Coherent adequate forcing and preserving CH

Miguel Angel Mota

Joint work with John Krueger

Forcing and its applications retrospective workshop

KORKARA CERKER SORA

Introduction

The method of side conditions, invented by Todorcevic, describes a style of forcing in which elementary substructures are included in the conditions of a forcing poset *P* to ensure properness of P and hence, the preservation of ω_1 .

Definition

If $q \in P$ and $N \prec H(\theta)$ with $|N| = \aleph_0$, then

- 1 *q* is said to be (*N*, *P*)-generic iff for every dense subset *D* of *P* belonging to *N*, *D* ∩ *N* is predense below *q*.
- 2 *q* is said to be strongly (*N*, *P*)-generic iff for every dense subset *D* of *P* ∩ *N*, *D* is predense below *q*.

R1 By elementarity, if *D* is a dense subset of *P* and $D, P \in N$,

Introduction

The method of side conditions, invented by Todorcevic, describes a style of forcing in which elementary substructures are included in the conditions of a forcing poset *P* to ensure properness of P and hence, the preservation of ω_1 .

Definition

If $q \in P$ and $N \prec H(\theta)$ with $|N| = \aleph_0$, then

- 1 *q* is said to be (*N*, *P*)-generic iff for every dense subset *D* of *P* belonging to *N*, *D* ∩ *N* is predense below *q*.
- 2 *q* is said to be strongly (*N*, *P*)-generic iff for every dense subset *D* of *P* ∩ *N*, *D* is predense below *q*.

R1 By elementarity, if *D* is a dense subset of *P* and $D, P \in N$, then $D \cap N$ is a dense subset of $P \cap N$. So, if $P \in N$, then $2 \Rightarrow 1$.

Introduction

The method of side conditions, invented by Todorcevic, describes a style of forcing in which elementary substructures are included in the conditions of a forcing poset *P* to ensure properness of P and hence, the preservation of ω_1 .

Definition

If $q \in P$ and $N \prec H(\theta)$ with $|N| = \aleph_0$, then

- 1 *q* is said to be (*N*, *P*)-generic iff for every dense subset *D* of *P* belonging to *N*, *D* ∩ *N* is predense below *q*.
- 2 *q* is said to be strongly (*N*, *P*)-generic iff for every dense subset *D* of *P* ∩ *N*, *D* is predense below *q*.

R1 By elementarity, if *D* is a dense subset of *P* and $D, P \in N$, then $D \cap N$ is a dense subset of $P \cap N$. So, if $P \in N$, then $2 \Rightarrow 1$. **R2** If *q* is strongly (N, P) -generic, then *q* forces that $N \cap G$ is a V-generic filter on the ctble. set *N* ∩*P*. So, *q* adds a Cohen real.

A typical condition of a forcing *P* equipped with side cond. is a pair (*x*, *A*) where *x* is an approximation to the desired generic object and *A* is a finite set of ctble. elementary substructures such that if $N \in A$, then (x, A) is (N, P) -generic.

Friedman and Mitchell independently took the first step in conditions for adding a club subset of ω_2 . Neeman was the first

The forcing posets of F, M, and N for adding a club of ω_2 with

A typical condition of a forcing *P* equipped with side cond. is a pair (*x*, *A*) where *x* is an approximation to the desired generic object and *A* is a finite set of ctble. elementary substructures such that if $N \in A$, then (x, A) is (N, P) -generic.

Friedman and Mitchell independently took the first step in generalizing this method from adding generic objects of size ω_1 to adding larger objects by defining forcing posets with finite conditions for adding a club subset of ω_2 . Neeman was the first to simplify the side conditions of F. and M. by presenting a general framework for forcing on ω_2 with side conditions.

A typical condition of a forcing *P* equipped with side cond. is a pair (*x*, *A*) where *x* is an approximation to the desired generic object and *A* is a finite set of ctble. elementary substructures such that if $N \in A$, then (x, A) is (N, P) -generic.

Friedman and Mitchell independently took the first step in generalizing this method from adding generic objects of size ω_1 to adding larger objects by defining forcing posets with finite conditions for adding a club subset of ω_2 . Neeman was the first to simplify the side conditions of F. and M. by presenting a general framework for forcing on ω_2 with side conditions.

The forcing posets of F, M, and N for adding a club of ω_2 with finite cond. all force that $2^\omega=\omega_2.$ In fact, they can be factored in many ways so that the quotient forcing also has strongly generic cond. in the intermediate extensions.

We solve this problem by defining a forcing poset which adds a club to a fat stationary set and falls in the class of coherent

We solve this problem by defining a forcing poset which adds a club to a fat stationary set and falls in the class of coherent adequate type forcings.

We solve this problem by defining a forcing poset which adds a club to a fat stationary set and falls in the class of coherent adequate type forcings.

Our main result is that any coherent adequate forcing preserves CH.

We solve this problem by defining a forcing poset which adds a club to a fat stationary set and falls in the class of coherent adequate type forcings.

Our main result is that any coherent adequate forcing preserves CH.

Moreover, any coherent adequate forcing on *H*(λ) (meaning that our side conditions are ctble. elementary substructures of $H(\lambda)$), where $2^{\omega} < \lambda$ is a cardinal of uncountable cofinality, collapses 2^ω to have size ω_1 , preserves $(2^\omega)^+$, and forces CH.

From now on, assume that $\lambda > \omega_2$ is a fixed cardinal of uncountable cofinality. Also fix a predicate $Y \subseteq H(\lambda)$, which we assume codes a well-ordering of $H(\lambda)$.

Let X be the set of countable elementary substructures

KEIKK@IKKEIKKEIK E 1990

From now on, assume that $\lambda > \omega_2$ is a fixed cardinal of uncountable cofinality. Also fix a predicate $Y \subseteq H(\lambda)$, which we assume codes a well-ordering of $H(\lambda)$.

Let $\mathcal X$ be the set of countable elementary substructures $N \prec (H(\lambda), \in, Y)$ and let $Γ := S^{\omega_2}_{\omega_1}$ be the set of ordinals in ω_2 having uncountable cofinality. So, if *N* is in X , then *N* is in $H(\lambda)$ and Γ is definable in *N*.

KID K@ K K E X K E X E YO QO

From now on, assume that $\lambda \geq \omega_2$ is a fixed cardinal of uncountable cofinality. Also fix a predicate $Y \subseteq H(\lambda)$, which we assume codes a well-ordering of $H(\lambda)$.

Let $\mathcal X$ be the set of countable elementary substructures $N \prec (H(\lambda), \in, Y)$ and let $Γ := S^{\omega_2}_{\omega_1}$ be the set of ordinals in ω_2 having uncountable cofinality. So, if *N* is in X , then *N* is in $H(\lambda)$ and Γ is definable in *N*.

Now we introduce a way to compare members of \mathcal{X} : For $M \in X$, Γ_M denote the set of $\beta \in S_{\omega_1}^{\omega_2}$ such that

KORKAR KERKER E VOOR

From now on, assume that $\lambda \geq \omega_2$ is a fixed cardinal of uncountable cofinality. Also fix a predicate $Y \subseteq H(\lambda)$, which we assume codes a well-ordering of $H(\lambda)$.

Let $\mathcal X$ be the set of countable elementary substructures $N \prec (H(\lambda), \in, Y)$ and let $Γ := S^{\omega_2}_{\omega_1}$ be the set of ordinals in ω_2 having uncountable cofinality. So, if *N* is in X , then *N* is in $H(\lambda)$ and Γ is definable in *N*.

Now we introduce a way to compare members of \mathcal{X} : For $M \in X$, Γ_M denote the set of $\beta \in S_{\omega_1}^{\omega_2}$ such that

 $β = min(Γ \setminus supp(M ∩ β))$

KORKAR KERKER E VOOR

So, for every $\beta \in S_{\omega_1}^{\omega_2},\, \beta \in \mathsf{\Gamma}_M$ iff there are no ordinals of uncountable cofinality in the open interval $(sup(M \cap \beta), \beta)$.

In particular, $\omega_1 \in \Gamma_M$, $|\Gamma_M| = \aleph_0$ and $\Gamma_M \subseteq \Gamma_N$ if $M \subseteq N$.

KEL KALA KELKEL E YAN

So, for every $\beta \in S_{\omega_1}^{\omega_2},\, \beta \in \mathsf{\Gamma}_M$ iff there are no ordinals of uncountable cofinality in the open interval $(\textit{sup}(M \cap \beta), \beta)$.

In particular, $\omega_1 \in \Gamma_M$, $|\Gamma_M| = \aleph_0$ and $\Gamma_M \subseteq \Gamma_N$ if $M \subseteq N$.

KOD KAD KED KED E VOOR

So, for every $\beta \in S_{\omega_1}^{\omega_2},\, \beta \in \mathsf{\Gamma}_M$ iff there are no ordinals of uncountable cofinality in the open interval $(\textit{sup}(M \cap \beta), \beta)$.

In particular, $\omega_1 \in \Gamma_M$, $|\Gamma_M| = \aleph_0$ and $\Gamma_M \subseteq \Gamma_N$ if $M \subseteq N$.

Lemma *If M*, $N \in \mathcal{X}$, then $\beta_{M,N} := max(\Gamma_M \cap \Gamma_N)$ exists.

KORK EX KEY KORK KORK

So, for every $\beta \in S_{\omega_1}^{\omega_2},\, \beta \in \mathsf{\Gamma}_M$ iff there are no ordinals of uncountable cofinality in the open interval $(sup(M \cap \beta), \beta)$.

In particular, $ω_1$ ∈ Γ_M, |Γ_M| = \aleph_0 and Γ_M ⊂ Γ_N if *M* ⊂ *N*.

Lemma *If M*, $N \in \mathcal{X}$, then $\beta_{M,N} := max(\Gamma_M \cap \Gamma_N)$ exists.

Lemma *If M*, $N \in \mathcal{X}$ and *M*^{*'*} denotes ($M \cap \omega_2$) ∪ *lim*(($M \cap \omega_2$)), then $M' \cap N' \subseteq \beta_{M,N}$.

KORKARA CERKER SORA

Since $\beta_{MN} > \omega_1$, $M < N$ implies that $M \cap \omega_1 < N \cap \omega_1$ and *M* ∼ *N* implies that *M* ∩ $ω_1$ = *N* ∩ $ω_1$.

A subset *A* of X is **adequate** iff every 2 elements of *A* are

Since $\beta_{M,N} \geq \omega_1$, $M < N$ implies that $M \cap \omega_1 < N \cap \omega_1$ and *M* ∼ *N* implies that $M ∩ ω_1 = N ∩ ω_1$.

A subset *A* of X is **adequate** iff every 2 elements of *A* are

KID K@ K K E X K E X E YO QO

Since $\beta_{M,N} \geq \omega_1$, $M < N$ implies that $M \cap \omega_1 < N \cap \omega_1$ and *M* ∼ *N* implies that $M ∩ ω_1 = N ∩ ω_1$.

A subset *A* of X is **adequate** iff every 2 elements of *A* are comparable under ≤.

KEIKK@IKKEIKKEIK E 1990

Since $\beta_{M,N} \geq \omega_1$, $M < N$ implies that $M \cap \omega_1 < N \cap \omega_1$ and *M* ∼ *N* implies that $M \cap \omega_1 = N \cap \omega_1$.

A subset *A* of X is **adequate** iff every 2 elements of *A* are comparable under ≤.

Note that if *A* is finite and adequate, $N \in \mathcal{X}$ and $A \in \mathcal{X}$, then *N* has access to all the the initial segments of each $M \in A$. So, *A* ∪ {*N*} is adequate.

Next we define remainder points, which describe the overlap of models past their comparison point.

If {*M*, *N*} is adequate, then, the reminder points of *N* over *M*, denoted by $R_M(N)$, is defined as the set of β satisfying either:

a
$$
N \leq M
$$
 and $\beta = min(N \setminus \beta_{M,N})$, or

b there is $\gamma \in M \setminus \beta_{M,N}$, such that $\beta = min(N \setminus \gamma)$.

This remainder is always finite, since otherwise there would be a common limit point of *M* and *N* greater than β_{MN} !!!!

KID K@ K K E X K E X E YO QO

If {*M*, *N*} is adequate, then, the reminder points of *N* over *M*, denoted by $R_M(N)$, is defined as the set of β satisfying either:

a
$$
N \leq M
$$
 and $\beta = min(N \setminus \beta_{M,N})$, or

b there is $\gamma \in M \setminus \beta_{M,N}$, such that $\beta = min(N \setminus \gamma)$.

This remainder is always finite, since otherwise there would be a common limit point of *M* and *N* greater than β_{MN} !!!! Given an adequate *A*, define $R_\mathcal{A} = \bigcup \{R_\mathcal{M} (N) \, : \, \mathcal{M}, N \in \mathcal{A}\}.$

KID K@ K K E X K E X E YO QO

If {*M*, *N*} is adequate, then, the reminder points of *N* over *M*, denoted by $R_M(N)$, is defined as the set of β satisfying either:

a
$$
N \leq M
$$
 and $\beta = min(N \setminus \beta_{M,N})$, or

b there is $\gamma \in M \setminus \beta_{M,N}$, such that $\beta = min(N \setminus \gamma)$.

This remainder is always finite, since otherwise there would be a common limit point of *M* and *N* greater than β_{MN} !!!! Given an adequate *A*, define $R_\mathcal{A} = \bigcup \{R_\mathcal{M} (N) \, : \, \mathcal{M}, N \in \mathcal{A}\}.$

Given $S \subseteq \omega_2$ and an adequate A, A is said to be (S)-adequate if $R_A \subset S$.

If {*M*, *N*} is adequate, then, the reminder points of *N* over *M*, denoted by $R_M(N)$, is defined as the set of β satisfying either:

a
$$
N \leq M
$$
 and $\beta = min(N \setminus \beta_{M,N})$, or

b there is $\gamma \in M \setminus \beta_{M,N}$, such that $\beta = min(N \setminus \gamma)$.

This remainder is always finite, since otherwise there would be a common limit point of *M* and *N* greater than β_{MN} !!!! Given an adequate *A*, define $R_\mathcal{A} = \bigcup \{R_\mathcal{M} (N) \, : \, \mathcal{M}, N \in \mathcal{A}\}.$

Given $S \subseteq \omega_2$ and an adequate A, A is said to be (S)-adequate if $R_A \subset S$.

A finite set *A* is said to be **coherent (***S***)-adequate** if *A* is (*S*)-adequate and *A* is symmetric (style Asperó-Mota).

If *M*, $N \in \mathcal{X}$, then they are said to be **strongly isomorphic** iff there is an isomorphism $\sigma_{M,N} : (M, \in, Y) \longrightarrow (N, \in, Y)$ being the identity on $M \cap N$. Note that in such a case $M \cap \omega_1 = N \cap \omega_1$.

Let *A* be a finite subset of X . *A* is said to be **coherent (***S***)-adequate** if *A* is an (*S*)-adequate set satisfying:

-
-
-

If *M*, $N \in \mathcal{X}$, then they are said to be **strongly isomorphic** iff there is an isomorphism σ_{MN} : $(M, \in, Y) \longrightarrow (N, \in, Y)$ being the identity on *M* ∩ *N*. Note that in such a case $M \cap \omega_1 = N \cap \omega_1$.

Definition

Let A be a finite subset of X . A is said to be **coherent (***S***)-adequate** if *A* is an (*S*)-adequate set satisfying:

- (1) Given *M*, *N* in *A*, if $M \cap \omega_1 = N \cap \omega_1$ (i.e., $M \sim N$), then there is a (unique) strong isomorphism between them.
- (2) Given *M*, *N* in *A*, if $M \cap \omega_1 < N \cap \omega_1$ (i.e., $M < N$), then there is some *P* in *A* such that $N \cap \omega_1 = P \cap \omega_1$ and $M \in P$.
- (3) *A* is closed under isomorphisms.

The rest of this talk is part of my joint work with K. From now on, fix $S \subseteq \omega_2$ such that $S \cap cof(\omega_1)$ is stationary and also fix $\mathcal{Y} \subseteq \mathcal{X}$ stationary in $[H(\lambda)]^{\omega}$ and closed under iso.

If *M*, $N \in \mathcal{X}$, then they are said to be **strongly isomorphic** iff there is an isomorphism σ_{MN} : $(M, \in, Y) \longrightarrow (N, \in, Y)$ being the identity on *M* ∩ *N*. Note that in such a case $M \cap \omega_1 = N \cap \omega_1$.

Definition

Let A be a finite subset of X . A is said to be **coherent (***S***)-adequate** if *A* is an (*S*)-adequate set satisfying:

- (1) Given *M*, *N* in *A*, if $M \cap \omega_1 = N \cap \omega_1$ (i.e., $M \sim N$), then there is a (unique) strong isomorphism between them.
- (2) Given *M*, *N* in *A*, if $M \cap \omega_1 < N \cap \omega_1$ (i.e., $M < N$), then there is some *P* in *A* such that $N \cap \omega_1 = P \cap \omega_1$ and $M \in P$.
- (3) *A* is closed under isomorphisms.

The rest of this talk is part of my joint work with K. From now on, fix $S \subseteq \omega_2$ such that $S \cap cof(\omega_1)$ is stationary and also fix $\mathcal{Y} \subseteq \mathcal{X}$ stationary in $[H(\lambda)]^{\omega}$ and closed under iso. By the Tarski-Vaught test, the club $\mathcal X$ is closed under iso.

A poset *P* is said to be an **(S,** Y**)-coherent adequate type forcing** if its conditions are pairs (*x*, *A*) satisfying:

(I) *x* is a finite subset of $H(\lambda)$,

(II) $A \subseteq Y$ and A is a coherent (S)-adequate set,

- (III) If $(y, B) \le (x, A)$, N and N' are iso. sets in B, and $(x, A) \in N$, then $(y, B) \leq \sigma_{N,N'}((x, A)) \in P$ (symmetry),
- (IV) If $\{M_0, \ldots, M_n\} \subseteq \mathcal{Y}$ is coherent (*S*)-adequate and $(x, A) \in M_0 \cap \ldots \cap M_n$, then there is a condition $(y, B) \le (x, A)$ s.t. $\{M_0, \ldots, M_n\} \subseteq B$, and (V) For all $M \in A$, (x, A) is strongly (M, P) -generic.

KORK EX KEY KORK KORK

A poset *P* is said to be an **(S,** Y**)-coherent adequate type forcing** if its conditions are pairs (*x*, *A*) satisfying:

(I) *x* is a finite subset of $H(\lambda)$,

(II) $A \subseteq Y$ and A is a coherent (S)-adequate set,

- (III) If $(y, B) \le (x, A)$, N and N' are iso. sets in B, and $(x, A) \in N$, then $(y, B) \leq \sigma_{N,N'}((x, A)) \in P$ (symmetry),
- (IV) If $\{M_0, \ldots, M_n\} \subseteq \mathcal{Y}$ is coherent (*S*)-adequate and $(x, A) \in M_0 \cap \ldots \cap M_n$, then there is a condition $(y, B) \le (x, A)$ s.t. $\{M_0, \ldots, M_n\} \subseteq B$, and

(V) For all $M \in A$, (x, A) is strongly (M, P) -generic.

By clause (*IV*) and since $\mathcal Y$ is stat in $[H(\lambda)]^\omega$, any $(S, \mathcal Y)$ coherent adequate poset preserves ω_1 and adds Cohen reals. We will see that we only add a small number of new reals.

Lemma

If M and *N* are in X and iso., then $\sigma_{M,N}(\alpha) = \alpha$ for all $\alpha \in M \cap 2^{\omega}$. Hence, $M \cap 2^{\omega} = N \cap 2^{\omega}$.

Proof. It is enough to check that $r_\alpha = r_{\sigma_{M,N}(\alpha)}$. But $n \in r_\alpha$ iff

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 → 9 Q Q*

Lemma

If M and *N* are in X and iso., then $\sigma_{M,N}(\alpha) = \alpha$ for all $\alpha \in M \cap 2^{\omega}$. Hence, $M \cap 2^{\omega} = N \cap 2^{\omega}$.

Proof. It is enough to check that $r_\alpha = r_{\sigma_{M,N}(\alpha)}$. But $n \in r_\alpha$ iff $M \models Z(\alpha, n)$ iff $N \models Z(\sigma_{M,N}(\alpha), n)$ iff $n \in r_{\sigma_{M,N}(\alpha)}$.

Corollary: Any (S, Y) -coherent adeq. poset collapses 2^{ω} to ω_1 .

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 → 9 Q Q*

Lemma

If M and *N* are in X and iso., then $\sigma_{M,N}(\alpha) = \alpha$ for all $\alpha \in M \cap 2^{\omega}$. Hence, $M \cap 2^{\omega} = N \cap 2^{\omega}$.

Proof. It is enough to check that $r_\alpha = r_{\sigma_{M,N}(\alpha)}$. But $n \in r_\alpha$ iff $M \models Z(\alpha, n)$ iff $N \models Z(\sigma_{M,N}(\alpha), n)$ iff $n \in r_{\sigma_{M,N}(\alpha)}$.

Note that if *A* is a coherent (*S*)-adequate set $M \cap \omega_1 < N \cap \omega_1$, then there is $N' \in A$ s.t. $N \cap \omega_1 = N' \cap \omega_1$ and $M \in N'$. Since A $\mathsf{in} \ \mathsf{closed}, \ \sigma_{\mathsf{N}',\mathsf{N}}(\mathsf{M}) \in \mathsf{N} \cap \mathsf{A}$. So, $\mathsf{M} \cap 2^\omega = \sigma_{\mathsf{N}',\mathsf{N}}(\mathsf{M}) \cap 2^\omega \subseteq \mathsf{N}.$

Corollary: Any (S, Y) -coherent adeq. poset collapses 2^{ω} to ω_1 .

KORK EX KEY KORK KORK

Lemma

If M and *N* are in X and iso., then $\sigma_{M,N}(\alpha) = \alpha$ for all $\alpha \in M \cap 2^{\omega}$. Hence, $M \cap 2^{\omega} = N \cap 2^{\omega}$.

Proof. It is enough to check that $r_\alpha = r_{\sigma_{M,N}(\alpha)}$. But $n \in r_\alpha$ iff $M \models Z(\alpha, n)$ iff $N \models Z(\sigma_{M,N}(\alpha), n)$ iff $n \in r_{\sigma_{M,N}(\alpha)}$.

Note that if *A* is a coherent (*S*)-adequate set $M \cap \omega_1 < N \cap \omega_1$, then there is $N' \in A$ s.t. $N \cap \omega_1 = N' \cap \omega_1$ and $M \in N'$. Since A $\mathsf{in} \ \mathsf{closed}, \ \sigma_{\mathsf{N}',\mathsf{N}}(\mathsf{M}) \in \mathsf{N} \cap \mathsf{A}$. So, $\mathsf{M} \cap 2^\omega = \sigma_{\mathsf{N}',\mathsf{N}}(\mathsf{M}) \cap 2^\omega \subseteq \mathsf{N}.$

Corollary: Any (S, Y) -coherent adeq. poset collapses 2^{ω} to ω_1 .

Lemma

If $R \subseteq H(\lambda)$ *and* $z \in H(\lambda)$ *, then there are* $M, N \in \mathcal{Y}$ *satisfying:*

- (1) *z* ∈ *M* ∩ *N,*
- (2) {*M*, *N*} *is coherent (S)-adequate,*
- (3) *the structures* (*M*, ∈, *Y*, *R*) *and* (*N*, ∈, *Y*, *R*) *are elementary in* (*H*(λ), ∈, *Y*, *R*) *and are isomorphic, and*
- (4) *there are* $\alpha \in M \cap (2^{\omega})^+$ *and* $\beta \in N \cap (2^{\omega})^+$ *s.t.* $\alpha \neq \beta$ *and* $\sigma_{M,N}(\alpha) = \beta$.

Sketch of proof for the case $2^\omega \geq \omega_2$: For each $i \in (2^\omega)^+$ fix

KEL KALA KELKEL E YAN

Lemma

If $R \subseteq H(\lambda)$ *and* $z \in H(\lambda)$, then there are $M, N \in \mathcal{Y}$ satisfying:

- (1) *z* ∈ *M* ∩ *N,*
- (2) {*M*, *N*} *is coherent (S)-adequate,*
- (3) *the structures* (*M*, ∈, *Y*, *R*) *and* (*N*, ∈, *Y*, *R*) *are elementary in* (*H*(λ), ∈, *Y*, *R*) *and are isomorphic, and*
- (4) *there are* $\alpha \in M \cap (2^{\omega})^+$ *and* $\beta \in N \cap (2^{\omega})^+$ *s.t.* $\alpha \neq \beta$ *and* $\sigma_{M,N}(\alpha) = \beta$.

 $\operatorname{\mathsf{Sketch}}$ of proof for the case $2^\omega \geq \omega_2$: For each $i \in (2^\omega)^+$ fix $N_i \in \mathcal{Y}$ s.t. *z* and *i* are in N_i and $N_i \prec (H(\lambda), \in, Y, R)$. By a Δ system, there is a cofinal $I \subseteq (2^\omega)^+$ s.t. for all *i*, *j* in *I*, N_i and N_j are strongly isomorphic.

KO KA KO KERKER E KORA

Fix $i \in I$ and let $M = N_i$. Now, fix $j \in I$ such that $sup(M \cap (2^{\omega})^+) < j$ and let $N = N_j$. Let us check that M and N witness the lemma. Properties (1) and (3) are obvious.

Since $2^\omega \ge \omega_2$ and M and N are isomorphic and by the above lemma, $M \cap \omega_2 = N \cap \omega_2$. So, trivially $\{M, N\}$ is adequate.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 → 9 Q Q*

Fix $i \in I$ and let $M = N_i$. Now, fix $j \in I$ such that $sup(M \cap (2^{\omega})^+) < j$ and let $N = N_j$. Let us check that M and N witness the lemma. Properties (1) and (3) are obvious.

Since $2^\omega \geq \omega_2$ and M and N are isomorphic and by the above lemma, $M \cap \omega_2 = N \cap \omega_2$. So, trivially $\{M, N\}$ is adequate.

Also, $R_M(N) = R_N(M) = \emptyset$ and hence, $\{M, N\}$ is (S) coherent adequate. This verifies (2).

KORKAR KERKER E VOOR

Fix $i \in I$ and let $M = N_i$. Now, fix $j \in I$ such that $sup(M \cap (2^{\omega})^+) < j$ and let $N = N_j$. Let us check that M and N witness the lemma. Properties (1) and (3) are obvious.

Since $2^\omega \geq \omega_2$ and M and N are isomorphic and by the above lemma, $M \cap \omega_2 = N \cap \omega_2$. So, trivially $\{M, N\}$ is adequate.

Also, $R_M(N) = R_N(M) = \emptyset$ and hence, $\{M, N\}$ is (S) coherent adequate. This verifies (2).

For (4), let $\beta := j$ and use that $(2^{\omega})^{+}$ is either equal to λ or definable in *H*(λ). So,

 $\alpha := \sigma_{\textit{M, N}}(\beta) < \textit{sup}(\textit{M} \cap (2^\omega)^+) < j = \beta$

KORKAR KERKER E VOOR

Lemma Let *P* be an (S, Y)-coherent adeq. poset. If *p* forces that $\langle f_i\,:\,i< (2^\omega)^+ \rangle$ is a sequence of functions from ω to $\omega,$ then there is $q \leq p$ and $\alpha < \beta$ such that q forces that $f_\alpha = f_\beta.$

Sketch of proof. Define $R \subset H(\lambda)$ by letting $R(z, i, n, m)$ if $z \in P$ and $z \Vdash \dot{f}_i(n) = m$. Fix *M* and *N* in $\mathcal Y$ satisfying:

-
-
- (3) the structures (M, \in, Y, R) and (N, \in, Y, R) are elementary
- (4) there are $\alpha \in M \cap (2^{\omega})^+$ and $\beta \in N \cap (2^{\omega})^+$ s.t. $\alpha \neq \beta$ and

Lemma Let *P* be an (S, Y)-coherent adeq. poset. If *p* forces that $\langle f_i\,:\,i< (2^\omega)^+ \rangle$ is a sequence of functions from ω to $\omega,$ then there is $q \leq p$ and $\alpha < \beta$ such that q forces that $f_\alpha = f_\beta.$

Sketch of proof. Define $R \subset H(\lambda)$ by letting $R(z, i, n, m)$ if $z \in P$ and $z \Vdash f_i(n) = m$. Fix *M* and *N* in $\mathcal Y$ satisfying:

- (1) *p* ∈ *M* ∩ *N*,
- (2) {*M*, *N*} is coherent (*S*)-adequate,
- (3) the structures (M, \in, Y, R) and (N, \in, Y, R) are elementary in $(H(\lambda), \in, Y, R)$ and are isomorphic, and
- (4) there are $\alpha \in M \cap (2^{\omega})^+$ and $\beta \in N \cap (2^{\omega})^+$ s.t. $\alpha \neq \beta$ and $\sigma(\alpha) = \beta$, where $\sigma := \sigma_{MN}$.

By (IV), there is $q = (y, B) \leq p$ such that $M, N \in B$. Check that *q*, α and β work. This follows from the (M, P) -strongly genericity of *q*, the symmetric clause (III) and the fact that if $z \in M \cap P$ and *n*, $m \in \omega$: $z \Vdash \dot{f}_\alpha(n) = m$ iff $\sigma(z) \Vdash \dot{f}_\beta(n) = m$.

Corollary

Any (S, Y)-coherent adeq. P collapses $\left(2^\omega\right)^V$ to ω_1 , forces CH and forces that the successor of $(2^\omega)^V$ in V is equal to $\omega_2.$

Proof. If $p \in P$ collapses the successor of $(2^{\omega})^V$, then there is ω_1 many distinct functions from ω to ω in order type $(2^\omega)^+$!!!

KORKARA REPARA E ADA

Corollary

Any (S, Y)-coherent adeq. P collapses $\left(2^\omega\right)^V$ to ω_1 , forces CH and forces that the successor of $(2^\omega)^V$ in V is equal to $\omega_2.$

Proof. If $p \in P$ collapses the successor of $(2^{\omega})^V$, then there is a sequence of names which *p* forces that is an enumeration of ω_1 many distinct functions from ω to ω in order type $(2^\omega)^+$!!!

KOD KAD KED KED E VOOR

A (psychoanalytic) retrospective analysis

Prior to this work, Asperó and Mota proved that for any cardinal $\lambda \geq \omega_2$ of uncountable cofinality, the λ -symmetric forcing consisting of finite symmetric systems of countable elementary substructures of $H(\lambda)$ ordered by reverse inclusion preserves *CH*. This is one of the the two forcings that they currently use in the first step of their finite support iterations.

KORKAR KERKER E VOOR

A (psychoanalytic) retrospective analysis

Prior to this work, Asperó and Mota proved that for any cardinal $\lambda \geq \omega_2$ of uncountable cofinality, the λ -symmetric forcing consisting of finite symmetric systems of countable elementary substructures of *H*(λ) ordered by reverse inclusion preserves *CH*. This is one of the the two forcings that they currently use in the first step of their finite support iterations.

A *symmetric system* is similar to a coherent adequate set, except that it does not have the adequate structure.

KORKAR KERKER E VOOR

By a result of Miyamoto from 2013, the λ -symmetric poset as well as any coherent adequate forcing on $H(\lambda)$ adds an ω_1 -tree with λ many cofinal branches, for any regular $\lambda > \omega_2$.

that the ω_2 -symm. poset preserves *CH* and adds a Kurepa tree.

(ロ) (@) (경) (경) (경) 경

 2990

By a result of Miyamoto from 2013, the λ -symmetric poset as well as any coherent adequate forcing on $H(\lambda)$ adds an ω_1 -tree with λ many cofinal branches, for any regular $\lambda > \omega_2$.

In an unpublished work from the 80's Todorcevic also noticed that the ω_2 -symm. poset preserves *CH* and adds a Kurepa tree.

KEIKK@IKKEIKKEIK E 1990

By a result of Miyamoto from 2013, the λ -symmetric poset as well as any coherent adequate forcing on $H(\lambda)$ adds an ω_1 -tree with λ many cofinal branches, for any regular $\lambda \geq \omega_2$.

In an unpublished work from the 80's Todorcevic also noticed that the ω_2 -symm. poset preserves CH and adds a Kurepa tree.

Certainly, the *CH* preservation argument of Asperó and Mota slightly intersects the *CH* preservation argument of Krueger and Mota, but the former do not show how to force with side cond. together with another finite set of objects to preserve *CH*.

KO KKO K S A B K S B K V S A V K S

By a result of Miyamoto from 2013, the λ -symmetric poset as well as any coherent adequate forcing on $H(\lambda)$ adds an ω_1 -tree with λ many cofinal branches, for any regular $\lambda > \omega_2$.

In an unpublished work from the 80's Todorcevic also noticed that the ω_2 -symm. poset preserves *CH* and adds a Kurepa tree.

Certainly, the *CH* preservation argument of Asperó and Mota slightly intersects the *CH* preservation argument of Krueger and Mota, but the former do not show how to force with side cond. together with another finite set of objects to preserve *CH*.

This may be an empirical evidence that Krueger's *adequacy* is crucial for this kind of constructions.

KORK ERKEY E VAN

Recall that a stationary set $S \subseteq \omega_2$ is said to be *fat* iff for every club $C \subset \omega_2$, $S \cap C$ contains a closed subset with o. t. $\omega_1 + 1$.

Corollary

Assume CH. If $S \subseteq \omega_2$ *is fat stationary (for every club* $C \subseteq \omega_2$ *, S* ∩ *C* contains a closed subset with order type $\omega_1 + 1$, then *there is an (S, y)-coherent adeq.* $P \subseteq H(\omega_2)$ *preserving* ω_1 , ω_2 , *CH* and s.t. $V^P \models S$ contains a club.

Sketch of proof. W.lo.g. we may assume that $S \cap cof(\omega_1)$ is

Recall that a stationary set $S \subseteq \omega_2$ is said to be *fat* iff for every club $C \subset \omega_2$, $S \cap C$ contains a closed subset with o. t. $\omega_1 + 1$.

Corollary

Assume CH. If $S \subseteq \omega_2$ *is fat stationary (for every club* $C \subseteq \omega_2$ *, S* ∩ *C* contains a closed subset with order type $\omega_1 + 1$, then *there is an (S, y)-coherent adeq.* $P \subseteq H(\omega_2)$ *preserving* ω_1 , ω_2 , *CH* and s.t. $V^P \models S$ contains a club.

Sketch of proof. W.lo.g. we may assume that $S \cap cof(\omega_1)$ is stationary and that for all $\alpha \in S \cap cof(\omega_1)$, $S \cap \alpha$ contains a closed cofinal subset of α .

Let $\lambda = \omega_2$ and let *Y* code *S* together with a well-order of $H(\omega_2)$. In particular, isomorphisms between members of X preserve membership in *S*.

Let y denote the stationary set of $M \in \mathcal{X}$ such that for all $\alpha \in (M \cap S) \cup \{\omega_2\}$, $\sup(M \cap \alpha) \in S$.

If $N \cap \omega_2 \nsubseteq \alpha$, let $\alpha_N := \text{min}(N \setminus \alpha)$.

P is the poset consisting of conditions $p = (x_p, A_p)$ satisfying:

KORK EX KEY KORK KORK

- (i) x_p is a finite set of nonoverlapping pairs whose first coordinate is in *S*,
- (ii) A_p is a finite coherent adequate subset of \mathcal{Y} ,
- (iii) if $\langle \alpha, \alpha' \rangle \in X_p$, $N \in A_p$ and $N \cap \omega_2 \nsubseteq \alpha$, then $N \cap [\alpha, \alpha'] \neq \emptyset$ implies $\alpha, \alpha' \in \mathcal{N}$, and $N \cap [\alpha, \alpha'] = \emptyset$ implies $\langle \alpha_N, \alpha_N \rangle \in X_p$,
- (iv) if γ in R_{A_p} , then $\langle \gamma, \gamma \rangle \in x_p$, and
- (v) *p* is symmetric