Long-low iterations / matrix forcing

Alan Dow¹ and Saharon Shelah²

¹University of North Carolina Charlotte ²this paper initiated at Fields Oct 2012

see forthcoming F1222

Forcing at Fields

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Goal

we want to force a model of $t < h = \kappa < \mathfrak{s} = \lambda$ and see where we can put b

Goal

we want to force a model of $t < h = \kappa < \mathfrak{s} = \lambda$ and see where we can put b

Definition

We can define h as the minimum cardinal for which there is a sequence $\langle\mathcal{I}_\xi:\xi\in\mathfrak{h}\rangle$ of \subset^* -dense ideals on $\mathcal{P}(\omega)$ with empty intersection (or maybe intersection equal to $[\omega]^{<\aleph_0}$)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

KOD KARD KED KE YA GAR

 ${\sf ccc}$ Mathias/Prikry $\,$ (*w*, *U*) \in ${\sf Q}({\cal U}) = [\omega]^{<\omega} \times {\cal U}$ since $\mathcal{U} \in \omega^*$ it adds <u>unsplit</u> $W \prec^* \mathcal{U}$

 ${\sf ccc}$ Mathias/Prikry $\,$ (*w*, *U*) \in ${\sf Q}({\cal U}) = [\omega]^{<\omega} \times {\cal U}$ since $\mathcal{U} \in \omega^*$ it adds <u>unsplit</u> $W \prec^* \mathcal{U}$

Booth/Solovay for sfip $\mathcal{Y} \subset [\omega]^\omega$, also $Q(\mathcal{Y})$ $(w, Y) \in [\omega]^{<\omega} \times [y]^{<\omega}$

adds a generic pseudointersection *W* to the family Y

 ${\sf ccc}$ Mathias/Prikry $\,$ (*w*, *U*) \in ${\sf Q}({\cal U}) = [\omega]^{<\omega} \times {\cal U}$ since $\mathcal{U} \in \omega^*$ it adds <u>unsplit</u> $W \prec^* \mathcal{U}$

$$
Bookh/Solovay for sflip y ⊂ [ω]ω, also Q(y)(w, Y) ∈ [ω]
$$

adds a generic pseudointersection W to the family $\mathcal Y$

Shelah: the forcing Q*Bould* with countable support to first get $\mathfrak{b} = \omega_1 < \mathfrak{s} = \omega_2$

KORKARA KERKER DE VOOR

 ${\sf ccc}$ Mathias/Prikry $\,$ (*w*, *U*) \in ${\sf Q}({\cal U}) = [\omega]^{<\omega} \times {\cal U}$ since $\mathcal{U} \in \omega^*$ it adds <u>unsplit</u> $W \prec^* \mathcal{U}$

$$
\begin{array}{ll}\text{ Booth/Solovay for sfp } \mathcal{Y} \subset [\omega]^\omega, & \text{also } Q(\mathcal{Y})\\ (w, Y) \in [\omega]^{<\omega} \times [\mathcal{Y}]^{<\omega}\end{array}
$$

adds a generic pseudointersection W to the family $\mathcal Y$

Shelah: the forcing Q*Bould* with countable support to first get $\mathfrak{b} = \omega_1 < \mathfrak{s} = \omega_2$

family of special ccc subposets of Q_{Boul} : we'll call \mathbb{Q}_{207} first used by Fischer-Steprans

Proposition

Baumgartner-Dordal [1985] obtain $\mathfrak{h} \leq \mathfrak{s} < \mathfrak{b}$ with Hechler but h will be ω_1 because of Cohens

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q Q*

Proposition

Baumgartner-Dordal [1985] obtain $h \leq s \leq b$ with Hechler but h will be ω_1 because of Cohens

to raise h (or even keep h large) we have to be constantly adding pseudointersections (probably also raising t), but how to also keep it small?

Proposition

Baumgartner-Dordal [1985] obtain $h \leq s \leq b$ with Hechler but h will be ω_1 because of Cohens

to raise h (or even keep h large) we have to be constantly adding pseudointersections (probably also raising t), but how to also keep it small?

Proposition

Blass-Shelah [1987] introduce matrix-iterations TBI (named by Brendle 2011?) but actually short-tall; to obtain a model of $\omega_1 < \mu < \mathfrak{d}$ using special ccc Mathias (generalized Kunen)

Proposition

Baumgartner-Dordal [1985] obtain $h \leq s \leq b$ with Hechler but h will be ω_1 because of Cohens

to raise h (or even keep h large) we have to be constantly adding pseudointersections (probably also raising t), but how to also keep it small?

Proposition

Blass-Shelah [1987] introduce matrix-iterations TBI (named by Brendle 2011?) but actually short-tall; to obtain a model of $\omega_1 < \mu < \mathfrak{d}$ using special ccc Mathias (generalized Kunen)

Proposition

Shelah [1983] in Boulder proceedings introduced Q*Bould* to obtain $\omega_1 = \mathfrak{b} < \mathfrak{s} = \mathfrak{a}$.

still brief history

Proposition

Fischer-Steprans [2008] could raise b by using Cohen forcing to define ccc subposets of Q_{Bould} , and obtain $\mathfrak{b} = \kappa < \kappa^+ = \mathfrak{s}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

still brief history

Proposition

Fischer-Steprans [2008] could raise b by using Cohen forcing to define ccc subposets of Q_{Boulq} , and obtain $\mathfrak{b} = \kappa < \kappa^+ = \mathfrak{s}$

Proposition

Brendle-Fischer [2011] using long-low matrix and Blass-Shelah ccc Mathias could get unrestricted $\omega_1 < b = a = \kappa < a = \lambda$

Proposition

Fischer-Steprans [2008] could raise b by using Cohen forcing to define ccc subposets of Q_{Boulq} , and obtain $\mathfrak{b} = \kappa < \kappa^+ = \mathfrak{s}$

Proposition

Brendle-Fischer [2011] using long-low matrix and Blass-Shelah ccc Mathias could get unrestricted $\omega_1 < b = a = \kappa < a = \lambda$

Notes

It was shown in Brendle-Raghavan [2014] that Q*Bould* can be factored as countably closed * ccc Mathias (similar to Fischer-Steprans but still limits to κ^+). Brendle delivered a beautiful workshop on matrix forcing at Czech WS 2010.

a matrix iteration $\langle \mathbb{P}(\alpha, \gamma), \mathbb{Q}(\alpha, \gamma) : \gamma \leq \mu, \alpha < \lambda \rangle$

Matrices: a diagram

in case you don't know what a matrix looks

like

 $($ \Box $)$ $($ $\overline{\partial}$ $)$ $($ $\overline{\partial}$

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ … ÷, 2990

Let $\beta < \alpha \leq \gamma$ and $j < i < \kappa$ κ uncountable

KEL KALLA BILI BILI ARA

Let $\beta < \alpha \leq \gamma$ and $j < i < \kappa$ κ uncountable

1. as we go up, we have complete subposets $\mathbb{P}(\alpha, j) <_{c} \mathbb{P}(\alpha, i)$ this is key but subtle

Let $\beta < \alpha \leq \gamma$ and $j < i < \kappa$ κ uncountable

1. as we go up, we have complete subposets $\mathbb{P}(\alpha, j) <_{c} \mathbb{P}(\alpha, i)$ this is key but subtle

2. but not "needed" for limit: $\bigcup_{j < i} \mathbb{P}_{\alpha, j}$ is just a subset of $\mathbb{P}(\alpha, i)$

Let $\beta < \alpha \leq \gamma$ and $j < i < \kappa$ κ uncountable

1. as we go up, we have complete subposets $\mathbb{P}(\alpha, j) <_{c} \mathbb{P}(\alpha, i)$ this is key but subtle

2. but not "needed" for limit: $\bigcup_{j < i} \mathbb{P}_{\alpha, j}$ is just a subset of $\mathbb{P}(\alpha, i)$

3. as we go horizontally we iterate: ?

 $\mathbb{P}(\beta, j) * \mathbb{Q}(\beta, j) = \mathbb{P}(\beta + 1, j)$ and also

Let $\beta < \alpha \leq \gamma$ and $i < i < \kappa$ κ uncountable

- 1. as we go up, we have complete subposets $\mathbb{P}(\alpha, j) <_{c} \mathbb{P}(\alpha, i)$ this is key but subtle
- 2. but not "needed" for limit: $\bigcup_{j < i} \mathbb{P}_{\alpha, j}$ is just a subset of $\mathbb{P}(\alpha, i)$

- 3. as we go horizontally we iterate: ? $\mathbb{P}(\beta, j) * \mathbb{Q}(\beta, j) = \mathbb{P}(\beta + 1, j)$ and also
- 4. limit α implies $\mathbb{P}(\alpha, i) = \bigcup \{ \mathbb{P}(\beta, i) : \beta < \alpha \}$ i.e. FS

Let $\beta < \alpha \leq \gamma$ and $j < i < \kappa$ κ uncountable

- 1. as we go up, we have complete subposets $\mathbb{P}(\alpha, j) <_{c} \mathbb{P}(\alpha, i)$ this is key but subtle
- 2. but not "needed" for limit: $\bigcup_{j < i} \mathbb{P}_{\alpha, j}$ is just a subset of $\mathbb{P}(\alpha, i)$

- 3. as we go horizontally we iterate: ? $\mathbb{P}(\beta, j) * \mathbb{Q}(\beta, j) = \mathbb{P}(\beta + 1, j)$ and also
- 4. limit α implies $\mathbb{P}(\alpha, i) = \bigcup \{ \mathbb{P}(\beta, i) : \beta < \alpha \}$ i.e. FS
- 5. for $i = \kappa$, $\mathbb{P}(\alpha, \kappa) = \bigcup \{\mathbb{P}(\alpha, i) : i < \kappa\}$

Let $\beta < \alpha \leq \gamma$ and $j < i < \kappa$ κ uncountable

- 1. as we go up, we have complete subposets $\mathbb{P}(\alpha, j) <_{c} \mathbb{P}(\alpha, i)$ this is key but subtle
- 2. but not "needed" for limit: $\bigcup_{j < i} \mathbb{P}_{\alpha, j}$ is just a subset of $\mathbb{P}(\alpha, i)$
- 3. as we go horizontally we iterate: ? $\mathbb{P}(\beta, j) * \mathbb{Q}(\beta, j) = \mathbb{P}(\beta + 1, j)$ and also
- 4. limit α implies $\mathbb{P}(\alpha, i) = \bigcup \{ \mathbb{P}(\beta, i) : \beta < \alpha \}$ i.e. FS
- 5. for $i = \kappa$, $\mathbb{P}(\alpha, \kappa) = \bigcup \{\mathbb{P}(\alpha, i) : i < \kappa\}$

All posets will be ccc, and so if $\overset{.}{Y}$ is a $\mathbb{P}(\lambda,\kappa)$ -name of a subset of ω , there are $(\alpha, i) \in \lambda \times \kappa$ so that *Y* is a $\mathbb{P}(\alpha, i)$ -name.

Let $\beta < \alpha \leq \gamma$ and $j < i < \kappa$ κ uncountable

- 1. as we go up, we have complete subposets $\mathbb{P}(\alpha, j) <_{c} \mathbb{P}(\alpha, i)$ this is key but subtle
- 2. but not "needed" for limit: $\bigcup_{j < i} \mathbb{P}_{\alpha, j}$ is just a subset of $\mathbb{P}(\alpha, i)$
- 3. as we go horizontally we iterate: $\mathbb{P}(\beta, j) * \mathbb{Q}(\beta, j) = \mathbb{P}(\beta + 1, j)$ and also
- 4. limit α implies $\mathbb{P}(\alpha, i) = \bigcup \{ \mathbb{P}(\beta, i) : \beta < \alpha \}$ i.e. FS
- 5. for $i = \kappa$, $\mathbb{P}(\alpha, \kappa) = \bigcup \{\mathbb{P}(\alpha, i) : i < \kappa\}$

All posets will be ccc, and so if $\overset{.}{Y}$ is a $\mathbb{P}(\lambda,\kappa)$ -name of a subset of ω , there are $(\alpha, i) \in \lambda \times \kappa$ so that *Y* is a $\mathbb{P}(\alpha, i)$ -name.

This means Y won't know about even $P(0, i + 1)$ and so gives us a chance to keep a cardinal invariant small

Let us look at two examples where $\mathbb{P}(0, i)$ is $FS_{i \leq i} \mathcal{H}_i$ adding $\langle H_i^0 : i < \kappa \rangle$

KID KAR KERKER E 1990

Let us look at two examples where $\mathbb{P}(0, i)$ is $FS_{i \leq i}H_i$ adding $\langle H_i^0 : i < \kappa \rangle$

iterate Hechler up every column

If, for all $\alpha >0$ and i , $\mathbb Q(\alpha,i)$ is $\left(\bigcup_{j$ up each column, iteratively add Hechler reals then we get a model of $\mathfrak{b} = \kappa < \mathfrak{d} = \lambda$ (and $\mathfrak{h} = \omega_1$)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익(연

Let us look at two examples where $\mathbb{P}(0, i)$ is $FS_{i \leq i}H_i$ adding $\langle H_i^0 : i < \kappa \rangle$

iterate Hechler up every column

If, for all $\alpha >0$ and i , $\mathbb Q(\alpha,i)$ is $\left(\bigcup_{j$ up each column, iteratively add Hechler reals then we get a model of $\mathfrak{b} = \kappa < \mathfrak{d} = \lambda$ (and $\mathfrak{h} = \omega_1$)

just add one Hechler! in each column

If, for all $\alpha > 0$ and $i < \kappa$ $\dot{\mathbb{Q}}(\alpha, i)$ is H (but in $V^{\mathbb{P}(\alpha, i)}$) i.e. $\dot{\mathbb{Q}}(\alpha,i) = [\omega]^{<\omega\uparrow}\times\left(\omega^{\omega\uparrow}\cap\mathsf{V}[\mathsf{G}_{\alpha,i}]\right)$ then we get a model of $\mathfrak{b} = \lambda$ ($\mathbb{P}(\alpha + 1, \kappa) = \mathbb{P}(\alpha, \kappa) * \mathcal{H}$)

Let us look at two examples where $\mathbb{P}(0, i)$ is $FS_{i \leq i} \mathcal{H}_i$ adding $\langle H_i^0 : i < \kappa \rangle$

iterate Hechler up every column

If, for all $\alpha >0$ and i , $\mathbb Q(\alpha,i)$ is $\left(\bigcup_{j$ up each column, iteratively add Hechler reals then we get a model of $\mathfrak{b} = \kappa < \mathfrak{d} = \lambda$ (and $\mathfrak{h} = \omega_1$)

just add one Hechler! in each column

If, for all
$$
\alpha > 0
$$
 and $i < \kappa$ $\dot{\mathbb{Q}}(\alpha, i)$ is \mathcal{H} (but in $V^{\mathbb{P}(\alpha, i)}$)
i.e. $\dot{\mathbb{Q}}(\alpha, i) = [\omega]^{<\omega\uparrow} \times (\omega^{\omega\uparrow} \cap V[G_{\alpha,i}])$
then we get a model of $b = \lambda$ $(\mathbb{P}(\alpha + 1, \kappa) = \mathbb{P}(\alpha, \kappa) * \mathcal{H})$

remark

In first case, it is obvious that $\mathbb{P}(\alpha, i) <_{c} \mathbb{P}(\alpha, i + 1)$, but not so much in the second case (more on this later)

In fact, let us notice that $\mathcal{H}^{V_{\alpha,i}} \nless c \mathcal{H}^{V_{\alpha,i+1}}$, but it IS

the construction of the chain $\{\mathbb{Q}_{\alpha,i}: i<\kappa\}$ that controls things.

Here's why

In fact, let us notice that $\mathcal{H}^{V_{\alpha,i}} \nless c \mathcal{H}^{V_{\alpha,i+1}}$, but it IS

the construction of the chain $\{\mathbb{Q}_{\alpha,i}: i<\kappa\}$ that controls things.

Here's why

a γ-matrix **P** ^γ extending a δ-matrix **P** δ

means the obvious things (the heights must be the same)

In fact, let us notice that $\mathcal{H}^{V_{\alpha,i}} \nless c \mathcal{H}^{V_{\alpha,i+1}}$, but it IS the construction of the chain $\{\mathbb{Q}_{\alpha,i}: i<\kappa\}$ that controls things.

Here's why

a γ-matrix **P** ^γ extending a δ-matrix **P** δ

means the obvious things (the heights must be the same)

Lemma (and limits come for *free*)

If γ *is a limit and we have an increasing sequence* $\{P^{\delta} : \delta < \gamma\}$ *of matrices, then the union* **P** ^γ *extends canonically to a* γ*-matrix*

In fact, let us notice that $\mathcal{H}^{V_{\alpha,i}} \nless c \mathcal{H}^{V_{\alpha,i+1}}$, but it IS the construction of the chain $\{\mathbb{Q}_{\alpha,i}: i<\kappa\}$ that controls things.

Here's why

a γ-matrix **P** ^γ extending a δ-matrix **P** δ

means the obvious things (the heights must be the same)

Lemma (and limits come for *free*)

If γ *is a limit and we have an increasing sequence* $\{P^{\delta} : \delta < \gamma\}$ *of matrices, then the union* **P** ^γ *extends canonically to a* γ*-matrix*

The union, $\bigcup_{\delta<\gamma}\mathbf{P}^\delta$ will be a list $\{\mathbb{P}(\alpha,\mathit{i}): \mathit{i}\leq\kappa,\alpha<\gamma\}.$ For each $i<\kappa,$ $\widetilde{\mathbb{P}(\gamma, i)}$ must equal $\bigcup_{\delta<\gamma} \mathbb{P}(\delta, i).$ And, as needed, we have $\mathbb{P}(\gamma, \vec{j}) <_{\mathcal{C}} \mathbb{P}_{\gamma, \vec{i}}$ $(j < i \leq \kappa)$

 2990

Suppose $\mathbb{P} <_{c} \mathbb{P}'$, and \mathbb{Q} *is a* \mathbb{P} *-name and* \mathbb{Q}' *is a* \mathbb{P}' *-name.* \overline{F} *or* \mathbb{P} $*$ \mathbb{Q} $<$ $<$ \mathbb{P}' $*$ \mathbb{Q}' *, we need* every P-name of a maximal antichain of $\mathbb Q$ is also forced by $\mathbb P'$ *to be a maximal antichain of* \mathbb{Q}' *.*

KOD KOD KED KED E VOLC

Suppose $\mathbb{P} <_{c} \mathbb{P}'$, and \mathbb{Q} *is a* \mathbb{P} *-name and* \mathbb{Q}' *is a* \mathbb{P}' *-name.* \overline{F} *or* \mathbb{P} $*$ \mathbb{Q} $<$ $<$ \mathbb{P}' $*$ \mathbb{Q}' *, we need* every P-name of a maximal antichain of $\mathbb Q$ is also forced by $\mathbb P'$ *to be a maximal antichain of* \mathbb{Q}' *.*

KEL KALLA BIKA BIKA KA

Corollary

 $\mathsf{M} \, \mathbb{P} \leq_c \mathbb{P}'$, then $\mathbb{P} \ast \mathbb{Q} \leq_c \mathbb{P}' \ast \mathbb{Q}$.

Suppose $\mathbb{P} <_{c} \mathbb{P}'$, and \mathbb{Q} *is a* \mathbb{P} *-name and* \mathbb{Q}' *is a* \mathbb{P}' *-name.* \overline{F} *or* \mathbb{P} $*$ \mathbb{Q} $<$ $<$ \mathbb{P}' $*$ \mathbb{Q}' *, we need* every P-name of a maximal antichain of $\mathbb Q$ is also forced by $\mathbb P'$ *to be a maximal antichain of* \mathbb{Q}' *.*

Corollary

 $\mathsf{M} \, \mathbb{P} \leq_c \mathbb{P}'$, then $\mathbb{P} \ast \mathbb{Q} \leq_c \mathbb{P}' \ast \mathbb{Q}$.

Corollary (for successor $\alpha < \lambda$)

If $\underline{\mathbf{P}}^{\alpha}$ *is given, and if* \mathcal{Y}_{α} *is a* $\mathbb{P}_{\alpha,i_{\alpha}}$ -name of a sfip family, we can *let* $\mathbb{Q}_{\alpha,i}$ *be trivial for* $j < i_{\alpha}$ *and let* $\mathbb{Q}_{\alpha,i} = Q(\mathcal{Y}_{\alpha})$ *for* $j \geq i_{\alpha}$ *with* g eneric set $\dot{\bm{A}}_\alpha$.

Suppose $\mathbb{P} <_{c} \mathbb{P}'$, and \mathbb{Q} *is a* \mathbb{P} *-name and* \mathbb{Q}' *is a* \mathbb{P}' *-name.* \overline{F} *or* \mathbb{P} $*$ \mathbb{Q} $<$ $<$ \mathbb{P}' $*$ \mathbb{Q}' *, we need* every P-name of a maximal antichain of $\mathbb Q$ is also forced by $\mathbb P'$ *to be a maximal antichain of* \mathbb{Q}' *.*

Corollary

 $\mathsf{M} \, \mathbb{P} \leq_c \mathbb{P}'$, then $\mathbb{P} \ast \mathbb{Q} \leq_c \mathbb{P}' \ast \mathbb{Q}$.

Corollary (for successor $\alpha < \lambda$)

If $\underline{\mathbf{P}}^{\alpha}$ *is given, and if* \mathcal{Y}_{α} *is a* $\mathbb{P}_{\alpha,i_{\alpha}}$ -name of a sfip family, we can *let* $\mathbb{Q}_{\alpha,i}$ *be trivial for j < i_α and let* $\mathbb{Q}_{\alpha,i} = Q(\mathcal{Y}_\alpha)$ *for j* $\geq i_\alpha$ *with generic set A*˙ ^α*. In this way we extend to* **P** α+1 *. With simple bookkeeping we will obtain* t ≥ κ *and we will let* $\mathcal{I}_i = \textit{ideal} \langle \{ A_\alpha : i_\alpha = i \} \rangle$ *towards* $\mathfrak{h} \leq \kappa$.
Lemma (Brendle-Fischer)

Suppose $\mathbb{P} <_{c} \mathbb{P}'$, and \mathbb{Q} *is a* \mathbb{P} *-name and* \mathbb{Q}' *is a* \mathbb{P}' *-name.* \overline{F} *or* \mathbb{P} $*$ \mathbb{Q} $<$ $<$ \mathbb{P}' $*$ \mathbb{Q}' *, we need* every P-name of a maximal antichain of $\mathbb Q$ is also forced by $\mathbb P'$ *to be a maximal antichain of* \mathbb{Q}' *.*

Corollary

 $\mathsf{M} \, \mathbb{P} \leq_c \mathbb{P}'$, then $\mathbb{P} \ast \mathbb{Q} \leq_c \mathbb{P}' \ast \mathbb{Q}$.

Corollary (for successor $\alpha < \lambda$)

If $\underline{\mathbf{P}}^{\alpha}$ *is given, and if* \mathcal{Y}_{α} *is a* $\mathbb{P}_{\alpha,i_{\alpha}}$ -name of a sfip family, we can *let* $\mathbb{Q}_{\alpha,i}$ *be trivial for j < i_α and let* $\mathbb{Q}_{\alpha,i} = Q(\mathcal{Y}_\alpha)$ *for j* $\geq i_\alpha$ *with generic set A*˙ ^α*. In this way we extend to* **P** α+1 *. With simple bookkeeping we will obtain* t ≥ κ *and we will let* $\mathcal{I}_i = \textit{ideal} \langle \{ A_\alpha : i_\alpha = i \} \rangle$ *towards* $\mathfrak{h} \leq \kappa$. *With more tedious bookkeeping,* $\mathcal{I}_j \supset \mathcal{I}_i$ *(for* $j < i$ *)*

If $\mathbb Q$ is (forced to be) Souslin and $\mathbb P <_c \mathbb P'$, then $\mathbb P * \mathbb Q <_c \mathbb P' * \mathbb Q$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q Q*

If $\mathbb Q$ is (forced to be) Souslin and $\mathbb P <_c \mathbb P'$, then $\mathbb P * \mathbb Q <_c \mathbb P' * \mathbb Q$ for example if $\mathbb{Q} = \mathcal{H}$ (can also use rank)

KOD KARD KED KE YA GAR

If $\mathbb Q$ is (forced to be) Souslin and $\mathbb P <_c \mathbb P'$, then $\mathbb P * \mathbb Q <_c \mathbb P' * \mathbb Q$ for example if $\mathbb{Q} = \mathcal{H}$ (can also use rank)

KOD KARD KED KE YA GAR

Corollary (for $cf(\alpha) = \kappa$)

If **P** ^α *is given, then we can let* **P** ^α+¹ *be constructed with* $\dot{\mathbb{Q}}_{\alpha,i} = \mathcal{H}$ for all $i \leq \kappa$.

If $\mathbb Q$ is (forced to be) Souslin and $\mathbb P <_c \mathbb P'$, then $\mathbb P * \mathbb Q <_c \mathbb P' * \mathbb Q$ for example if $\mathbb{Q} = \mathcal{H}$ (can also use rank)

Corollary (for $cf(\alpha) = \kappa$)

If **P** ^α *is given, then we can let* **P** ^α+¹ *be constructed with* $\dot{\mathbb{Q}}_{\alpha,i} = \mathcal{H}$ for all $i \leq \kappa$.

Definition (fundamental Ind. Hyp.)

By induction on $\gamma < \lambda$, when building \mathbf{P}^{γ} and setting $\mathcal{I}^{\gamma}_{i} = \textit{ideal} \langle \dot{\mathcal{A}}_{\alpha} : \alpha < \gamma, \text{ and } \dot{\mathcal{I}}_{\alpha} = \dot{\mathcal{I}} \rangle$ *i* + 1-names we need that no $\mathbb{P}_{\gamma, i}$ -name is in \mathcal{I}^{γ}_i *i* (actually just successor *i*) it is routine at limit γ and for successor γ using $Q(\mathcal{Y}_\gamma)$

If $\mathbb Q$ is (forced to be) Souslin and $\mathbb P <_c \mathbb P'$, then $\mathbb P * \mathbb Q <_c \mathbb P' * \mathbb Q$ for example if $\mathbb{Q} = \mathcal{H}$ (can also use rank)

Corollary (for $cf(\alpha) = \kappa$)

If **P** ^α *is given, then we can let* **P** ^α+¹ *be constructed with* $\dot{\mathbb{Q}}_{\alpha,i} = \mathcal{H}$ for all $i \leq \kappa$.

Definition (fundamental Ind. Hyp.)

By induction on $\gamma < \lambda$, when building \mathbf{P}^{γ} and setting $\mathcal{I}^{\gamma}_{i} = \textit{ideal} \langle \dot{\mathcal{A}}_{\alpha} : \alpha < \gamma, \text{ and } \dot{\mathcal{I}}_{\alpha} = \dot{\mathcal{I}} \rangle$ *i* + 1-names we need that no $\mathbb{P}_{\gamma, i}$ -name is in \mathcal{I}^{γ}_i *i* (actually just successor *i*) it is routine at limit γ and for successor γ using $Q(\mathcal{Y}_\gamma)$

Corollary (Baumgartner-Dordal)

When cf(α) = κ *and we let* $\dot{\mathbb{Q}}_{\alpha,i} = \mathcal{H}$, we preserve Ind Hyp.

Now we discuss \mathcal{Q}_{Bould} and \mathbb{Q}_{207}

unsplit reals

-
- - -
		-
		-
		-
- - K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q Q*

Now we discuss \mathcal{Q}_{Bould} and \mathbb{Q}_{207}

unsplit reals

For other limits μ , we will, by induction on $i < \kappa$, define

$$
\dot{\mathbb{Q}}_{\mu,i} = \mathcal{C}_{i+1\times2^{\omega}} * \dot{\mathbf{Q}}_{\mu,i}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q Q*

unsplit reals

For other limits μ , we will, by induction on $i < \kappa$, define

$$
\dot{\mathbb{Q}}_{\mu,i}=\mathcal{C}_{i+1\times 2^{\omega}}\ast\dot{Q}_{\mu,i}
$$

where \mathcal{C}_I is $\mathit{Fn}(I,2)$ and it is forced that the generic for $\dot{Q}_{\mu,i}$ is unsplit over $V[\mathbb{P}_{\mu,i}]$ (making Ind Hyp much harder)

KEL KALLA BIKA BIKA KA

unsplit reals

For other limits μ , we will, by induction on $i < \kappa$, define

$$
\dot{\mathbb{Q}}_{\mu,i}=\mathcal{C}_{i+1\times2^{\omega}}\ast\dot{Q}_{\mu,i}
$$

where \mathcal{C}_I is $\mathit{Fn}(I,2)$ and it is forced that the generic for $\dot{Q}_{\mu,i}$ is unsplit over $V[\mathbb{P}_{\mu,i}]$ (making Ind Hyp much harder)

A DIA K F A A B A DIA A B A VION

Also, we have to work to ensure that $\mathbf{P}^{\mu+1}$ "holds" and this is what $\mathcal{C}_{\mu,i} \in \mathbb{Q}_{207}$ is for.

unsplit reals

For other limits μ , we will, by induction on $i < \kappa$, define

$$
\dot{\mathbb{Q}}_{\mu,i}=\mathcal{C}_{i+1\times 2^{\omega}}\ast\dot{Q}_{\mu,i}
$$

where \mathcal{C}_I is $\mathit{Fn}(I,2)$ and it is forced that the generic for $\dot{Q}_{\mu,i}$ is unsplit over $V[\mathbb{P}_{\mu,i}]$ (making Ind Hyp much harder)

Also, we have to work to ensure that $\mathbf{P}^{\mu+1}$ "holds" and this is what $\mathcal{C}_{\mu,i} \in \mathbb{Q}_{207}$ is for.

i.e. to take care of $\mathbb{P}_{\mu,j}*\mathcal{C}_{j+1\times2^\omega}*\dot{Q}_{\mu,j}<_{\mathcal{C}}\mathbb{P}_{\mu,i}*\mathcal{C}_{i+1\times2^\omega}*\dot{Q}_{\mu,i}$

unsplit reals

For other limits μ , we will, by induction on $i < \kappa$, define

$$
\dot{\mathbb{Q}}_{\mu,i}=\mathcal{C}_{i+1\times 2^{\omega}}\ast\dot{Q}_{\mu,i}
$$

where \mathcal{C}_I is $\mathit{Fn}(I,2)$ and it is forced that the generic for $\dot{Q}_{\mu,i}$ is unsplit over $V[\mathbb{P}_{\mu,i}]$ (making Ind Hyp much harder)

Also, we have to work to ensure that $\mathbf{P}^{\mu+1}$ "holds" and this is what $\mathcal{C}_{\mu,i} \in \mathbb{Q}_{207}$ is for.

i.e. to take care of $\mathbb{P}_{\mu,j}*\mathcal{C}_{j+1\times2^\omega}*\dot{Q}_{\mu,j}<_{\mathcal{C}}\mathbb{P}_{\mu,i}*\mathcal{C}_{i+1\times2^\omega}*\dot{Q}_{\mu,i}$

finite working part

Elements $q = (w^q, T^q)$ of \mathcal{Q}_{Bould} , like all our posets, have a finite *working part w* and an infinite *side condition T* elements *r* of C*i*+1×2^ω are also *working part*

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q Q*

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q Q*

Definition

 $Γ_i^{\mu}$ j_i^μ is the set of $\alpha < \mu$ with $i_\alpha = i$; and $\langle p_0, \ldots, p_n \rangle$ is a Γ^μ_j $\int\limits_l^\mu$ -fan if

Definition

 $Γ_i^{\mu}$ j_i^μ is the set of $\alpha < \mu$ with $i_\alpha = i$; and $\langle p_0, \ldots, p_n \rangle$ is a Γ^μ_j $\int\limits_l^\mu$ -fan if

A DIA K F A A B A DIA A B A VION

1. each $p_k \n\t\leq p_0$ is in $\mathbb{P}_{u,i+1}$,

Definition

- $Γ_i^{\mu}$ j_i^μ is the set of $\alpha < \mu$ with $i_\alpha = i$; and $\langle p_0, \ldots, p_n \rangle$ is a Γ^μ_j $\int\limits_l^\mu$ -fan if
	- 1. each $p_k \n\t\leq p_0$ is in $\mathbb{P}_{\mu,i+1}$,
	- 2. for each $\beta \notin \Gamma_i^{\mu}$ $\frac{\mu}{\mu}$, the working parts of $p_k(\beta)$ $(1 \leq k \leq n)$ are all the same

Definition

- $Γ_i^{\mu}$ j_i^μ is the set of $\alpha < \mu$ with $i_\alpha = i$; and $\langle p_0, \ldots, p_n \rangle$ is a Γ^μ_j $\int\limits_l^\mu$ -fan if
	- 1. each $p_k \n\t\leq p_0$ is in $\mathbb{P}_{\mu,i+1}$,
	- 2. for each $\beta \notin \Gamma_i^{\mu}$ $\frac{\mu}{\mu}$, the working parts of $p_k(\beta)$ $(1 \leq k \leq n)$ are all the same
	- 3. for ξ, α both in Γ_i^{μ} $\frac{\mu}{i}$ and 1 \leq j $<$ k \leq $n,$ the working part of $p_i(\xi)$ intersect the working part of $p_k(\alpha)$ is contained in the working part of $p_0(\xi)$ intersect the working part of $p_0(\alpha)$.

KORKAR KERKER E VOOR

Definition

 $Γ_i^{\mu}$ j_i^μ is the set of $\alpha < \mu$ with $i_\alpha = i$; and $\langle p_0, \ldots, p_n \rangle$ is a Γ^μ_j *i* -fan if

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q Q*

Definition

 $Γ_i^{\mu}$ j_i^μ is the set of $\alpha < \mu$ with $i_\alpha = i$; and $\langle p_0, \ldots, p_n \rangle$ is a Γ^μ_j *i* -fan if

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q Q*

1. each
$$
p_k \le p_0
$$
 is in $\mathbb{P}_{\mu,i+1}$,

Definition

 $Γ_i^{\mu}$ j_i^μ is the set of $\alpha < \mu$ with $i_\alpha = i$; and $\langle p_0, \ldots, p_n \rangle$ is a Γ^μ_j *i* -fan if

- 1. each $p_k \n\t\leq p_0$ is in $\mathbb{P}_{u,j+1}$,
- 2. for each $\beta \notin \Gamma_i^{\mu}$ $\frac{\mu}{\mu}$, the working parts of $p_k(\beta)$ $(1 \leq k \leq n)$ are all the same

KEL KALLA BIKA BIKA KA

Definition

 $Γ_i^{\mu}$ j_i^μ is the set of $\alpha < \mu$ with $i_\alpha = i$; and $\langle p_0, \ldots, p_n \rangle$ is a Γ^μ_j *i* -fan if

- 1. each $p_k \n\t\leq p_0$ is in $\mathbb{P}_{\mu,j+1}$,
- 2. for each $\beta \notin \Gamma_i^{\mu}$ $\frac{\mu}{\mu}$, the working parts of $p_k(\beta)$ $(1 \leq k \leq n)$ are all the same
- 3. for ξ, α both in Γ_i^{μ} $\frac{\mu}{i}$ and 1 \leq j \leq k \leq $n,$ the working part of $p_i(\xi)$ intersect the working part of $p_k(\alpha)$ is contained in the working part of $p_0(\xi)$ intersect the working part of $p_0(\alpha)$.

Definition

 $Γ_i^{\mu}$ j_i^μ is the set of $\alpha < \mu$ with $i_\alpha = i$; and $\langle p_0, \ldots, p_n \rangle$ is a Γ^μ_j *i* -fan if

- 1. each $p_k \n\t\leq p_0$ is in $\mathbb{P}_{\mu,j+1}$,
- 2. for each $\beta \notin \Gamma_i^{\mu}$ $\frac{\mu}{\mu}$, the working parts of $p_k(\beta)$ $(1 \leq k \leq n)$ are all the same
- 3. for ξ, α both in Γ_i^{μ} $\frac{\mu}{i}$ and 1 \leq j \leq k \leq $n,$ the working part of $p_i(\xi)$ intersect the working part of $p_k(\alpha)$ is contained in the working part of $p_0(\xi)$ intersect the working part of $p_0(\alpha)$.

new Ind. Hyp. : Γ_i^{μ} \int_{i}^{μ} -pure

For any dense set $D \subset P_{\mu,i+1}$ and any Γ^μ_i μ_l^{μ} -fan $\langle p_0, p_1, \ldots, p_n \rangle$, there is an extension Γ_i^{μ} $\frac{\mu}{i}$ -fan $\langle p_0, \bar{p}_1, \ldots, \bar{p}_n \rangle$ such that $\{\bar{p}_1, \ldots, \bar{p}_n\} \subset D$.

Lemma (assume Γ_i^{μ} i^{μ} -pure)

By induction on μ *, if Y is a* $\mathbb{P}_{\mu,i}$ -name and $\langle p_0, p_1, \cdots, p_n \rangle$ *is a* $Γ_i^{\mu}$ *i -fan, then, for* 1 ≤ *j*, *k* ≤ *n, integer y,* $p_j \Vdash y \in Y$ iff $p_k \Vdash y \in Y$ *and* $p_j \perp p$ iff $p_k \perp p$ for each $p \in \mathbb{P}_{u,j}$

KEL KALLA BIKA BIKA KA

Lemma (assume Γ_i^{μ} i^{μ} -pure)

By induction on μ *, if Y is a* $\mathbb{P}_{\mu,i}$ -name and $\langle p_0, p_1, \cdots, p_n \rangle$ *is a* $Γ_i^{\mu}$ *i -fan, then, for* 1 ≤ *j*, *k* ≤ *n, integer y,* $p_j \Vdash y \in Y$ iff $p_k \Vdash y \in Y$ *and* $p_j \perp p$ iff $p_k \perp p$ for each $p \in \mathbb{P}_{u,j}$

Corollary

If $p_0 \in \mathbb{P}_{\mu,i}$ and Y is a $\mathbb{P}_{\mu,i}$ -name, and $p_0 \Vdash Y \subset A_\alpha \cup m$ for *some* $\alpha \in \Gamma_i^{\mu}$ $\frac{\mu}{i}$, then $p_0 \Vdash \dot Y$ is finite. thus preserves Ind. Hyp.

 QQQ

Lemma (assume Γ_i^{μ} i^{μ} -pure)

By induction on μ *, if Y is a* $\mathbb{P}_{\mu,i}$ -name and $\langle p_0, p_1, \cdots, p_n \rangle$ *is a* $Γ_i^{\mu}$ *i -fan, then, for* 1 ≤ *j*, *k* ≤ *n, integer y,* $p_j \Vdash y \in Y$ iff $p_k \Vdash y \in Y$ *and* $p_j \perp p$ iff $p_k \perp p$ for each $p \in \mathbb{P}_{u,j}$

Corollary

If $p_0 \in \mathbb{P}_{\mu,i}$ and Y is a $\mathbb{P}_{\mu,i}$ -name, and $p_0 \Vdash Y \subset A_\alpha \cup m$ for *some* $\alpha \in \Gamma_i^{\mu}$ $\frac{\mu}{i}$, then $p_0 \Vdash \dot Y$ is finite. thus preserves Ind. Hyp.

Proof.

otherwise

Lemma (assume Γ_i^{μ} i^{μ} -pure)

By induction on μ *, if Y is a* $\mathbb{P}_{\mu,i}$ -name and $\langle p_0, p_1, \cdots, p_n \rangle$ *is a* $Γ_i^{\mu}$ *i -fan, then, for* 1 ≤ *j*, *k* ≤ *n, integer y,* $p_j \Vdash y \in Y$ iff $p_k \Vdash y \in Y$ *and* $p_j \perp p$ iff $p_k \perp p$ for each $p \in \mathbb{P}_{u,j}$

Corollary

If $p_0 \in \mathbb{P}_{\mu,i}$ and Y is a $\mathbb{P}_{\mu,i}$ -name, and $p_0 \Vdash Y \subset A_\alpha \cup m$ for *some* $\alpha \in \Gamma_i^{\mu}$ $\frac{\mu}{i}$, then $p_0 \Vdash \dot Y$ is finite. thus preserves Ind. Hyp.

Proof.

otherwise the Γ_i^{μ} *i* -fan h*p*0, *p*0, *p*0i has an extension fan $\langle p_0, \bar{p}_1, \bar{p}_2 \rangle$ with some arbitrarily large $y > m$ such that $\bar{p}_1 \Vdash y \in \dot{Y}$.

Lemma (assume Γ_i^{μ} i^{μ} -pure)

By induction on μ *, if Y is a* $\mathbb{P}_{\mu,i}$ -name and $\langle p_0, p_1, \cdots, p_n \rangle$ *is a* $Γ_i^{\mu}$ *i -fan, then, for* 1 ≤ *j*, *k* ≤ *n, integer y,* $p_j \Vdash y \in Y$ iff $p_k \Vdash y \in Y$ *and* $p_j \perp p$ *iff* $p_k \perp p$ for each $p \in \mathbb{P}_{\mu,j}$

Corollary

If $p_0 \in \mathbb{P}_{\mu,i}$ and Y is a $\mathbb{P}_{\mu,i}$ -name, and $p_0 \Vdash Y \subset A_\alpha \cup m$ for *some* $\alpha \in \Gamma_i^{\mu}$ $\frac{\mu}{i}$, then $p_0 \Vdash \dot Y$ is finite. thus preserves Ind. Hyp.

Proof.

otherwise the Γ_i^{μ} *i* -fan h*p*0, *p*0, *p*0i has an extension fan $\langle p_0, \bar{p}_1, \bar{p}_2 \rangle$ with some arbitrarily large $y > m$ such that $\bar{p}_1 \Vdash \mathsf{y} \in \mathsf{Y}.$ But then y must be in working part of $\bar{p}_1(\alpha)$ and not in the working part of $\bar{p}_2(\alpha)$.

Lemma (assume Γ_i^{μ} i^{μ} -pure)

By induction on μ *, if Y is a* $\mathbb{P}_{\mu,i}$ -name and $\langle p_0, p_1, \cdots, p_n \rangle$ *is a* $Γ_i^{\mu}$ *i -fan, then, for* 1 ≤ *j*, *k* ≤ *n, integer y,* $p_j \Vdash y \in Y$ iff $p_k \Vdash y \in Y$ *and* $p_j \perp p$ iff $p_k \perp p$ for each $p \in \mathbb{P}_{u,j}$

Corollary

If $p_0 \in \mathbb{P}_{\mu,i}$ and Y is a $\mathbb{P}_{\mu,i}$ -name, and $p_0 \Vdash Y \subset A_\alpha \cup m$ for *some* $\alpha \in \Gamma_i^{\mu}$ $\frac{\mu}{i}$, then $p_0 \Vdash \dot Y$ is finite. thus preserves Ind. Hyp.

Proof.

otherwise the Γ_i^{μ} *i* -fan h*p*0, *p*0, *p*0i has an extension fan $\langle p_0, \bar{p}_1, \bar{p}_2 \rangle$ with some arbitrarily large $y > m$ such that $\bar{p}_1 \Vdash \mathsf{y} \in \dot{\mathsf{Y}}$. But then y must be in working part of $\bar{p}_1(\alpha)$ and not in the working part of $\bar{p}_2(\alpha)$ $\bar{p}_2(\alpha)$ $\bar{p}_2(\alpha)$. But then $\bar{p}_2 \Vdash y \in \dot{Y} \setminus \dot{A}_\alpha$.

If $D\subset\mathcal{H}$ is dense, there is a function $\mathit{rk}_D:\omega^{<\omega\uparrow}\mapsto \omega_1$ such that $rk(s) = 0$ if there is a *g* with $(s, g) \in D$, and $rk(s) = \alpha > 0$ if there is an ℓ such that for each *n*, there is an $(\boldsymbol{s}_n, g+n) < (\boldsymbol{s}, g+n)$ with $\boldsymbol{s}_n \in \omega^{\ell \uparrow}$ and $\mathit{rk}(\boldsymbol{s}_n) < \alpha.$

If $D\subset\mathcal{H}$ is dense, there is a function $\mathit{rk}_D:\omega^{<\omega\uparrow}\mapsto \omega_1$ such that $rk(s) = 0$ if there is a *g* with $(s, g) \in D$, and $rk(s) = \alpha > 0$ if there is an ℓ such that for each *n*, there is an $(\boldsymbol{s}_n, g+n) < (\boldsymbol{s}, g+n)$ with $\boldsymbol{s}_n \in \omega^{\ell \uparrow}$ and $\mathit{rk}(\boldsymbol{s}_n) < \alpha.$

A DIA K F A A B A DIA A B A VION

Suppose that $\underline{\mathbf{P}}^{\mu}$ (*cf*(μ) = κ) satisfies Γ^{μ}_{i} $\frac{\mu}{i}$ for any $i < \kappa$.

If $D\subset\mathcal{H}$ is dense, there is a function $\mathit{rk}_D:\omega^{<\omega\uparrow}\mapsto \omega_1$ such that $rk(s) = 0$ if there is a *g* with $(s, g) \in D$, and $rk(s) = \alpha > 0$ if there is an ℓ such that for each *n*, there is an $(\boldsymbol{s}_n, g+n) < (\boldsymbol{s}, g+n)$ with $\boldsymbol{s}_n \in \omega^{\ell \uparrow}$ and $\mathit{rk}(\boldsymbol{s}_n) < \alpha.$

Suppose that $\underline{\mathbf{P}}^{\mu}$ (*cf*(μ) = κ) satisfies Γ^{μ}_{i} $\frac{\mu}{i}$ for any $i < \kappa$. Now let *D* be a $\mathbb{P}_{u,i+1}$ -name of a dense subset of *H*. Also, let $\langle p_0, p_1, \ldots, p_n \rangle$ be any Γ_i^μ \int_{i}^{μ} -fan.

If $D\subset\mathcal{H}$ is dense, there is a function $\mathit{rk}_D:\omega^{<\omega\uparrow}\mapsto \omega_1$ such that $rk(s) = 0$ if there is a *g* with $(s, g) \in D$, and $rk(s) = \alpha > 0$ if there is an ℓ such that for each *n*, there is an $(\boldsymbol{s}_n, g+n) < (\boldsymbol{s}, g+n)$ with $\boldsymbol{s}_n \in \omega^{\ell \uparrow}$ and $\mathit{rk}(\boldsymbol{s}_n) < \alpha.$

Suppose that $\underline{\mathbf{P}}^{\mu}$ (*cf*(μ) = κ) satisfies Γ^{μ}_{i} $\frac{\mu}{i}$ for any $i < \kappa$. Now let *D* be a $\mathbb{P}_{u,i+1}$ -name of a dense subset of *H*. Also, let $\langle p_0, p_1, \ldots, p_n \rangle$ be any Γ_i^μ \int_{i}^{μ} -fan.

For Γ $^{\mu +1}_{i}$ $j_{i}^{\mu+1}$, we have to find an extension fan $\langle p_{0}, \bar{p}_{1}, \ldots, \bar{p}_{n} \rangle$ so that $\bar{p}_k \restriction \mu \Vdash p_k(\mu) \in \dot{D}$ for all 1 \leq $k \leq n$.

KORKAR KERKER E VOOR

proof continued

We may assume that $p_0(\mu) = (s_0, \dot{g}_0)$, which means that, we can simply assume that $p_j(\mu) = (s_0, \dot{g}_0)$ for all $j \leq n$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q Q*

We may assume that $p_0(\mu) = (s_0, \dot{g}_0)$, which means that, we can simply assume that $p_j(\mu) = (s_0, \dot{g}_0)$ for all $j \leq n$ AND, by $Γ_i^{\mu}$ $\frac{\mu}{l}$, we can assume that ρ_1 forces a value α_0 on $\mathit{rk}_{\dot{D}}(s_0),$ and on the witnessing ℓ_0 .
We may assume that $p_0(\mu) = (s_0, g_0)$, which means that, we can simply assume that $p_j(\mu) = (s_0, \dot{g}_0)$ for all $j \leq n$ AND, by $Γ_i^{\mu}$ $\frac{\mu}{l}$, we can assume that ρ_1 forces a value α_0 on $\mathit{rk}_{\dot{D}}(s_0),$ and on the witnessing ℓ_0 .

There is an extension fan $\langle p_0, \bar{p}_1, \cdots, \bar{p}_n \rangle$ so that each \bar{p}_k forces a value on $\dot{q}_0 \restriction \ell_0$ and \bar{p}_1 picks an s_1 so that each $\bar{p}_k \Vdash (s_1, g_0) < (s_0, g_0)$ and \bar{p}_1 forces that $rk(s_1) = \alpha_1 < \alpha_0$.

We may assume that $p_0(\mu) = (s_0, g_0)$, which means that, we can simply assume that $p_j(\mu) = (s_0, \dot{g}_0)$ for all $j \leq n$ AND, by $Γ_i^{\mu}$ $\frac{\mu}{l}$, we can assume that ρ_1 forces a value α_0 on $\mathit{rk}_{\dot{D}}(s_0),$ and on the witnessing ℓ_0 .

There is an extension fan $\langle p_0, \bar{p}_1, \cdots, \bar{p}_n \rangle$ so that each \bar{p}_k forces a value on $\dot{q}_0 \restriction \ell_0$ and \bar{p}_1 picks an s_1 so that each $\bar{p}_k \Vdash (s_1, g_0) < (s_0, g_0)$ and \bar{p}_1 forces that $rk(s_1) = \alpha_1 < \alpha_0$.

Repeat this finitely many times (as rank descends) we end up with there being a g_1 such that $\bar{p}_1 \Vdash (s_1, g_1) \in D$ and, for all $1 \leq k \leq n$ and $\bar{p}_k \Vdash (s_1, g_1) < (s_0, g_0)$.

We may assume that $p_0(\mu) = (s_0, g_0)$, which means that, we can simply assume that $p_j(\mu) = (s_0, \dot{g}_0)$ for all $j \leq n$ AND, by $Γ_i^{\mu}$ $\frac{\mu}{l}$, we can assume that ρ_1 forces a value α_0 on $\mathit{rk}_{\dot{D}}(s_0),$ and on the witnessing ℓ_0 .

There is an extension fan $\langle p_0, \bar{p}_1, \cdots, \bar{p}_n \rangle$ so that each \bar{p}_k forces a value on $\dot{q}_0 \restriction \ell_0$ and \bar{p}_1 picks an s_1 so that each $\bar{p}_k \Vdash (s_1, g_0) < (s_0, g_0)$ and \bar{p}_1 forces that $rk(s_1) = \alpha_1 < \alpha_0$.

Repeat this finitely many times (as rank descends) we end up with there being a g_1 such that $\bar{p}_1 \Vdash (s_1, g_1) \in D$ and, for all $1 \leq k \leq n$ and $\bar{p}_k \Vdash (s_1, g_1) < (s_0, g_0)$.

Make the same steps (keep extending the fan) so that we then have an s_2 and \dot{g}_2 so that $\bar{p}_2 \Vdash (s_2, \dot{g}_2) \in \dot{D},$ and each $\bar{p}_k \Vdash (s_2, g_2) < (s_1, g_1)$.

Definition (from Avraham)

h is a log-measure on a set *e* if $h(k) = 0$ for all $k \in e$ and if $h(e_1 \cup e_2) > l > 0$, then one of $h(e_1)$, $h(e_2)$ is at least ℓ .

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익(연

Definition (from Avraham)

h is a log-measure on a set *e* if $h(k) = 0$ for all $k \in e$ and if $h(e_1 \cup e_2) > l > 0$, then one of $h(e_1)$, $h(e_2)$ is at least ℓ .

Definition

the log-measure (*e*, *h*) is built from the sequence $\langle (e_1, h_1), \ldots, (e_n, h_n) \rangle$ (max(e_k) < min(e_{k+1})) if $e \subset (e_1 \cup \cdots e_n)$ and if $x \subset e$ is *h*-positive, then there is a *k* such that $x \cap e_k$ is *h^k* -positive

Definition

 $q = (w^q, T^q) \in Q_{\text{Bould}}$ if $\mathcal{T}^q = \langle t_k = (e_k, h_k) : k \in \omega \rangle$ and $max(e_k) < min(e_{k+1})$ and $liminf\{h_k(e_k) : k \in \omega\} = \infty$ $\mathsf{We} \mathsf{ let } \mathsf{int}(\mathcal{T}) = \bigcup_{k} \mathsf{int}(t_k) = \bigcup_{k} e_k \mathsf{ and }$ $(w_2, T_2) < (w_1, T_1)$ if each t_k^2 is built from members of T_1 and there is an ℓ such that $w_1 = w_2 \cap \text{min}(\text{int}(t^1_\ell))$ and $w_2 \setminus w_1 \subset \text{int}(T_1) \setminus \text{min}(\text{int}(t^1_\ell))$

Q_{207} and \aleph_1 -directed

K ロ > K 御 > K ミ > K ミ > 「ミ → の Q Q →

Definition (how to handle \lt_c for \mathcal{Q}_{Boul})

A subset $Q \subset Q_{Boulq}$ is in \mathbb{Q}_{207} if it is closed under finite changes, the subfamily $\{q \in Q : w^q = \emptyset\}$ is directed, and

whenever $\{(w_n, T_n) : n \in \omega\}$ is pre-dense, there is a single T such that, $(\emptyset, T) \in Q$ and for each *n*, there is an ℓ_n such that $(w_n, T \setminus \ell_n) < (w_n, T_n)$. (we made it upward absolute)

Definition (how to handle \lt_c for \mathcal{Q}_{Boul})

A subset $Q \subset Q_{Boulq}$ is in \mathbb{Q}_{207} if it is closed under finite changes, the subfamily $\{q \in Q : w^q = \emptyset\}$ is directed, and

whenever $\{(w_n, T_n) : n \in \omega\}$ is pre-dense, there is a single T such that, $(\emptyset, T) \in Q$ and for each *n*, there is an ℓ_n such that $(w_n, T \setminus \ell_n) < (w_n, T_n)$. (we made it upward absolute)

Lemma (Fischer-Steprans partially)

If $Q \in \mathbb{Q}_{207}$ and P is ccc, and $\Vdash_{P} Q \subset Q_1 \in \mathbb{Q}_{207}$ then *Q* <*^c P* ∗ *Q*1*. Furthermore, if Q* ⊂ Q*Bould is closed under finite changes and weakly centered, and P is ccc, then there is a* $P * C_{2^{\omega}}$ -name Q_1 such that $\mathsf{P} \subset Q_1 \in \mathbb{Q}_{207}$ and adds an *unsplit real over V.*

Let $\mu < \lambda$ *be a limit of cofinality* $\neq \kappa$ *and assume that* $\mathbb{P}_{\mu,i+1}$ *is a* $Γ_i^{\mu}$ $^{\mu}_{i}$ -pure extension of $\mathbb{P}_{\mu,i}$. Assume further that $Q_{\mu,i}$ is a Pµ,*ⁱ* ∗ C2^ω *-name of a member of* Q207*. Then there is a* Pµ,*i*+¹ ∗ C2ω+2^ω *-name Q*˙ µ,*i*+¹ *that is forced to be a member of* \mathbb{Q}_{207} and such that $\mathbb{P}_{\mu+1,i+1}$ is a $\mathsf{\Gamma}^{\mu+1}_i$ $_{i}^{\mu+1}$ -pure extension of $\mathbb{P}_{\mu+1,i}.$ *In addition, Q*˙ µ,*i*+¹ *can be chosen so that it adds an unsplit real over the extension by* $\mathbb{P}_{\mu,i}$ *.*

Let $\mu < \lambda$ *be a limit of cofinality* $\neq \kappa$ *and assume that* $\mathbb{P}_{\mu,i+1}$ *is a* $Γ_i^{\mu}$ $^{\mu}_{i}$ -pure extension of $\mathbb{P}_{\mu,i}$. Assume further that $Q_{\mu,i}$ is a Pµ,*ⁱ* ∗ C2^ω *-name of a member of* Q207*. Then there is a* Pµ,*i*+¹ ∗ C2ω+2^ω *-name Q*˙ µ,*i*+¹ *that is forced to be a member of* \mathbb{Q}_{207} and such that $\mathbb{P}_{\mu+1,i+1}$ is a $\mathsf{\Gamma}^{\mu+1}_i$ $_{i}^{\mu+1}$ -pure extension of $\mathbb{P}_{\mu+1,i}.$ *In addition, Q*˙ µ,*i*+¹ *can be chosen so that it adds an unsplit real over the extension by* $\mathbb{P}_{\mu,i}$ *.*

Remark

When handling a pre-dense $\{(\pmb{\iota}_n, \pmb{\tau}_n): n\in\omega\}$ (in $\pmb{\mathit{V}}[\pmb{G}_{\mu,i}]\}$ from $\dot{Q}_{\mu,i}$, towards extending into \mathbb{Q}_{207} we may not be able to do so (Cohen forcing) while keeping things Γ_{μ,i}-pure

but then we Cohen force with fans as side-conditions to add to $\dot{Q}_{\mu,i+1}$ in a Γ $^\mu_i$ μ ^{μ}-pure way and destroy the pre-density.

conclusion and questions

Lemma

If we never use Hechler for $\alpha > 0$, we obtain $\kappa = \mathfrak{t} = \mathfrak{b} < \lambda = \mathfrak{s}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

conclusion and questions

Lemma

If we never use Hechler for $\alpha > 0$, we obtain $\kappa = \mathfrak{t} = \mathfrak{b} < \lambda = \mathfrak{s}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Lemma

If we do as discussed, we get $\kappa = \mathfrak{t} = \mathfrak{h} < \lambda = \mathfrak{b} = \mathfrak{s}$

If we never use Hechler for $\alpha > 0$, we obtain $\kappa = \mathfrak{t} = \mathfrak{b} < \lambda = \mathfrak{s}$

Lemma

If we do as discussed, we get $\kappa = \mathfrak{t} = \mathfrak{h} < \lambda = \mathfrak{b} = \mathfrak{s}$

Corollary

There is an easy trick to lower t *to* ω_1 *(or any other value) while leaving others the same.*

KEL KALLA BIKA BIKA KA

If we never use Hechler for $\alpha > 0$, we obtain $\kappa = \mathfrak{t} = \mathfrak{b} < \lambda = \mathfrak{s}$

Lemma

If we do as discussed, we get $\kappa = \mathfrak{t} = \mathfrak{h} < \lambda = \mathfrak{b} = \mathfrak{s}$

Corollary

There is an easy trick to lower t *to* ω_1 *(or any other value) while leaving others the same.*

イロト イ押 トイヨ トイヨ トーヨー

 QQQ

Question

Is it consistent to have $\omega_1 < \mathfrak{h} < \mathfrak{b} < \mathfrak{s}$?

Is it consistent to hae $\omega_1 < \mathfrak{h} < \mathfrak{s} < \mathfrak{b}$?