal with "well-met" posets: if $p \parallel q$ then they have a GLB

From now on we only deal with "well-met" posets: if $p \parallel q$ then they have a GLB

Definition (Krueger)

Assume \mathbb{P} is a suborder of \mathbb{Q} .

 $\star(\mathbb{P}, \mathbb{Q})$ denotes the statement: whenever $p \in \mathbb{P}$ and $q_1, q_2 \in \mathbb{Q}$ and p, q_1, q_2 are **pairwise** compatible, then there is a lower bound for all three.

 $\star(\mathbb{Q})$ is the stronger statement that $\star(\mathbb{Q},\mathbb{Q})$ holds.

Examples where $\star(\mathbb{Q})$ holds:

- Col(μ, θ)
- Todorcevic's \in -collapse
- Krueger's adequate set forcing

Lemma

Assume $\star(\mathbb{P}, \mathbb{Q})$ and let $G_{\mathbb{P}}$ be generic for \mathbb{P} . Then in $V[G_{\mathbb{P}}]$:

 $ig(orall q_1, q_2 \in \mathbb{Q}/G_\mathbb{P}ig) \ ig(q_1 \parallel_\mathbb{Q} q_2 \implies q_1 \parallel_{\mathbb{Q}/\dot{G}_\mathbb{P}} q_2ig)$

Lemma

Assume $\star(\mathbb{P}, \mathbb{Q})$ and let $G_{\mathbb{P}}$ be generic for \mathbb{P} . Then in $V[G_{\mathbb{P}}]$:

$$ig(orall q_1, q_2 \in \mathbb{Q}/G_\mathbb{P}ig) \ ig(q_1 \parallel_\mathbb{Q} q_2 \implies q_1 \parallel_{\mathbb{Q}/\dot{G}_\mathbb{P}} q_2ig)$$

Proof: let $q_1, q_2 \in \mathbb{Q}/G_{\mathbb{P}}$ and suppose $q_1 \wedge q_2 \neq 0$ in \mathbb{Q} ; we will prove that $q_1 \wedge q_2 \in \mathbb{Q}/G_{\mathbb{P}}$, i.e. that $q_1 \wedge q_2$ is compatible with every member of $G_{\mathbb{P}}$. Let $p \in G_{\mathbb{P}}$. Then $q_1 \wedge p \neq 0 \neq q_2 \wedge p$. By $\star(\mathbb{P}, \mathbb{Q})$ we have $q_1 \wedge q_2 \wedge p \neq 0$.

$\star(\mathbb{P},\mathbb{Q})$ implies strong master conditions survive in the quotient

Lemma

Suppose $\star(\mathbb{P},\mathbb{Q})$ holds and q is (M,\mathbb{Q}) strong master condition. Then

 $\Vdash_{\mathbb{P}} \check{q} \in \mathbb{Q}/\dot{G}_{\mathbb{P}} \implies \check{q} \text{ is } (M[\dot{G}_{\mathbb{P}}], \mathbb{Q}/\dot{G}_{\mathbb{P}}) \text{ s.m.c.}$

$\star(\mathbb{P},\mathbb{Q})$ implies strong master conditions survive in the quotient

Lemma

Suppose $\star(\mathbb{P},\mathbb{Q})$ holds and q is (M,\mathbb{Q}) strong master condition. Then

$$\Vdash_{\mathbb{P}} \check{q} \in \mathbb{Q}/\dot{G}_{\mathbb{P}} \implies \check{q}$$
 is $(M[\dot{G}_{\mathbb{P}}], \mathbb{Q}/\dot{G}_{\mathbb{P}})$ s.m.c.

Proof sketch: Suppose $p \in \mathbb{P}$ forces that $\check{q} \in \mathbb{Q}/\check{G}_{\mathbb{P}}$ (i.e. $\check{q} \parallel \check{G}_{\mathbb{P}}$). Then p must force that $M[\dot{G}_{\mathbb{P}}] \cap V = M$; otherwise there is some $p' \leq p$ forcing $M \subsetneq M[\dot{G}_{\mathbb{P}}] \cap V$, but p' still forces $\check{q} \in \mathbb{Q}/\check{G}_{\mathbb{P}}$. So let $G_{\mathbb{P}} * H$ be generic (in the 2-step iteration) with $(p', q) \in G_{\mathbb{P}} * H$. But q is in particular an (M, \mathbb{Q}) master condition, so $M = M[G_{\mathbb{P}} * H] \cap V \supset M[G_{\mathbb{P}}] \cap V$. Contradiction. Recall q is (M, \mathbb{Q}) strong master condition, and we showed that if $q \in \mathbb{Q}/G_{\mathbb{P}}$ then in particular $\mathbb{Q} \cap M = \mathbb{Q} \cap M[G_{\mathbb{P}}] =: \mathbb{Q}_M$. Now \mathbb{Q}_M is regular in \mathbb{Q} below q (this is Σ_0 statement).

Suppose $q' \leq q$, where $q' \in \mathbb{Q}/G_{\mathbb{P}}$. Let q'|M be a reduct of q' into \mathbb{Q}_M . We need to see that:

- $q'|M \parallel G_{\mathbb{P}}$; this is straightforward, especially if $q'|M \ge q'$ as is usually the case; and
- any extension of q' | M in Q_M/G_P is compatible with q' in Q/G_P. Suppose q" is such a condition; so q" || G_P and is Q-compatible with q'. By the previous lemma (using the ★(P,Q) assumption), q' and q" are compatible in Q/G_P.

Theorem (C.-Krueger)

Suppose:

- Q is well-met;
- There is a stationary set *S* of countable models *M* for which \mathbb{Q} has universal strong master conditions;
- \mathbb{P} is a regular suborder of \mathbb{Q} (possibly "below a condition")
- $\star(\mathbb{P},\mathbb{Q})$ holds

Then \mathbb{P} forces that $\mathbb{Q}/\dot{G}_{\mathbb{P}}$ is strongly proper for the stationary set of models of the form $M[\dot{G}_{\mathbb{P}}]$ where $M \in S$. In particular, the quotient has the ω_1 approximation property.

Theorem (C.-Krueger)

Suppose:

- Q is well-met;
- There is a stationary set *S* of countable models *M* for which \mathbb{Q} has universal strong master conditions;
- \mathbb{P} is a regular suborder of \mathbb{Q} (possibly "below a condition")
- $\star(\mathbb{P},\mathbb{Q})$ holds

Then \mathbb{P} forces that $\mathbb{Q}/\dot{G}_{\mathbb{P}}$ is strongly proper for the stationary set of models of the form $M[\dot{G}_{\mathbb{P}}]$ where $M \in S$. In particular, the quotient has the ω_1 approximation property.

REMARK: universality isn't needed if you only want ω_1 -approx property.

Quotients of strongly proper posets may fail to have the $\omega_1\text{-approximation property:}$

Theorem (Krueger)

Assume $2^{\omega} = \omega_1$ and $2^{\omega_1} = \omega_2$. Let \mathbb{Q} be the forcing with coherent adequate sets of countable submodels of H_{ω_3} . Then \mathbb{Q} has the following properties:

- \mathbb{Q} is strongly proper and ω_2 -cc;
- \mathbb{Q} forces CH
- \mathbb{Q} adds a Kurepa tree on ω_1 with ω_3 many cofinal branches
- There is a regular suborder $\mathbb P$ of size ω_2 such that

 $\Vdash_{\mathbb{P}} \mathbb{Q}/\dot{G}_{\mathbb{P}}$ fails to have the ω_1 approximation property

Approximation property and guessing models

2 Strongly proper forcings and their quotients

- 3 an application: the Viale-Weiss conjecture
- ④ Specialized guessing models, and a question

Recall Viale-Weiss:

- proved PFA implies ISP(ω_2);
- conjectured that $ISP(\omega_2)$ is consistent with large continuum.

Recall Viale-Weiss:

- proved PFA implies ISP(ω_2);
- conjectured that $ISP(\omega_2)$ is consistent with large continuum.

Theorem (C.-Krueger)

Assume κ is a supercompact cardinal and $\theta \geq \kappa$ arbitrary. Let:

- P be "adequate set forcing" to turn κ into ℵ₂; (or Neeman's side condition forcing; or Friedman's; ...)
- $\mathbb{Q} = Add(\omega, \theta)$

Then
$$V^{\mathbb{P}\times\mathbb{Q}} \models ISP(\omega_2)$$
 and $2^{\omega} = \theta$.

Proof outline

Let $G \times H$ be generic for $\mathbb{P} \times \mathbb{Q}$. Let $\theta \ge \omega_2 = \kappa$ be regular and $\mathfrak{A} = (H_{\theta}[G \times H], \in, ...)$ be an algebra.

Proof outline

Let $G \times H$ be generic for $\mathbb{P} \times \mathbb{Q}$. Let $\theta \ge \omega_2 = \kappa$ be regular and $\mathfrak{A} = (H_{\theta}[G \times H], \in, ...)$ be an algebra.

Back in V let $j: V \to N$ be sufficiently supercompact with $\operatorname{crit}(j) = \kappa$ so that $j[H_{\theta}] \in N$. $\mathbb{P} \times \mathbb{Q}$ is κ -cc and $\operatorname{crit}(j) = \kappa$, so $j: \mathbb{P} \times \mathbb{Q} \to j(\mathbb{P} \times \mathbb{Q})$ is a regular embedding; so we can force with the quotient

$$j(\mathbb{P} \times \mathbb{Q})/j[G \times H] \tag{1}$$

and lift *j* to

$$j: V[G \times H] \to N[G' \times H']$$

Proof outline

Let $G \times H$ be generic for $\mathbb{P} \times \mathbb{Q}$. Let $\theta \ge \omega_2 = \kappa$ be regular and $\mathfrak{A} = (H_{\theta}[G \times H], \in, ...)$ be an algebra.

Back in V let $j: V \to N$ be sufficiently supercompact with $\operatorname{crit}(j) = \kappa$ so that $j[H_{\theta}] \in N$. $\mathbb{P} \times \mathbb{Q}$ is κ -cc and $\operatorname{crit}(j) = \kappa$, so $j: \mathbb{P} \times \mathbb{Q} \to j(\mathbb{P} \times \mathbb{Q})$ is a regular embedding; so we can force with the quotient

$$j(\mathbb{P} \times \mathbb{Q})/j[G \times H]$$
 (1)

and lift *j* to

$$j: V[G \times H] \to N[G' \times H']$$

N believes that $j(\mathbb{P} \times \mathbb{Q})$ is strongly proper and the pair

 $j[\mathbb{P} \times \mathbb{Q}], j(\mathbb{P} \times \mathbb{Q})$

satisfies the star property. So $N[j[G \times H]]$ believes that the quotient in (1) has the ω_1 -approximation property; so $(H^V_{\theta}[G \times H], N[G' \times H'])$ has ω_1 -a.p., and also $j[H^V_{\theta}[G \times H]] \prec j(\mathfrak{A})$. Then use elementarity of j.

Approximation property and guessing models

2 Strongly proper forcings and their quotients

3 an application: the Viale-Weiss conjecture

4 Specialized guessing models, and a question

Definition

Let's call M a specialized ω_1 guessing model, and write $M \in sG_{\omega_1}$, iff a certain tree related to M is specialized; in particular $M \in G_{\omega_1}$ and remains so in any outer model with the same ω_1 .

They proved that under PFA, $sG_{\omega_1} \cap P_{\omega_2}(H_{\theta}) (\cap IC_{\omega_1})$ is stationary for all $\theta \ge \omega_2$.

Consequences of PFA which factor through specialized guessing models

- If T is a tree of height and size ω₁ then forcing with T collapses ω₁ (Baumgartner)
- (together with assumption $2^{\omega} = \omega_2$) Every forcing which adds a new subset of ω_1 either adds a real or collapses ω_2 (Todorcevic)

Sketch of proof

In V consider the stationary set $S := sG_{\omega_1} \cap P_{\omega_2}(H_{\omega_2})$. Using stationarity of S and the assumption that $2^{\omega} = \omega_2$, fix a \subset -increasing (non-continuous) chain $\langle M_{\alpha} \mid \alpha < \omega_2 \rangle$ of elements of S whose union contains H_{ω_1} .

Sketch of proof

In V consider the stationary set $S := sG_{\omega_1} \cap P_{\omega_2}(H_{\omega_2})$. Using stationarity of S and the assumption that $2^{\omega} = \omega_2$, fix a \subset -increasing (non-continuous) chain $\langle M_{\alpha} \mid \alpha < \omega_2 \rangle$ of elements of S whose union contains H_{ω_1} .

Suppose W is an outer model of V which adds a new subset b of ω_1 , and doesn't add a real. Then it doesn't add new subsets of countable ordinals either, so for all $\xi < \omega_1$ we have

$$b \cap \xi \in H^V_{\omega_1} \subset \bigcup_{lpha < \omega_2} M_{lpha}$$

Sketch of proof

In V consider the stationary set $S := sG_{\omega_1} \cap P_{\omega_2}(H_{\omega_2})$. Using stationarity of S and the assumption that $2^{\omega} = \omega_2$, fix a \subset -increasing (non-continuous) chain $\langle M_{\alpha} \mid \alpha < \omega_2 \rangle$ of elements of S whose union contains H_{ω_1} .

Suppose W is an outer model of V which adds a new subset b of ω_1 , and doesn't add a real. Then it doesn't add new subsets of countable ordinals either, so for all $\xi < \omega_1$ we have

$$b \cap \xi \in H^V_{\omega_1} \subset igcup_{lpha < \omega_2} M_lpha$$

In W define a function $f: \omega_1 \to \omega_2^V$ by sending ξ to the least α such that $b \cap \xi \in M_{\alpha}$. This is a cofinal map from $\omega_1 \to \omega_2^V$ since for any $\alpha < \omega_2$, since $b \notin M_{\alpha}$ and M_{α} is $G_{\omega_1}^W$ then there is some $\xi < \omega_1$ such that $b \cap \xi \notin M_{\alpha}$.

Our model of ISP(ω_2) plus large continuum is NOT a model of the "specialized" version (because it has a tree of height and size ω_1 whose forcing doesn't collapse ω_1).

This suggests a natural modification of the Viale-Weiss question:

Question

Assume "specialized" ISP(ω_2); i.e. suppose sG_{ω_1} is stationary for all $P_{\omega_2}(H_{\theta})$. Does this imply $2^{\omega} = \omega_2$?