Long-low iterations / matrix forcing

Alan Dow¹ and Saharon Shelah²

¹University of North Carolina Charlotte

²this paper initiated at Fields Oct 2012 see forthcoming F1222

Forcing at Fields

Goal

we want to force a model of $\mathfrak{t}<\mathfrak{h}=\kappa<\mathfrak{s}=\lambda$ and see where we can put \mathfrak{b}

Goal

we want to force a model of $\mathfrak{t} < \mathfrak{h} = \kappa < \mathfrak{s} = \lambda$ and see where we can put \mathfrak{b}

Definition

We can define \mathfrak{h} as the minimum cardinal for which there is a sequence $\langle \mathcal{I}_{\xi} : \xi \in \mathfrak{h} \rangle$ of \subset^* -dense ideals on $\mathcal{P}(\omega)$ with empty intersection (or maybe intersection equal to $[\omega]^{<\aleph_0}$)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

ccc Mathias/Prikry $(w, U) \in Q(U) = [\omega]^{<\omega} \times U$ since $U \in \omega^*$ it adds <u>unsplit</u> $W \prec^* U$

ccc Mathias/Prikry $(w, U) \in Q(U) = [\omega]^{<\omega} \times U$ since $U \in \omega^*$ it adds <u>unsplit</u> $W \prec^* U$

 $\begin{array}{ll} \text{Booth/Solovay for sfip }\mathcal{Y} \subset [\omega]^{\omega}, & \text{also } \mathcal{Q}(\mathcal{Y}) \\ (w, Y) \in [\omega]^{<\omega} \times [\mathcal{Y}]^{<\omega} \end{array}$

adds a generic pseudointersection W to the family \mathcal{Y}

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

ccc Mathias/Prikry $(w, U) \in Q(U) = [\omega]^{<\omega} \times U$ since $U \in \omega^*$ it adds <u>unsplit</u> $W \prec^* U$

Booth/Solovay for sfip
$$\mathcal{Y} \subset [\omega]^{\omega}$$
, also $Q(\mathcal{Y})$
 $(w, Y) \in [\omega]^{<\omega} \times [\mathcal{Y}]^{<\omega}$

adds a generic pseudointersection W to the family \mathcal{Y}

Shelah: the forcing Q_{Bould} with countable support to first get $\mathfrak{b} = \omega_1 < \mathfrak{s} = \omega_2$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

ccc Mathias/Prikry $(w, U) \in Q(U) = [\omega]^{<\omega} \times U$ since $U \in \omega^*$ it adds <u>unsplit</u> $W \prec^* U$

Booth/Solovay for sfip
$$\mathcal{Y} \subset [\omega]^{\omega}$$
, also $Q(\mathcal{Y})$
 $(w, Y) \in [\omega]^{<\omega} \times [\mathcal{Y}]^{<\omega}$

adds a generic pseudointersection W to the family $\mathcal Y$

Shelah: the forcing Q_{Bould} with countable support to first get $\mathfrak{b} = \omega_1 < \mathfrak{s} = \omega_2$

family of special ccc subposets of Q_{Bould} : we'll call \mathbb{Q}_{207} first used by Fischer-Steprans

Proposition

Baumgartner-Dordal [1985] obtain $\mathfrak{h} \leq \mathfrak{s} < \mathfrak{b}$ with Hechler but \mathfrak{h} will be ω_1 because of Cohens

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proposition

Baumgartner-Dordal [1985] obtain $\mathfrak{h} \leq \mathfrak{s} < \mathfrak{b}$ with Hechler but \mathfrak{h} will be ω_1 because of Cohens

to raise \mathfrak{h} (or even keep \mathfrak{h} large) we have to be constantly adding pseudointersections (probably also raising \mathfrak{t}), but how to also keep it small?

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proposition

Baumgartner-Dordal [1985] obtain $\mathfrak{h} \leq \mathfrak{s} < \mathfrak{b}$ with Hechler but \mathfrak{h} will be ω_1 because of Cohens

to raise \mathfrak{h} (or even keep \mathfrak{h} large) we have to be constantly adding pseudointersections (probably also raising \mathfrak{t}), but how to also keep it small?

Proposition

Blass-Shelah [1987] introduce matrix-iterations TBI (named by Brendle 2011?) but actually short-tall; to obtain a model of $\omega_1 < \mathfrak{u} < \mathfrak{d}$ using special ccc Mathias (generalized Kunen)

うして 山田 マイボット ボット シックション

Proposition

Baumgartner-Dordal [1985] obtain $\mathfrak{h} \leq \mathfrak{s} < \mathfrak{b}$ with Hechler but \mathfrak{h} will be ω_1 because of Cohens

to raise \mathfrak{h} (or even keep \mathfrak{h} large) we have to be constantly adding pseudointersections (probably also raising \mathfrak{t}), but how to also keep it small?

Proposition

Blass-Shelah [1987] introduce matrix-iterations TBI (named by Brendle 2011?) but actually short-tall; to obtain a model of $\omega_1 < \mathfrak{u} < \mathfrak{d}$ using special ccc Mathias (generalized Kunen)

Proposition

Shelah [1983] in Boulder proceedings introduced Q_{Bould} to obtain $\omega_1 = \mathfrak{b} < \mathfrak{s} = \mathfrak{a}$.

still brief history

Proposition

Fischer-Steprans [2008] could raise b by using Cohen forcing to define ccc subposets of Q_{Bould} , and obtain $b = \kappa < \kappa^+ = \mathfrak{s}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proposition

Fischer-Steprans [2008] could raise b by using Cohen forcing to define ccc subposets of Q_{Bould} , and obtain $b = \kappa < \kappa^+ = \mathfrak{s}$

Proposition

Brendle-Fischer [2011] using long-low matrix and Blass-Shelah ccc Mathias could get unrestricted $\omega_1 < \mathfrak{b} = \mathfrak{a} = \kappa < \mathfrak{s} = \lambda$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proposition

Fischer-Steprans [2008] could raise b by using Cohen forcing to define ccc subposets of Q_{Bould} , and obtain $b = \kappa < \kappa^+ = \mathfrak{s}$

Proposition

Brendle-Fischer [2011] using long-low matrix and Blass-Shelah ccc Mathias could get unrestricted $\omega_1 < \mathfrak{b} = \mathfrak{a} = \kappa < \mathfrak{s} = \lambda$

Notes

It was shown in Brendle-Raghavan [2014] that \mathcal{Q}_{Bould} can be factored as countably closed * ccc Mathias (similar to Fischer-Steprans but still limits to κ^+). Brendle delivered a beautiful workshop on matrix forcing at Czech WS 2010.

a matrix iteration $\langle \mathbb{P}(\alpha, \gamma), \mathbb{Q}(\alpha, \gamma) : \gamma \leq \mu, \alpha < \lambda \rangle$

Matrices: a diagram

in case you don't know what a matrix looks like

() > () > ()

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ・

SQA

Let $\beta < \alpha \leq \gamma$ and $j < i < \kappa$ uncountable

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Let $\beta < \alpha \leq \gamma$ and $j < i < \kappa$ uncountable

1. as we go up, we have complete subposets $\mathbb{P}(\alpha, j) <_{c} \mathbb{P}(\alpha, i)$ this is key but subtle

1. as we go up, we have complete subposets $\mathbb{P}(\alpha, j) <_{c} \mathbb{P}(\alpha, i)$ this is key but subtle

2. but not "needed" for limit: $\bigcup_{j < i} \mathbb{P}_{\alpha, j}$ is just a subset of $\mathbb{P}(\alpha, i)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1. as we go up, we have complete subposets $\mathbb{P}(\alpha, j) <_{c} \mathbb{P}(\alpha, i)$ this is key but subtle
- 2. but not "needed" for limit: $\bigcup_{i < i} \mathbb{P}_{\alpha, j}$ is just a subset of $\mathbb{P}(\alpha, i)$
- 3. as we go horizontally we iterate: ?

 $\mathbb{P}(\beta, j) * \mathbb{Q}(\beta, j) = \mathbb{P}(\beta + 1, j)$ and also

うして 山田 マイボット ボット シックション

- 1. as we go up, we have complete subposets $\mathbb{P}(\alpha, j) <_{c} \mathbb{P}(\alpha, i)$ this is key but subtle
- 2. but not "needed" for limit: $\bigcup_{j < i} \mathbb{P}_{\alpha, j}$ is just a subset of $\mathbb{P}(\alpha, i)$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 3. as we go horizontally we iterate: ? $\mathbb{P}(\beta, j) * \mathbb{Q}(\beta, j) = \mathbb{P}(\beta + 1, j)$ and also
- 4. limit α implies $\mathbb{P}(\alpha, i) = \bigcup \{\mathbb{P}(\beta, i) : \beta < \alpha\}$ i.e. FS

- 1. as we go up, we have complete subposets $\mathbb{P}(\alpha, j) <_{c} \mathbb{P}(\alpha, i)$ this is key but subtle
- 2. but not "needed" for limit: $\bigcup_{j < i} \mathbb{P}_{\alpha, j}$ is just a subset of $\mathbb{P}(\alpha, i)$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 3. as we go horizontally we iterate: ? $\mathbb{P}(\beta, j) * \mathbb{Q}(\beta, j) = \mathbb{P}(\beta + 1, j)$ and also
- 4. limit α implies $\mathbb{P}(\alpha, i) = \bigcup \{\mathbb{P}(\beta, i) : \beta < \alpha\}$ i.e. FS
- 5. for $i = \kappa$, $\mathbb{P}(\alpha, \kappa) = \bigcup \{\mathbb{P}(\alpha, i) : i < \kappa\}$

- 1. as we go up, we have complete subposets $\mathbb{P}(\alpha, j) <_{c} \mathbb{P}(\alpha, i)$ this is key but subtle
- 2. but not "needed" for limit: $\bigcup_{j < i} \mathbb{P}_{\alpha, j}$ is just a subset of $\mathbb{P}(\alpha, i)$
- 3. as we go horizontally we iterate: ? $\mathbb{P}(\beta, j) * \mathbb{Q}(\beta, j) = \mathbb{P}(\beta + 1, j)$ and also
- 4. limit α implies $\mathbb{P}(\alpha, i) = \bigcup \{\mathbb{P}(\beta, i) : \beta < \alpha\}$ i.e. FS
- 5. for $i = \kappa$, $\mathbb{P}(\alpha, \kappa) = \bigcup \{\mathbb{P}(\alpha, i) : i < \kappa \}$

All posets will be ccc, and so if Y is a $\mathbb{P}(\lambda, \kappa)$ -name of a subset of ω , there are $(\alpha, i) \in \lambda \times \kappa$ so that Y is a $\mathbb{P}(\alpha, i)$ -name.

うして 山田 マイボット ボット シックション

- 1. as we go up, we have complete subposets $\mathbb{P}(\alpha, j) <_{c} \mathbb{P}(\alpha, i)$ this is key but subtle
- 2. but not "needed" for limit: $\bigcup_{j < i} \mathbb{P}_{\alpha, j}$ is just a subset of $\mathbb{P}(\alpha, i)$
- 3. as we go horizontally we iterate: ? $\mathbb{P}(\beta, j) * \mathbb{Q}(\beta, j) = \mathbb{P}(\beta + 1, j)$ and also
- 4. limit α implies $\mathbb{P}(\alpha, i) = \bigcup \{\mathbb{P}(\beta, i) : \beta < \alpha\}$ i.e. FS
- 5. for $i = \kappa$, $\mathbb{P}(\alpha, \kappa) = \bigcup \{\mathbb{P}(\alpha, i) : i < \kappa \}$

All posets will be ccc, and so if Y is a $\mathbb{P}(\lambda, \kappa)$ -name of a subset of ω , there are $(\alpha, i) \in \lambda \times \kappa$ so that Y is a $\mathbb{P}(\alpha, i)$ -name.

This means Y won't know about even $\mathbb{P}(0, i + 1)$ and so gives us a chance to keep a cardinal invariant small

Let us look at two examples where $\mathbb{P}(0, i)$ is $\mathsf{FS}_{j \le i} \mathcal{H}_j$ adding $\langle H_i^0 : i < \kappa \rangle$

Let us look at two examples where $\mathbb{P}(0, i)$ is $\mathsf{FS}_{j \le i} \mathcal{H}_j$ adding $\langle H_i^0 : i < \kappa \rangle$

iterate Hechler up every column

If, for all $\alpha > 0$ and i, $\dot{\mathbb{Q}}(\alpha, i)$ is $\left(\bigcup_{j < i} \dot{\mathbb{Q}}(\alpha, j)\right) * \mathcal{H}$ up each column, iteratively add Hechler reals then we get a model of $\mathfrak{b} = \kappa < \mathfrak{d} = \lambda$ (and $\mathfrak{h} = \omega_1$)

うして 山田 マイボット ボット シックション

Let us look at two examples where $\mathbb{P}(0, i)$ is $\mathsf{FS}_{j \le i} \mathcal{H}_j$ adding $\langle H_i^0 : i < \kappa \rangle$

iterate Hechler up every column

If, for all $\alpha > 0$ and i, $\dot{\mathbb{Q}}(\alpha, i)$ is $\left(\bigcup_{j < i} \dot{\mathbb{Q}}(\alpha, j)\right) * \mathcal{H}$ up each column, iteratively add Hechler reals then we get a model of $\mathfrak{b} = \kappa < \mathfrak{d} = \lambda$ (and $\mathfrak{h} = \omega_1$)

just add one Hechler! in each column

If, for all $\alpha > 0$ and $i < \kappa$ $\dot{\mathbb{Q}}(\alpha, i)$ is \mathcal{H} (but in $V^{\mathbb{P}(\alpha, i)}$) i.e. $\dot{\mathbb{Q}}(\alpha, i) = [\omega]^{<\omega\uparrow} \times (\omega^{\omega\uparrow} \cap V[\mathcal{G}_{\alpha, i}])$ then we get a model of $\mathfrak{b} = \lambda$ ($\mathbb{P}(\alpha + 1, \kappa) = \mathbb{P}(\alpha, \kappa) * \mathcal{H}$)

うして 山田 マイボット ボット シックション

Let us look at two examples where $\mathbb{P}(0, i)$ is $\mathsf{FS}_{j \le i} \mathcal{H}_j$ adding $\langle H_i^0 : i < \kappa \rangle$

iterate Hechler up every column

If, for all $\alpha > 0$ and i, $\dot{\mathbb{Q}}(\alpha, i)$ is $\left(\bigcup_{j < i} \dot{\mathbb{Q}}(\alpha, j)\right) * \mathcal{H}$ up each column, iteratively add Hechler reals then we get a model of $\mathfrak{b} = \kappa < \mathfrak{d} = \lambda$ (and $\mathfrak{h} = \omega_1$)

just add one Hechler! in each column

If, for all $\alpha > 0$ and $i < \kappa$ $\dot{\mathbb{Q}}(\alpha, i)$ is \mathcal{H} (but in $V^{\mathbb{P}(\alpha, i)}$) i.e. $\dot{\mathbb{Q}}(\alpha, i) = [\omega]^{<\omega\uparrow} \times (\omega^{\omega\uparrow} \cap V[G_{\alpha, i}])$ then we get a model of $\mathfrak{b} = \lambda$ ($\mathbb{P}(\alpha + 1, \kappa) = \mathbb{P}(\alpha, \kappa) * \mathcal{H}$)

remark

In first case, it is obvious that $\mathbb{P}(\alpha, i) <_{c} \mathbb{P}(\alpha, i+1)$, but not so much in the second case (more on this later)

200

In fact, let us notice that $\mathcal{H}^{V_{\alpha,i}} \not\leq_{c} \mathcal{H}^{V_{\alpha,i+1}}$, but it IS

the construction of the chain $\{\mathbb{Q}_{\alpha,i} : i < \kappa\}$ that controls things.

Here's why

In fact, let us notice that $\mathcal{H}^{V_{\alpha,i}} \not\leq_{c} \mathcal{H}^{V_{\alpha,i+1}}$, but it IS

the construction of the chain $\{\mathbb{Q}_{\alpha,i} : i < \kappa\}$ that controls things.

Here's why

a γ -matrix \mathbf{P}^{γ} extending a δ -matrix \mathbf{P}^{δ}

means the obvious things (the heights must be the same)

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

In fact, let us notice that $\mathcal{H}^{V_{\alpha,i}} \not\leq_{c} \mathcal{H}^{V_{\alpha,i+1}}$, but it IS

the construction of the chain $\{\mathbb{Q}_{\alpha,i} : i < \kappa\}$ that controls things.

Here's why

a γ -matrix \mathbf{P}^{γ} extending a δ -matrix \mathbf{P}^{δ}

means the obvious things (the heights must be the same)

Lemma (and limits come for free)

If γ is a limit and we have an increasing sequence $\{\mathbf{P}^{\delta} : \delta < \gamma\}$ of matrices, then the union \mathbf{P}^{γ} extends canonically to a γ -matrix

うして 山田 マイボット ボット シックション

In fact, let us notice that $\mathcal{H}^{V_{\alpha,i}} \not\leq_{c} \mathcal{H}^{V_{\alpha,i+1}}$, but it IS

the construction of the chain $\{\mathbb{Q}_{\alpha,i} : i < \kappa\}$ that controls things.

Here's why

a γ -matrix **P**^{γ} extending a δ -matrix **P**^{δ}

means the obvious things (the heights must be the same)

Lemma (and limits come for free)

If γ is a limit and we have an increasing sequence $\{\mathbf{P}^{\delta} : \delta < \gamma\}$ of matrices, then the union \mathbf{P}^{γ} extends canonically to a γ -matrix

The union, $\bigcup_{\delta < \gamma} \mathbf{P}^{\delta}$ will be a list { $\mathbb{P}(\alpha, i) : i \le \kappa, \alpha < \gamma$ }. For each $i < \kappa, \mathbb{P}(\gamma, i)$ must equal $\bigcup_{\delta < \gamma} \mathbb{P}(\delta, i)$. And, as needed, we have $\mathbb{P}(\gamma, j) <_{c} \mathbb{P}_{\gamma, i}$ $(j < i \le \kappa)$

590

Suppose $\mathbb{P} <_{c} \mathbb{P}'$, and \mathbb{Q} is a \mathbb{P} -name and \mathbb{Q}' is a \mathbb{P}' -name. For $\mathbb{P} * \mathbb{Q} <_{c} \mathbb{P}' * \mathbb{Q}'$, we need every \mathbb{P} -name of a maximal antichain of \mathbb{Q} is also forced by \mathbb{P}'

to be a maximal antichain of \mathbb{Q}' .

Suppose $\mathbb{P} <_{c} \mathbb{P}'$, and \mathbb{Q} is a \mathbb{P} -name and \mathbb{Q}' is a \mathbb{P}' -name. For $\mathbb{P} * \mathbb{Q} <_{c} \mathbb{P}' * \mathbb{Q}'$, we need every \mathbb{P} -name of a maximal antichain of \mathbb{Q} is also forced by \mathbb{P}' to be a maximal antichain of \mathbb{Q}' .

Corollary

If $\mathbb{P} <_{c} \mathbb{P}'$, then $\mathbb{P} * \mathbb{Q} <_{c} \mathbb{P}' * \check{\mathbb{Q}}$.

Suppose $\mathbb{P} <_{c} \mathbb{P}'$, and \mathbb{Q} is a \mathbb{P} -name and \mathbb{Q}' is a \mathbb{P}' -name. For $\mathbb{P} * \mathbb{Q} <_{c} \mathbb{P}' * \mathbb{Q}'$, we need every \mathbb{P} -name of a maximal antichain of \mathbb{Q} is also forced by \mathbb{P}' to be a maximal antichain of \mathbb{Q}' .

Corollary

If $\mathbb{P} <_{c} \mathbb{P}'$, then $\mathbb{P} * \mathbb{Q} <_{c} \mathbb{P}' * \check{\mathbb{Q}}$.

Corollary (for successor $\alpha < \lambda$)

If $\underline{\mathbf{P}}^{\alpha}$ is given, and if \mathcal{Y}_{α} is a $\mathbb{P}_{\alpha,i_{\alpha}}$ -name of a sfip family, we can let $\mathbb{Q}_{\alpha,j}$ be trivial for $j < i_{\alpha}$ and let $\mathbb{Q}_{\alpha,i} = \mathcal{Q}(\mathcal{Y}_{\alpha})$ for $j \ge i_{\alpha}$ with generic set \dot{A}_{α} .

Suppose $\mathbb{P} <_{c} \mathbb{P}'$, and \mathbb{Q} is a \mathbb{P} -name and \mathbb{Q}' is a \mathbb{P}' -name. For $\mathbb{P} * \mathbb{Q} <_{c} \mathbb{P}' * \mathbb{Q}'$, we need every \mathbb{P} -name of a maximal antichain of \mathbb{Q} is also forced by \mathbb{P}' to be a maximal antichain of \mathbb{Q}' .

Corollary

If $\mathbb{P} <_{c} \mathbb{P}'$, then $\mathbb{P} * \mathbb{Q} <_{c} \mathbb{P}' * \check{\mathbb{Q}}$.

Corollary (for successor $\alpha < \lambda$)

If $\underline{\mathbf{P}}^{\alpha}$ is given, and if \mathcal{Y}_{α} is a $\mathbb{P}_{\alpha,i_{\alpha}}$ -name of a sfip family, we can let $\mathbb{Q}_{\alpha,j}$ be trivial for $j < i_{\alpha}$ and let $\mathbb{Q}_{\alpha,i} = Q(\mathcal{Y}_{\alpha})$ for $j \ge i_{\alpha}$ with generic set \dot{A}_{α} . In this way we extend to $\underline{\mathbf{P}}^{\alpha+1}$. With simple bookkeeping we will obtain $\mathfrak{t} \ge \kappa$ and we will let $\mathcal{I}_{i} = ideal\langle \{\dot{A}_{\alpha} : i_{\alpha} = i\} \rangle$ towards $\mathfrak{h} \le \kappa$.

Lemma (Brendle-Fischer)

Suppose $\mathbb{P} <_{c} \mathbb{P}'$, and \mathbb{Q} is a \mathbb{P} -name and \mathbb{Q}' is a \mathbb{P}' -name. For $\mathbb{P} * \mathbb{Q} <_{c} \mathbb{P}' * \mathbb{Q}'$, we need every \mathbb{P} -name of a maximal antichain of \mathbb{Q} is also forced by \mathbb{P}' to be a maximal antichain of \mathbb{Q}' .

Corollary

If $\mathbb{P} <_{c} \mathbb{P}'$, then $\mathbb{P} * \mathbb{Q} <_{c} \mathbb{P}' * \check{\mathbb{Q}}$.

Corollary (for successor $\alpha < \lambda$)

If $\underline{\mathbf{P}}^{\alpha}$ is given, and if \mathcal{Y}_{α} is a $\mathbb{P}_{\alpha,i_{\alpha}}$ -name of a sfip family, we can let $\mathbb{Q}_{\alpha,j}$ be trivial for $j < i_{\alpha}$ and let $\mathbb{Q}_{\alpha,i} = Q(\mathcal{Y}_{\alpha})$ for $j \ge i_{\alpha}$ with generic set \dot{A}_{α} . In this way we extend to $\underline{\mathbf{P}}^{\alpha+1}$. With simple bookkeeping we will obtain $t \ge \kappa$ and we will let $\mathcal{I}_{i} = ideal\langle \{\dot{A}_{\alpha} : i_{\alpha} = i\} \rangle$ towards $\mathfrak{h} \le \kappa$. With more tedious bookkeeping, $\mathcal{I}_{j} \supset \mathcal{I}_{i}$ (for j < i)

If \mathbb{Q} is (forced to be) Souslin and $\mathbb{P} <_c \mathbb{P}'$, then $\mathbb{P} * \mathbb{Q} <_c \mathbb{P}' * \mathbb{Q}$

▲□▶▲□▶▲□▶▲□▶ □ のへで

If \mathbb{Q} is (forced to be) Souslin and $\mathbb{P} <_c \mathbb{P}'$, then $\mathbb{P} * \mathbb{Q} <_c \mathbb{P}' * \mathbb{Q}$ for example if $\mathbb{Q} = \mathcal{H}$ (can also use rank)

If \mathbb{Q} is (forced to be) Souslin and $\mathbb{P} <_c \mathbb{P}'$, then $\mathbb{P} * \mathbb{Q} <_c \mathbb{P}' * \mathbb{Q}$ for example if $\mathbb{Q} = \mathcal{H}$ (can also use rank)

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Corollary (for $cf(\alpha) = \kappa$)

If $\underline{\mathbf{P}}^{\alpha}$ is given, then we can let $\underline{\mathbf{P}}^{\alpha+1}$ be constructed with $\dot{\mathbb{Q}}_{\alpha,i} = \mathcal{H}$ for all $i \leq \kappa$.

If \mathbb{Q} is (forced to be) Souslin and $\mathbb{P} <_c \mathbb{P}'$, then $\mathbb{P} * \mathbb{Q} <_c \mathbb{P}' * \mathbb{Q}$ for example if $\mathbb{Q} = \mathcal{H}$ (can also use rank)

Corollary (for $cf(\alpha) = \kappa$)

If $\underline{\mathbf{P}}^{\alpha}$ is given, then we can let $\underline{\mathbf{P}}^{\alpha+1}$ be constructed with $\dot{\mathbb{Q}}_{\alpha,i} = \mathcal{H}$ for all $i \leq \kappa$.

Definition (fundamental Ind. Hyp.)

By induction on $\gamma < \lambda$, when building \mathbf{P}^{γ} and setting $\mathcal{I}_{i}^{\gamma} = ideal \langle \dot{A}_{\alpha} : \alpha < \gamma$, and $i_{\alpha} = i \rangle$ i + 1-names we need that no $\mathbb{P}_{\gamma,i}$ -name is in \mathcal{I}_{i}^{γ} (actually just successor i) it is routine at limit γ and for successor γ using $Q(\mathcal{Y}_{\gamma})$

If \mathbb{Q} is (forced to be) Souslin and $\mathbb{P} <_c \mathbb{P}'$, then $\mathbb{P} * \mathbb{Q} <_c \mathbb{P}' * \mathbb{Q}$ for example if $\mathbb{Q} = \mathcal{H}$ (can also use rank)

Corollary (for $cf(\alpha) = \kappa$)

If $\underline{\mathbf{P}}^{\alpha}$ is given, then we can let $\underline{\mathbf{P}}^{\alpha+1}$ be constructed with $\dot{\mathbb{Q}}_{\alpha,i} = \mathcal{H}$ for all $i \leq \kappa$.

Definition (fundamental Ind. Hyp.)

By induction on $\gamma < \lambda$, when building \mathbf{P}^{γ} and setting $\mathcal{I}_{i}^{\gamma} = ideal \langle \dot{A}_{\alpha} : \alpha < \gamma$, and $i_{\alpha} = i \rangle$ i + 1-names we need that no $\mathbb{P}_{\gamma,i}$ -name is in \mathcal{I}_{i}^{γ} (actually just successor i) it is routine at limit γ and for successor γ using $Q(\mathcal{Y}_{\gamma})$

Corollary (Baumgartner-Dordal)

When $cf(\alpha) = \kappa$ and we let $\dot{\mathbb{Q}}_{\alpha,i} = \mathcal{H}$, we preserve Ind Hyp.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

unsplit reals

- - - - < ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > うへの

unsplit reals

For other limits μ , we will, by induction on $i < \kappa$, define

$$\dot{\mathbb{Q}}_{\mu,i} = \mathcal{C}_{i+1\times 2^{\omega}} \ast \dot{\boldsymbol{Q}}_{\mu,i}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

unsplit reals

For other limits μ , we will, by induction on $i < \kappa$, define

$$\dot{\mathbb{Q}}_{\mu,i} = \mathcal{C}_{i+1\times 2^{\omega}} * \dot{\boldsymbol{Q}}_{\mu,i}$$

where C_I is Fn(I, 2) and it is forced that the generic for $Q_{\mu,i}$ is unsplit over $V[\mathbb{P}_{\mu,i}]$ (making Ind Hyp much harder)

unsplit reals

For other limits μ , we will, by induction on $i < \kappa$, define

$$\dot{\mathbb{Q}}_{\mu,i} = \mathcal{C}_{i+1\times 2^{\omega}} * \dot{\boldsymbol{Q}}_{\mu,i}$$

where C_I is Fn(I, 2) and it is forced that the generic for $Q_{\mu,i}$ is unsplit over $V[\mathbb{P}_{\mu,i}]$ (making Ind Hyp much harder)

うして 山田 マイボット ボット シックション

Also, we have to work to ensure that $\mathbf{P}^{\mu+1}$ "holds" and this is what $\Vdash \dot{Q}_{\mu,i} \in \mathbb{Q}_{207}$ is for.

unsplit reals

For other limits μ , we will, by induction on $i < \kappa$, define

$$\dot{\mathbb{Q}}_{\mu,i} = \mathcal{C}_{i+1\times 2^{\omega}} * \dot{\boldsymbol{Q}}_{\mu,i}$$

where C_I is Fn(I, 2) and it is forced that the generic for $Q_{\mu,i}$ is unsplit over $V[\mathbb{P}_{\mu,i}]$ (making Ind Hyp much harder)

Also, we have to work to ensure that $\underline{\mathbf{P}}^{\mu+1}$ "holds" and this is what $\Vdash \dot{\mathbf{Q}}_{\mu,i} \in \mathbb{Q}_{207}$ is for.

i.e. to take care of $\mathbb{P}_{\mu,j} * \mathcal{C}_{j+1 \times 2^{\omega}} * \dot{Q}_{\mu,j} <_{c} \mathbb{P}_{\mu,i} * \mathcal{C}_{i+1 \times 2^{\omega}} * \dot{Q}_{\mu,i}$

うして 山田 マイボット ボット シックション

unsplit reals

For other limits μ , we will, by induction on $i < \kappa$, define

$$\dot{\mathbb{Q}}_{\mu,i} = \mathcal{C}_{i+1\times 2^{\omega}} * \dot{\boldsymbol{Q}}_{\mu,i}$$

where C_I is Fn(I, 2) and it is forced that the generic for $Q_{\mu,i}$ is unsplit over $V[\mathbb{P}_{\mu,i}]$ (making Ind Hyp much harder)

Also, we have to work to ensure that $\mathbf{P}^{\mu+1}$ "holds" and this is what $\Vdash \dot{Q}_{\mu,i} \in \mathbb{Q}_{207}$ is for.

i.e. to take care of $\mathbb{P}_{\mu,j} * \mathcal{C}_{j+1 \times 2^{\omega}} * \dot{Q}_{\mu,j} <_{c} \mathbb{P}_{\mu,i} * \mathcal{C}_{i+1 \times 2^{\omega}} * \dot{Q}_{\mu,i}$

finite working part

Elements $q = (w^q, T^q)$ of Q_{Bould} , like all our posets, have a finite *working part w* and an infinite *side condition T* elements *r* of $C_{i+1\times 2^{\omega}}$ are also *working part*

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Definition

 Γ_i^{μ} is the set of $\alpha < \mu$ with $i_{\alpha} = i$; and $\langle p_0, \dots, p_n \rangle$ is a Γ_i^{μ} -fan if

Definition

 Γ_i^{μ} is the set of $\alpha < \mu$ with $i_{\alpha} = i$; and $\langle p_0, \dots, p_n \rangle$ is a Γ_i^{μ} -fan if

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1. each $p_k \leq p_0$ is in $\mathbb{P}_{\mu,i+1}$,

Definition

- Γ_i^{μ} is the set of $\alpha < \mu$ with $i_{\alpha} = i$; and $\langle p_0, \dots, p_n \rangle$ is a Γ_i^{μ} -fan if
 - 1. each $p_k \leq p_0$ is in $\mathbb{P}_{\mu,i+1}$,
 - 2. for each $\beta \notin \Gamma_i^{\mu}$, the working parts of $p_k(\beta)$ (1 $\leq k \leq n$) are all the same

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

- Γ_i^{μ} is the set of $\alpha < \mu$ with $i_{\alpha} = i$; and $\langle p_0, \dots, p_n \rangle$ is a Γ_i^{μ} -fan if
 - 1. each $p_k \leq p_0$ is in $\mathbb{P}_{\mu,i+1}$,
 - 2. for each $\beta \notin \Gamma_i^{\mu}$, the working parts of $p_k(\beta)$ (1 $\leq k \leq n$) are all the same
 - for ξ, α both in Γ_i^μ and 1 ≤ j < k ≤ n, the working part of p_j(ξ) intersect the working part of p_k(α) is contained in the working part of p₀(ξ) intersect the working part of p₀(α).

Definition

 Γ_i^{μ} is the set of $\alpha < \mu$ with $i_{\alpha} = i$; and $\langle p_0, \dots, p_n \rangle$ is a Γ_i^{μ} -fan if

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Definition

 Γ_i^{μ} is the set of $\alpha < \mu$ with $i_{\alpha} = i$; and $\langle p_0, \dots, p_n \rangle$ is a Γ_i^{μ} -fan if

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

1. each $p_k \leq p_0$ is in $\mathbb{P}_{\mu,i+1}$,

Definition

 Γ_i^{μ} is the set of $\alpha < \mu$ with $i_{\alpha} = i$; and $\langle p_0, \dots, p_n \rangle$ is a Γ_i^{μ} -fan if

- 1. each $p_k \leq p_0$ is in $\mathbb{P}_{\mu,i+1}$,
- 2. for each $\beta \notin \Gamma_i^{\mu}$, the working parts of $p_k(\beta)$ (1 $\leq k \leq n$) are all the same

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Definition

 Γ_i^{μ} is the set of $\alpha < \mu$ with $i_{\alpha} = i$; and $\langle p_0, \dots, p_n \rangle$ is a Γ_i^{μ} -fan if

- 1. each $p_k \leq p_0$ is in $\mathbb{P}_{\mu,i+1}$,
- 2. for each $\beta \notin \Gamma_i^{\mu}$, the working parts of $p_k(\beta)$ (1 $\leq k \leq n$) are all the same
- for ξ, α both in Γ_i^μ and 1 ≤ j ≤ k ≤ n, the working part of p_j(ξ) intersect the working part of p_k(α) is contained in the working part of p₀(ξ) intersect the working part of p₀(α).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

 Γ_i^{μ} is the set of $\alpha < \mu$ with $i_{\alpha} = i$; and $\langle p_0, \dots, p_n \rangle$ is a Γ_i^{μ} -fan if

- 1. each $p_k \leq p_0$ is in $\mathbb{P}_{\mu,i+1}$,
- 2. for each $\beta \notin \Gamma_i^{\mu}$, the working parts of $p_k(\beta)$ (1 $\leq k \leq n$) are all the same
- for ξ, α both in Γ_i^μ and 1 ≤ j ≤ k ≤ n, the working part of p_j(ξ) intersect the working part of p_k(α) is contained in the working part of p₀(ξ) intersect the working part of p₀(α).

new Ind. Hyp. : Γ_i^{μ} -pure

For any dense set $D \subset P_{\mu,i+1}$ and any Γ_i^{μ} -fan $\langle p_0, p_1, \ldots, p_n \rangle$, there is an extension Γ_i^{μ} -fan $\langle p_0, \bar{p}_1, \ldots, \bar{p}_n \rangle$ such that $\{\bar{p}_1, \ldots, \bar{p}_n\} \subset D$.

Lemma (assume Γ_i^{μ} -pure)

By induction on μ , if \dot{Y} is a $\mathbb{P}_{\mu,i}$ -name and $\langle p_0, p_1, \cdots, p_n \rangle$ is a Γ_i^{μ} -fan, then, for $1 \leq j, k \leq n$, integer y, $p_j \Vdash y \in \dot{Y}$ iff $p_k \Vdash y \in \dot{Y}$ and $p_j \perp p$ iff $p_k \perp p$ for each $p \in \mathbb{P}_{\mu,i}$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Lemma (assume Γ_i^{μ} -pure)

By induction on μ , if \dot{Y} is a $\mathbb{P}_{\mu,i}$ -name and $\langle p_0, p_1, \cdots, p_n \rangle$ is a Γ_i^{μ} -fan, then, for $1 \leq j, k \leq n$, integer y, $p_j \Vdash y \in \dot{Y}$ iff $p_k \Vdash y \in \dot{Y}$ and $p_j \perp p$ iff $p_k \perp p$ for each $p \in \mathbb{P}_{\mu,i}$

Corollary

If $p_0 \in \mathbb{P}_{\mu,i}$ and Y is a $\mathbb{P}_{\mu,i}$ -name, and $p_0 \Vdash Y \subset A_\alpha \cup m$ for some $\alpha \in \Gamma_i^{\mu}$, then $p_0 \Vdash Y$ is finite. thus preserves Ind. Hyp.

Lemma (assume Γ_i^{μ} -pure)

By induction on μ , if \dot{Y} is a $\mathbb{P}_{\mu,i}$ -name and $\langle p_0, p_1, \cdots, p_n \rangle$ is a Γ_i^{μ} -fan, then, for $1 \leq j, k \leq n$, integer y, $p_j \Vdash y \in \dot{Y}$ iff $p_k \Vdash y \in \dot{Y}$ and $p_j \perp p$ iff $p_k \perp p$ for each $p \in \mathbb{P}_{\mu,i}$

Corollary

If $p_0 \in \mathbb{P}_{\mu,i}$ and Y is a $\mathbb{P}_{\mu,i}$ -name, and $p_0 \Vdash Y \subset A_\alpha \cup m$ for some $\alpha \in \Gamma_i^{\mu}$, then $p_0 \Vdash Y$ is finite. thus preserves Ind. Hyp.

Proof.

otherwise

Lemma (assume Γ_i^{μ} -pure)

By induction on μ , if \dot{Y} is a $\mathbb{P}_{\mu,i}$ -name and $\langle p_0, p_1, \cdots, p_n \rangle$ is a Γ_i^{μ} -fan, then, for $1 \leq j, k \leq n$, integer y, $p_j \Vdash y \in \dot{Y}$ iff $p_k \Vdash y \in \dot{Y}$ and $p_j \perp p$ iff $p_k \perp p$ for each $p \in \mathbb{P}_{\mu,i}$

Corollary

If $p_0 \in \mathbb{P}_{\mu,i}$ and Y is a $\mathbb{P}_{\mu,i}$ -name, and $p_0 \Vdash Y \subset A_\alpha \cup m$ for some $\alpha \in \Gamma_i^{\mu}$, then $p_0 \Vdash Y$ is finite. thus preserves Ind. Hyp.

Proof.

otherwise the Γ_i^{μ} -fan $\langle p_0, p_0, p_0 \rangle$ has an extension fan $\langle p_0, \bar{p}_1, \bar{p}_2 \rangle$ with some arbitrarily large y > m such that $\bar{p}_1 \Vdash y \in \dot{Y}$.

Lemma (assume Γ_i^{μ} -pure)

By induction on μ , if \dot{Y} is a $\mathbb{P}_{\mu,i}$ -name and $\langle p_0, p_1, \cdots, p_n \rangle$ is a Γ_i^{μ} -fan, then, for $1 \leq j, k \leq n$, integer y, $p_j \Vdash y \in \dot{Y}$ iff $p_k \Vdash y \in \dot{Y}$ and $p_j \perp p$ iff $p_k \perp p$ for each $p \in \mathbb{P}_{\mu,i}$

Corollary

If $p_0 \in \mathbb{P}_{\mu,i}$ and Y is a $\mathbb{P}_{\mu,i}$ -name, and $p_0 \Vdash Y \subset A_\alpha \cup m$ for some $\alpha \in \Gamma_i^{\mu}$, then $p_0 \Vdash Y$ is finite. thus preserves Ind. Hyp.

Proof.

otherwise the Γ_i^{μ} -fan $\langle p_0, p_0, p_0 \rangle$ has an extension fan $\langle p_0, \bar{p}_1, \bar{p}_2 \rangle$ with some arbitrarily large y > m such that $\bar{p}_1 \Vdash y \in \dot{Y}$. But then y must be in working part of $\bar{p}_1(\alpha)$ and not in the working part of $\bar{p}_2(\alpha)$.

Lemma (assume Γ_i^{μ} -pure)

By induction on μ , if \dot{Y} is a $\mathbb{P}_{\mu,i}$ -name and $\langle p_0, p_1, \cdots, p_n \rangle$ is a Γ_i^{μ} -fan, then, for $1 \leq j, k \leq n$, integer y, $p_j \Vdash y \in \dot{Y}$ iff $p_k \Vdash y \in \dot{Y}$ and $p_j \perp p$ iff $p_k \perp p$ for each $p \in \mathbb{P}_{\mu,i}$

Corollary

If $p_0 \in \mathbb{P}_{\mu,i}$ and Y is a $\mathbb{P}_{\mu,i}$ -name, and $p_0 \Vdash Y \subset A_\alpha \cup m$ for some $\alpha \in \Gamma_i^{\mu}$, then $p_0 \Vdash Y$ is finite. thus preserves Ind. Hyp.

Proof.

otherwise the Γ_i^{μ} -fan $\langle p_0, p_0, p_0 \rangle$ has an extension fan $\langle p_0, \bar{p}_1, \bar{p}_2 \rangle$ with some arbitrarily large y > m such that $\bar{p}_1 \Vdash y \in Y$. But then y must be in working part of $\bar{p}_1(\alpha)$ and not in the working part of $\bar{p}_2(\alpha)$. But then $\bar{p}_2 \Vdash y \in Y \setminus A_{\alpha}$.

If $D \subset \mathcal{H}$ is dense, there is a function $rk_D : \omega^{<\omega\uparrow} \mapsto \omega_1$ such that rk(s) = 0 if there is a g with $(s, g) \in D$, and $rk(s) = \alpha > 0$ if there is an ℓ such that for each n, there is an $(s_n, g + n) < (s, g + n)$ with $s_n \in \omega^{\ell\uparrow}$ and $rk(s_n) < \alpha$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If $D \subset \mathcal{H}$ is dense, there is a function $rk_D : \omega^{<\omega\uparrow} \mapsto \omega_1$ such that rk(s) = 0 if there is a g with $(s, g) \in D$, and $rk(s) = \alpha > 0$ if there is an ℓ such that for each n, there is an $(s_n, g + n) < (s, g + n)$ with $s_n \in \omega^{\ell\uparrow}$ and $rk(s_n) < \alpha$.

Suppose that $\underline{\mathbf{P}}^{\mu}$ (*cf*(μ) = κ) satisfies Γ_{i}^{μ} for any *i* < κ .

If $D \subset \mathcal{H}$ is dense, there is a function $rk_D : \omega^{<\omega\uparrow} \mapsto \omega_1$ such that rk(s) = 0 if there is a g with $(s, g) \in D$, and $rk(s) = \alpha > 0$ if there is an ℓ such that for each n, there is an $(s_n, g + n) < (s, g + n)$ with $s_n \in \omega^{\ell\uparrow}$ and $rk(s_n) < \alpha$.

Suppose that $\underline{\mathbf{P}}^{\mu}$ (*cf*(μ) = κ) satisfies Γ_{i}^{μ} for any *i* < κ . Now let \dot{D} be a $\mathbb{P}_{\mu,i+1}$ -name of a dense subset of \mathcal{H} . Also, let $\langle p_{0}, p_{1}, \ldots, p_{n} \rangle$ be any Γ_{i}^{μ} -fan.

If $D \subset \mathcal{H}$ is dense, there is a function $rk_D : \omega^{<\omega\uparrow} \mapsto \omega_1$ such that rk(s) = 0 if there is a g with $(s, g) \in D$, and $rk(s) = \alpha > 0$ if there is an ℓ such that for each n, there is an $(s_n, g + n) < (s, g + n)$ with $s_n \in \omega^{\ell\uparrow}$ and $rk(s_n) < \alpha$.

Suppose that $\underline{\mathbf{P}}^{\mu}$ (*cf*(μ) = κ) satisfies Γ_{i}^{μ} for any *i* < κ . Now let \dot{D} be a $\mathbb{P}_{\mu,i+1}$ -name of a dense subset of \mathcal{H} . Also, let $\langle p_{0}, p_{1}, \ldots, p_{n} \rangle$ be any Γ_{i}^{μ} -fan.

For $\Gamma_i^{\mu+1}$, we have to find an extension fan $\langle p_0, \bar{p}_1, \dots, \bar{p}_n \rangle$ so that $\bar{p}_k \upharpoonright \mu \Vdash p_k(\mu) \in \dot{D}$ for all $1 \le k \le n$.

We may assume that $p_0(\mu) = (s_0, \dot{g}_0)$, which means that, we can simply assume that $p_j(\mu) = (s_0, \dot{g}_0)$ for all $j \le n$

We may assume that $p_0(\mu) = (s_0, \dot{g}_0)$, which means that, we can simply assume that $p_j(\mu) = (s_0, \dot{g}_0)$ for all $j \le n$ AND, by Γ_j^{μ} , we can assume that p_1 forces a value α_0 on $rk_{\dot{D}}(s_0)$, and on the witnessing ℓ_0 .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We may assume that $p_0(\mu) = (s_0, \dot{g}_0)$, which means that, we can simply assume that $p_j(\mu) = (s_0, \dot{g}_0)$ for all $j \le n$ AND, by Γ_i^{μ} , we can assume that p_1 forces a value α_0 on $rk_{\dot{D}}(s_0)$, and on the witnessing ℓ_0 .

There is an extension fan $\langle p_0, \bar{p}_1, \cdots, \bar{p}_n \rangle$ so that each \bar{p}_k forces a value on $\dot{g}_0 \upharpoonright \ell_0$ and \bar{p}_1 picks an s_1 so that each $\bar{p}_k \Vdash (s_1, \dot{g}_0) < (s_0, \dot{g}_0)$ and \bar{p}_1 forces that $rk(s_1) = \alpha_1 < \alpha_0$.

We may assume that $p_0(\mu) = (s_0, \dot{g}_0)$, which means that, we can simply assume that $p_j(\mu) = (s_0, \dot{g}_0)$ for all $j \le n$ AND, by Γ_i^{μ} , we can assume that p_1 forces a value α_0 on $rk_{\dot{D}}(s_0)$, and on the witnessing ℓ_0 .

There is an extension fan $\langle p_0, \bar{p}_1, \cdots, \bar{p}_n \rangle$ so that each \bar{p}_k forces a value on $\dot{g}_0 \upharpoonright \ell_0$ and \bar{p}_1 picks an s_1 so that each $\bar{p}_k \Vdash (s_1, \dot{g}_0) < (s_0, \dot{g}_0)$ and \bar{p}_1 forces that $rk(s_1) = \alpha_1 < \alpha_0$.

Repeat this finitely many times (as rank descends) we end up with there being a \dot{g}_1 such that $\bar{p}_1 \Vdash (s_1, \dot{g}_1) \in \dot{D}$ and, for all $1 \le k \le n$ and $\bar{p}_k \Vdash (s_1, \dot{g}_1) < (s_0, \dot{g}_0)$.

We may assume that $p_0(\mu) = (s_0, \dot{g}_0)$, which means that, we can simply assume that $p_j(\mu) = (s_0, \dot{g}_0)$ for all $j \le n$ AND, by Γ_i^{μ} , we can assume that p_1 forces a value α_0 on $rk_{\dot{D}}(s_0)$, and on the witnessing ℓ_0 .

There is an extension fan $\langle p_0, \bar{p}_1, \cdots, \bar{p}_n \rangle$ so that each \bar{p}_k forces a value on $\dot{g}_0 \upharpoonright \ell_0$ and \bar{p}_1 picks an s_1 so that each $\bar{p}_k \Vdash (s_1, \dot{g}_0) < (s_0, \dot{g}_0)$ and \bar{p}_1 forces that $rk(s_1) = \alpha_1 < \alpha_0$.

Repeat this finitely many times (as rank descends) we end up with there being a \dot{g}_1 such that $\bar{p}_1 \Vdash (s_1, \dot{g}_1) \in \dot{D}$ and, for all $1 \le k \le n$ and $\bar{p}_k \Vdash (s_1, \dot{g}_1) < (s_0, \dot{g}_0)$.

Make the same steps (keep extending the fan) so that we then have an s_2 and \dot{g}_2 so that $\bar{p}_2 \Vdash (s_2, \dot{g}_2) \in \dot{D}$, and each $\bar{p}_k \Vdash (s_2, \dot{g}_2) < (s_1, \dot{g}_1)$.

Definition (from Avraham)

h is a log-measure on a set *e* if h(k) = 0 for all $k \in e$ and if $h(e_1 \cup e_2) > \ell > 0$, then one of $h(e_1), h(e_2)$ is at least ℓ .

Definition (from Avraham)

h is a log-measure on a set *e* if h(k) = 0 for all $k \in e$ and if $h(e_1 \cup e_2) > \ell > 0$, then one of $h(e_1), h(e_2)$ is at least ℓ .

Definition

the log-measure (e, h) is <u>built from</u> the sequence $\langle (e_1, h_1), \ldots, (e_n, h_n) \rangle$ (max $(e_k) < \min(e_{k+1})$) if $e \subset (e_1 \cup \cdots \in e_n)$ and if $x \subset e$ is *h*-positive, then there is a *k* such that $x \cap e_k$ is h_k -positive

Definition

 $q = (w^q, T^q) \in Q_{Bould}$ if $T^q = \langle t_k = (e_k, h_k) : k \in \omega \rangle$ and $\max(e_k) < \min(e_{k+1})$ and $\liminf\{h_k(e_k) : k \in \omega\} = \infty$ We let $int(T) = \bigcup_{k} int(t_k) = \bigcup_{k} e_k$ and $(w_2, T_2) < (w_1, T_1)$ if each t_k^2 is built from members of T_1 and there is an ℓ such that $w_1 = w_2 \cap \min(int(t_\ell^1))$ and $w_2 \setminus w_1 \subset int(T_1) \setminus \min(int(t_\ell^1))$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

\mathbb{Q}_{207} and \aleph_1 -directed

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Definition (how to handle $<_c$ for Q_{Bould})

A subset $Q \subset Q_{Bould}$ is in \mathbb{Q}_{207} if it is closed under finite changes, the subfamily $\{q \in Q : w^q = \emptyset\}$ is directed, and

whenever $\{(w_n, T_n) : n \in \omega\}$ is pre-dense, there is a single *T* such that, $(\emptyset, T) \in Q$ and for each *n*, there is an ℓ_n such that $(w_n, T \setminus \ell_n) < (w_n, T_n)$. (we made it upward absolute)

Definition (how to handle $<_c$ for Q_{Bould})

A subset $Q \subset Q_{Bould}$ is in \mathbb{Q}_{207} if it is closed under finite changes, the subfamily $\{q \in Q : w^q = \emptyset\}$ is directed, and

whenever $\{(w_n, T_n) : n \in \omega\}$ is pre-dense, there is a single *T* such that, $(\emptyset, T) \in Q$ and for each *n*, there is an ℓ_n such that $(w_n, T \setminus \ell_n) < (w_n, T_n)$. (we made it upward absolute)

Lemma (Fischer-Steprans partially)

If $Q \in \mathbb{Q}_{207}$ and P is ccc, and $\Vdash_P Q \subset Q_1 \in \mathbb{Q}_{207}$ then $Q <_c P * Q_1$. Furthermore, if $Q \subset \mathcal{Q}_{Bould}$ is closed under finite changes and weakly centered, and P is ccc, then there is a $P * C_{2^{\omega}}$ -name \dot{Q}_1 such that $\Vdash Q \subset \dot{Q}_1 \in \mathbb{Q}_{207}$ and adds an unsplit real over V.

Lemma

Let $\mu < \lambda$ be a limit of cofinality $\neq \kappa$ and assume that $\mathbb{P}_{\mu,i+1}$ is a Γ_i^{μ} -pure extension of $\mathbb{P}_{\mu,i}$. Assume further that $\dot{Q}_{\mu,i}$ is a $\mathbb{P}_{\mu,i} * \mathcal{C}_{2^{\omega}}$ -name of a member of \mathbb{Q}_{207} . Then there is a $\mathbb{P}_{\mu,i+1} * \mathcal{C}_{2^{\omega}+2^{\omega}}$ -name $\dot{Q}_{\mu,i+1}$ that is forced to be a member of \mathbb{Q}_{207} and such that $\mathbb{P}_{\mu+1,i+1}$ is a $\Gamma_i^{\mu+1}$ -pure extension of $\mathbb{P}_{\mu+1,i}$. In addition, $\dot{Q}_{\mu,i+1}$ can be chosen so that it adds an unsplit real over the extension by $\mathbb{P}_{\mu,i}$.

Lemma

Let $\mu < \lambda$ be a limit of cofinality $\neq \kappa$ and assume that $\mathbb{P}_{\mu,i+1}$ is a Γ_i^{μ} -pure extension of $\mathbb{P}_{\mu,i}$. Assume further that $\dot{Q}_{\mu,i}$ is a $\mathbb{P}_{\mu,i} * \mathcal{C}_{2^{\omega}}$ -name of a member of \mathbb{Q}_{207} . Then there is a $\mathbb{P}_{\mu,i+1} * \mathcal{C}_{2^{\omega}+2^{\omega}}$ -name $\dot{Q}_{\mu,i+1}$ that is forced to be a member of \mathbb{Q}_{207} and such that $\mathbb{P}_{\mu+1,i+1}$ is a $\Gamma_i^{\mu+1}$ -pure extension of $\mathbb{P}_{\mu+1,i}$. In addition, $\dot{Q}_{\mu,i+1}$ can be chosen so that it adds an unsplit real over the extension by $\mathbb{P}_{\mu,i}$.

Remark

When handling a pre-dense $\{(u_n, T_n) : n \in \omega\}$ (in $V[G_{\mu,i}]$) from $\dot{Q}_{\mu,i}$, towards extending into \mathbb{Q}_{207} we may not be able to do so (Cohen forcing) while keeping things $\Gamma_{\mu,i}$ -pure

but then we Cohen force with fans as side-conditions to add to $\dot{Q}_{\mu,i+1}$ in a Γ_i^{μ} -pure way and destroy the pre-density.

Lemma

If we never use Hechler for $\alpha > 0$, we obtain $\kappa = \mathfrak{t} = \mathfrak{b} < \lambda = \mathfrak{s}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Lemma

If we never use Hechler for $\alpha > 0$, we obtain $\kappa = \mathfrak{t} = \mathfrak{b} < \lambda = \mathfrak{s}$

Lemma

If we do as discussed, we get $\kappa = \mathfrak{t} = \mathfrak{h} < \lambda = \mathfrak{b} = \mathfrak{s}$

Lemma

If we never use Hechler for $\alpha > 0$, we obtain $\kappa = \mathfrak{t} = \mathfrak{b} < \lambda = \mathfrak{s}$

Lemma

If we do as discussed, we get $\kappa = \mathfrak{t} = \mathfrak{h} < \lambda = \mathfrak{b} = \mathfrak{s}$

Corollary

There is an easy trick to lower t to ω_1 (or any other value) while leaving others the same.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lemma

If we never use Hechler for $\alpha > 0$, we obtain $\kappa = \mathfrak{t} = \mathfrak{b} < \lambda = \mathfrak{s}$

Lemma

If we do as discussed, we get $\kappa = \mathfrak{t} = \mathfrak{h} < \lambda = \mathfrak{b} = \mathfrak{s}$

Corollary

There is an easy trick to lower t to ω_1 (or any other value) while leaving others the same.

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ・

200

Question

Is it consistent to have $\omega_1 < \mathfrak{h} < \mathfrak{b} < \mathfrak{s}$?

Is it consistent to hae $\omega_1 < \mathfrak{h} < \mathfrak{s} < \mathfrak{b}$?