Coherent adequate forcing and preserving CH

Miguel Angel Mota

Joint work with John Krueger

Forcing and its applications retrospective workshop

Introduction

The method of side conditions, invented by Todorcevic, describes a style of forcing in which elementary substructures are included in the conditions of a forcing poset *P* to ensure properness of *P* and hence, the preservation of ω_1 .

Definition

If $q \in P$ and $N \prec H(\theta)$ with $|N| = \aleph_0$, then

- 1 *q* is said to be (N, P)-generic iff for every dense subset *D* of *P* belonging to *N*, $D \cap N$ is predense below *q*.
- 2 *q* is said to be strongly (N, P)-generic iff for every dense subset *D* of $P \cap N$, *D* is predense below *q*.

R1 By elementarity, if *D* is a dense subset of *P* and *D*, *P* \in *N*, then $D \cap N$ is a dense subset of $P \cap N$. So, if $P \in N$, then $2 \Rightarrow 1$. **R2** If *q* is strongly (N, P)-generic, then *q* forces that $N \cap G$ is a V-generic filter on the ctble. set $N \cap P$. So, *q* adds a Cohen real.

Introduction

The method of side conditions, invented by Todorcevic, describes a style of forcing in which elementary substructures are included in the conditions of a forcing poset *P* to ensure properness of *P* and hence, the preservation of ω_1 .

Definition

If $q \in P$ and $N \prec H(\theta)$ with $|N| = \aleph_0$, then

- 1 *q* is said to be (N, P)-generic iff for every dense subset *D* of *P* belonging to *N*, $D \cap N$ is predense below *q*.
- 2 *q* is said to be strongly (N, P)-generic iff for every dense subset *D* of $P \cap N$, *D* is predense below *q*.

R1 By elementarity, if *D* is a dense subset of *P* and *D*, $P \in N$, then $D \cap N$ is a dense subset of $P \cap N$. So, if $P \in N$, then $2 \Rightarrow 1$. **R2** If *q* is strongly (N, P)-generic, then *q* forces that $N \cap G$ is a V-generic filter on the ctble. set $N \cap P$. So, *q* adds a Cohen real.

Introduction

The method of side conditions, invented by Todorcevic, describes a style of forcing in which elementary substructures are included in the conditions of a forcing poset *P* to ensure properness of *P* and hence, the preservation of ω_1 .

Definition

If $q \in P$ and $N \prec H(\theta)$ with $|N| = \aleph_0$, then

- 1 *q* is said to be (N, P)-generic iff for every dense subset *D* of *P* belonging to *N*, $D \cap N$ is predense below *q*.
- 2 *q* is said to be strongly (N, P)-generic iff for every dense subset *D* of $P \cap N$, *D* is predense below *q*.

R1 By elementarity, if *D* is a dense subset of *P* and *D*, *P* \in *N*, then $D \cap N$ is a dense subset of $P \cap N$. So, if $P \in N$, then $2 \Rightarrow 1$. **R2** If *q* is strongly (N, P)-generic, then *q* forces that $N \cap G$ is a V-generic filter on the ctble. set $N \cap P$. So, *q* adds a Cohen real.

A typical condition of a forcing *P* equipped with side cond. is a pair (x, A) where *x* is an approximation to the desired generic object and *A* is a finite set of ctble. elementary substructures such that if $N \in A$, then (x, A) is (N, P)-generic.

Friedman and Mitchell independently took the first step in generalizing this method from adding generic objects of size ω_1 to adding larger objects by defining forcing posets with finite conditions for adding a club subset of ω_2 . Neeman was the first to simplify the side conditions of F. and M. by presenting a general framework for forcing on ω_2 with side conditions.

The forcing posets of F, M, and N for adding a club of ω_2 with finite cond. all force that $2^{\omega} = \omega_2$. In fact, they can be factored in many ways so that the quotient forcing also has strongly generic cond. in the intermediate extensions.

A typical condition of a forcing *P* equipped with side cond. is a pair (x, A) where *x* is an approximation to the desired generic object and *A* is a finite set of ctble. elementary substructures such that if $N \in A$, then (x, A) is (N, P)-generic.

Friedman and Mitchell independently took the first step in generalizing this method from adding generic objects of size ω_1 to adding larger objects by defining forcing posets with finite conditions for adding a club subset of ω_2 . Neeman was the first to simplify the side conditions of F. and M. by presenting a general framework for forcing on ω_2 with side conditions.

The forcing posets of F, M, and N for adding a club of ω_2 with finite cond. all force that $2^{\omega} = \omega_2$. In fact, they can be factored in many ways so that the quotient forcing also has strongly generic cond. in the intermediate extensions.

A typical condition of a forcing *P* equipped with side cond. is a pair (x, A) where *x* is an approximation to the desired generic object and *A* is a finite set of ctble. elementary substructures such that if $N \in A$, then (x, A) is (N, P)-generic.

Friedman and Mitchell independently took the first step in generalizing this method from adding generic objects of size ω_1 to adding larger objects by defining forcing posets with finite conditions for adding a club subset of ω_2 . Neeman was the first to simplify the side conditions of F. and M. by presenting a general framework for forcing on ω_2 with side conditions.

The forcing posets of F, M, and N for adding a club of ω_2 with finite cond. all force that $2^{\omega} = \omega_2$. In fact, they can be factored in many ways so that the quotient forcing also has strongly generic cond. in the intermediate extensions.

We solve this problem by defining a forcing poset which adds a club to a fat stationary set and falls in the class of coherent adequate type forcings.

Our main result is that any coherent adequate forcing preserves CH.

We solve this problem by defining a forcing poset which adds a club to a fat stationary set and falls in the class of coherent adequate type forcings.

Our main result is that any coherent adequate forcing preserves CH.

We solve this problem by defining a forcing poset which adds a club to a fat stationary set and falls in the class of coherent adequate type forcings.

Our main result is that any coherent adequate forcing preserves CH.

We solve this problem by defining a forcing poset which adds a club to a fat stationary set and falls in the class of coherent adequate type forcings.

Our main result is that any coherent adequate forcing preserves CH.

From now on, assume that $\lambda \ge \omega_2$ is a fixed cardinal of uncountable cofinality. Also fix a predicate $Y \subseteq H(\lambda)$, which we assume codes a well-ordering of $H(\lambda)$.

Let \mathcal{X} be the set of countable elementary substructures $N \prec (H(\lambda), \in, Y)$ and let $\Gamma := S_{\omega_1}^{\omega_2}$ be the set of ordinals in ω_2 having uncountable cofinality. So, if N is in \mathcal{X} , then N is in $H(\lambda)$ and Γ is definable in N.

Now we introduce a way to compare members of \mathcal{X} : For $M \in X$, Γ_M denote the set of $\beta \in S_{\omega_1}^{\omega_2}$ such that

 $\beta = min(\Gamma \setminus sup(M \cap \beta))$

- ロ ト + 母 ト + 目 ト + 目 - シ へ の

From now on, assume that $\lambda \ge \omega_2$ is a fixed cardinal of uncountable cofinality. Also fix a predicate $Y \subseteq H(\lambda)$, which we assume codes a well-ordering of $H(\lambda)$.

Let \mathcal{X} be the set of countable elementary substructures $N \prec (H(\lambda), \in, Y)$ and let $\Gamma := S_{\omega_1}^{\omega_2}$ be the set of ordinals in ω_2 having uncountable cofinality. So, if N is in \mathcal{X} , then N is in $H(\lambda)$ and Γ is definable in N.

Now we introduce a way to compare members of \mathcal{X} : For $M \in X$, Γ_M denote the set of $\beta \in S^{\omega_2}_{\omega_1}$ such that

 $\beta = \min(\Gamma \setminus sup(M \cap \beta))$

From now on, assume that $\lambda \ge \omega_2$ is a fixed cardinal of uncountable cofinality. Also fix a predicate $Y \subseteq H(\lambda)$, which we assume codes a well-ordering of $H(\lambda)$.

Let \mathcal{X} be the set of countable elementary substructures $N \prec (H(\lambda), \in, Y)$ and let $\Gamma := S_{\omega_1}^{\omega_2}$ be the set of ordinals in ω_2 having uncountable cofinality. So, if N is in \mathcal{X} , then N is in $H(\lambda)$ and Γ is definable in N.

Now we introduce a way to compare members of \mathcal{X} : For $M \in X$, Γ_M denote the set of $\beta \in S_{\omega_1}^{\omega_2}$ such that

 $eta = {\it min}({\sf \Gamma} \setminus {\it sup}({\it M} \cap eta))$

From now on, assume that $\lambda \ge \omega_2$ is a fixed cardinal of uncountable cofinality. Also fix a predicate $Y \subseteq H(\lambda)$, which we assume codes a well-ordering of $H(\lambda)$.

Let \mathcal{X} be the set of countable elementary substructures $N \prec (H(\lambda), \in, Y)$ and let $\Gamma := S_{\omega_1}^{\omega_2}$ be the set of ordinals in ω_2 having uncountable cofinality. So, if N is in \mathcal{X} , then N is in $H(\lambda)$ and Γ is definable in N.

Now we introduce a way to compare members of \mathcal{X} : For $M \in X$, Γ_M denote the set of $\beta \in S_{\omega_1}^{\omega_2}$ such that

 $\beta = min(\Gamma \setminus sup(M \cap \beta))$

In particular, $\omega_1 \in \Gamma_M$, $|\Gamma_M| = \aleph_0$ and $\Gamma_M \subseteq \Gamma_N$ if $M \subseteq N$.

Lemma If $M, N \in \mathcal{X}$, then $\beta_{M,N} := max(\Gamma_M \cap \Gamma_N)$ exists

Lemma If $M, N \in \mathcal{X}$ and M' denotes $(M \cap \omega_2) \cup lim((M \cap \omega_2))$, then $M' \cap N' \subseteq \beta_{M,N}$.

・ロト・日本・日本・日本・日本・日本

In particular, $\omega_1 \in \Gamma_M$, $|\Gamma_M| = \aleph_0$ and $\Gamma_M \subseteq \Gamma_N$ if $M \subseteq N$.

Lemma If $M, N \in \mathcal{X}$, then $\beta_{M,N} := max(\Gamma_M \cap \Gamma_N)$ exists.

Lemma If $M, N \in \mathcal{X}$ and M' denotes $(M \cap \omega_2) \cup lim((M \cap \omega_2))$, then $M' \cap N' \subseteq \beta_{M,N}$.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

In particular, $\omega_1 \in \Gamma_M$, $|\Gamma_M| = \aleph_0$ and $\Gamma_M \subseteq \Gamma_N$ if $M \subseteq N$.

Lemma If $M, N \in \mathcal{X}$, then $\beta_{M,N} := max(\Gamma_M \cap \Gamma_N)$ exists.

Lemma If $M, N \in \mathcal{X}$ and M' denotes $(M \cap \omega_2) \cup lim((M \cap \omega_2))$, then $M' \cap N' \subseteq \beta_{M,N}$.

In particular, $\omega_1 \in \Gamma_M$, $|\Gamma_M| = \aleph_0$ and $\Gamma_M \subseteq \Gamma_N$ if $M \subseteq N$.

Lemma If $M, N \in \mathcal{X}$, then $\beta_{M,N} := max(\Gamma_M \cap \Gamma_N)$ exists.

Lemma If $M, N \in \mathcal{X}$ and M' denotes $(M \cap \omega_2) \cup lim((M \cap \omega_2))$, then $M' \cap N' \subseteq \beta_{M,N}$.

Since $\beta_{M,N} \ge \omega_1$, M < N implies that $M \cap \omega_1 < N \cap \omega_1$ and $M \sim N$ implies that $M \cap \omega_1 = N \cap \omega_1$.

A subset *A* of \mathcal{X} is **adequate** iff every 2 elements of *A* are comparable under \leq .

Note that if A is finite and adequate, $N \in \mathcal{X}$ and $A \in \mathcal{X}$, then N has access to all the the initial segments of each $M \in A$. So, $A \cup \{N\}$ is adequate.

Since $\beta_{M,N} \ge \omega_1$, M < N implies that $M \cap \omega_1 < N \cap \omega_1$ and $M \sim N$ implies that $M \cap \omega_1 = N \cap \omega_1$.

A subset A of \mathcal{X} is **adequate** iff every 2 elements of A are comparable under \leq .

Note that if A is finite and adequate, $N \in \mathcal{X}$ and $A \in \mathcal{X}$, then N has access to all the the initial segments of each $M \in A$. So, $A \cup \{N\}$ is adequate.

Since $\beta_{M,N} \ge \omega_1$, M < N implies that $M \cap \omega_1 < N \cap \omega_1$ and $M \sim N$ implies that $M \cap \omega_1 = N \cap \omega_1$.

A subset *A* of \mathcal{X} is **adequate** iff every 2 elements of *A* are comparable under \leq .

Note that if A is finite and adequate, $N \in \mathcal{X}$ and $A \in \mathcal{X}$, then N has access to all the the initial segments of each $M \in A$. So, $A \cup \{N\}$ is adequate.

Since $\beta_{M,N} \ge \omega_1$, M < N implies that $M \cap \omega_1 < N \cap \omega_1$ and $M \sim N$ implies that $M \cap \omega_1 = N \cap \omega_1$.

A subset *A* of \mathcal{X} is **adequate** iff every 2 elements of *A* are comparable under \leq .

Note that if *A* is finite and adequate, $N \in \mathcal{X}$ and $A \in \mathcal{X}$, then *N* has access to all the the initial segments of each $M \in A$. So, $A \cup \{N\}$ is adequate.

If $\{M, N\}$ is adequate, then, the reminder points of *N* over *M*, denoted by $R_M(N)$, is defined as the set of β satisfying either:

a $N \leq M$ and $\beta = min(N \setminus \beta_{M,N})$, or

b there is $\gamma \in M \setminus \beta_{M,N}$, such that $\beta = \min(N \setminus \gamma)$.

This remainder is always finite, since otherwise there would be a common limit point of *M* and *N* greater than $\beta_{M,N}$ [1] Given an adequate *A*, define $B_A = \bigcup_{n \in M} B_A(N) \bigoplus_{n \in A} B_A(N)$

Given $S \subseteq \omega_2$ and an adequate *A*, *A* is said to be (*S*)-adequate if $R_A \subseteq S$.

If $\{M, N\}$ is adequate, then, the reminder points of *N* over *M*, denoted by $R_M(N)$, is defined as the set of β satisfying either:

a
$$N \leq M$$
 and $\beta = min(N \setminus \beta_{M,N})$, or

b there is $\gamma \in M \setminus \beta_{M,N}$, such that $\beta = \min(N \setminus \gamma)$.

This remainder is always finite, since otherwise there would be a common limit point of *M* and *N* greater than $\beta_{M,N}$!!!! Given an adequate *A*, define $R_A = \bigcup \{R_M(N) : M, N \in A\}$.

Given $S \subseteq \omega_2$ and an adequate *A*, *A* is said to be (*S*)-adequate if $R_A \subseteq S$.

If $\{M, N\}$ is adequate, then, the reminder points of *N* over *M*, denoted by $R_M(N)$, is defined as the set of β satisfying either:

a
$$N \leq M$$
 and $\beta = min(N \setminus \beta_{M,N})$, or

b there is $\gamma \in M \setminus \beta_{M,N}$, such that $\beta = \min(N \setminus \gamma)$.

This remainder is always finite, since otherwise there would be a common limit point of *M* and *N* greater than $\beta_{M,N}$!!!! Given an adequate *A*, define $R_A = \bigcup \{R_M(N) : M, N \in A\}$.

Given $S \subseteq \omega_2$ and an adequate *A*, *A* is said to be (*S*)-adequate if $R_A \subseteq S$.

If $\{M, N\}$ is adequate, then, the reminder points of *N* over *M*, denoted by $R_M(N)$, is defined as the set of β satisfying either:

a
$$N \leq M$$
 and $\beta = min(N \setminus \beta_{M,N})$, or

b there is $\gamma \in M \setminus \beta_{M,N}$, such that $\beta = \min(N \setminus \gamma)$.

This remainder is always finite, since otherwise there would be a common limit point of *M* and *N* greater than $\beta_{M,N}$!!!! Given an adequate *A*, define $R_A = \bigcup \{R_M(N) : M, N \in A\}$.

Given $S \subseteq \omega_2$ and an adequate *A*, *A* is said to be (*S*)-adequate if $R_A \subseteq S$.

If $M, N \in \mathcal{X}$, then they are said to be **strongly isomorphic** iff there is an isomorphism $\sigma_{M,N} : (M, \in, Y) \longrightarrow (N, \in, Y)$ being the identity on $M \cap N$. Note that in such a case $M \cap \omega_1 = N \cap \omega_1$.

Definition

Let A be a finite subset of \mathcal{X} . A is said to be **coherent** (S)-adequate if A is an (S)-adequate set satisfying:

- (1) Given *M*, *N* in *A*, if $M \cap \omega_1 = N \cap \omega_1$ (i.e., $M \sim N$), then there is a (unique) strong isomorphism between them.
- (2) Given *M*, *N* in *A*, if $M \cap \omega_1 < N \cap \omega_1$ (i.e., M < N), then there is some *P* in *A* such that $N \cap \omega_1 = P \cap \omega_1$ and $M \in P$.
- (3) A is closed under isomorphisms.

The rest of this talk is part of my joint work with K. From now on, fix $S \subseteq \omega_2$ such that $S \cap cof(\omega_1)$ is stationary and also fix $\mathcal{Y} \subseteq \mathcal{X}$ stationary in $[H(\lambda)]^{\omega}$ and closed under iso. By the Tarski-Vaught test, the club \mathcal{X} is closed under iso. If $M, N \in \mathcal{X}$, then they are said to be **strongly isomorphic** iff there is an isomorphism $\sigma_{M,N} : (M, \in, Y) \longrightarrow (N, \in, Y)$ being the identity on $M \cap N$. Note that in such a case $M \cap \omega_1 = N \cap \omega_1$.

Definition

Let *A* be a finite subset of \mathcal{X} . *A* is said to be **coherent** (*S*)-adequate if *A* is an (*S*)-adequate set satisfying:

- (1) Given *M*, *N* in *A*, if $M \cap \omega_1 = N \cap \omega_1$ (i.e., $M \sim N$), then there is a (unique) strong isomorphism between them.
- (2) Given *M*, *N* in *A*, if $M \cap \omega_1 < N \cap \omega_1$ (i.e., M < N), then there is some *P* in *A* such that $N \cap \omega_1 = P \cap \omega_1$ and $M \in P$.
- (3) A is closed under isomorphisms.

The rest of this talk is part of my joint work with K. From now on, fix $S \subseteq \omega_2$ such that $S \cap cof(\omega_1)$ is stationary and also fix $\mathcal{Y} \subseteq \mathcal{X}$ stationary in $[H(\lambda)]^{\omega}$ and closed under iso.

If $M, N \in \mathcal{X}$, then they are said to be **strongly isomorphic** iff there is an isomorphism $\sigma_{M,N} : (M, \in, Y) \longrightarrow (N, \in, Y)$ being the identity on $M \cap N$. Note that in such a case $M \cap \omega_1 = N \cap \omega_1$.

Definition

Let *A* be a finite subset of \mathcal{X} . *A* is said to be **coherent** (*S*)-adequate if *A* is an (*S*)-adequate set satisfying:

- (1) Given *M*, *N* in *A*, if $M \cap \omega_1 = N \cap \omega_1$ (i.e., $M \sim N$), then there is a (unique) strong isomorphism between them.
- (2) Given *M*, *N* in *A*, if $M \cap \omega_1 < N \cap \omega_1$ (i.e., M < N), then there is some *P* in *A* such that $N \cap \omega_1 = P \cap \omega_1$ and $M \in P$.
- (3) A is closed under isomorphisms.

The rest of this talk is part of my joint work with K. From now on, fix $S \subseteq \omega_2$ such that $S \cap cof(\omega_1)$ is stationary and also fix $\mathcal{Y} \subseteq \mathcal{X}$ stationary in $[H(\lambda)]^{\omega}$ and closed under iso. By the Tarski-Vaught test, the club \mathcal{X} is closed under iso. A poset *P* is said to be an (S, \mathcal{Y})-coherent adequate type forcing if its conditions are pairs (*x*, *A*) satisfying:

(I) x is a finite subset of $H(\lambda)$,

(II) $A \subseteq \mathcal{Y}$ and A is a coherent (S)-adequate set,

(III) If $(y, B) \leq (x, A)$, N and N' are iso. sets in B, and $(x, A) \in N$, then $(y, B) \leq \sigma_{N,N'}((x, A)) \in P$ (symmetry),

(IV) If $\{M_0, \ldots, M_n\} \subseteq \mathcal{Y}$ is coherent (*S*)-adequate and $(x, A) \in M_0 \cap \ldots \cap M_n$, then there is a condition $(y, B) \leq (x, A)$ s.t. $\{M_0, \ldots, M_n\} \subseteq B$, and (V) For all $M \in A$, (x, A) is strongly (M, P)-generic.

By clause (*IV*) and since \mathcal{Y} is stat in $[H(\lambda)]^{\omega}$, any (S, \mathcal{Y}) coherent adequate poset preserves ω_1 and adds Cohen reals. We will see that we only add a small number of new reals.

A poset *P* is said to be an (S, \mathcal{Y})-coherent adequate type forcing if its conditions are pairs (*x*, *A*) satisfying:

(I) x is a finite subset of $H(\lambda)$,

(II) $A \subseteq \mathcal{Y}$ and A is a coherent (S)-adequate set,

(III) If $(y, B) \leq (x, A)$, N and N' are iso. sets in B, and $(x, A) \in N$, then $(y, B) \leq \sigma_{N,N'}((x, A)) \in P$ (symmetry),

(IV) If $\{M_0, \ldots, M_n\} \subseteq \mathcal{Y}$ is coherent (*S*)-adequate and $(x, A) \in M_0 \cap \ldots \cap M_n$, then there is a condition $(y, B) \leq (x, A)$ s.t. $\{M_0, \ldots, M_n\} \subseteq B$, and

(V) For all $M \in A$, (x, A) is strongly (M, P)-generic.

By clause (*IV*) and since \mathcal{Y} is stat in $[H(\lambda)]^{\omega}$, any (S, \mathcal{Y}) coherent adequate poset preserves ω_1 and adds Cohen reals. We will see that we only add a small number of new reals.

Lemma

If M and N are in \mathcal{X} and iso., then $\sigma_{M,N}(\alpha) = \alpha$ for all $\alpha \in M \cap 2^{\omega}$. Hence, $M \cap 2^{\omega} = N \cap 2^{\omega}$.

Proof. It is enough to check that $r_{\alpha} = r_{\sigma_{M,N}(\alpha)}$. But $n \in r_{\alpha}$ iff $M \models Z(\alpha, n)$ iff $N \models Z(\sigma_{M,N}(\alpha), n)$ iff $n \in r_{\sigma_{M,N}(\alpha)}$.

Note that if *A* is a coherent (*S*)-adequate set $M \cap \omega_1 < N \cap \omega_1$, then there is $N' \in A$ s.t. $N \cap \omega_1 = N' \cap \omega_1$ and $M \in N'$. Since *A* is closed, $\sigma_{N',N}(M) \in N \cap A$. So, $M \cap 2^{\omega} = \sigma_{N',N}(M) \cap 2^{\omega} \subseteq N$.

Lemma

If M and N are in \mathcal{X} and iso., then $\sigma_{M,N}(\alpha) = \alpha$ for all $\alpha \in M \cap 2^{\omega}$. Hence, $M \cap 2^{\omega} = N \cap 2^{\omega}$.

Proof. It is enough to check that $r_{\alpha} = r_{\sigma_{M,N}(\alpha)}$. But $n \in r_{\alpha}$ iff $M \models Z(\alpha, n)$ iff $N \models Z(\sigma_{M,N}(\alpha), n)$ iff $n \in r_{\sigma_{M,N}(\alpha)}$.

Note that if A is a coherent (S)-adequate set $M \cap \omega_1 < N \cap \omega_1$, then there is $N' \in A$ s.t. $N \cap \omega_1 = N' \cap \omega_1$ and $M \in N'$. Since A is closed, $\sigma_{N',N}(M) \in N \cap A$. So, $M \cap 2^{\omega} = \sigma_{N',N}(M) \cap 2^{\omega} \subseteq N$.

Lemma

If M and N are in \mathcal{X} and iso., then $\sigma_{M,N}(\alpha) = \alpha$ for all $\alpha \in M \cap 2^{\omega}$. Hence, $M \cap 2^{\omega} = N \cap 2^{\omega}$.

Proof. It is enough to check that $r_{\alpha} = r_{\sigma_{M,N}(\alpha)}$. But $n \in r_{\alpha}$ iff $M \models Z(\alpha, n)$ iff $N \models Z(\sigma_{M,N}(\alpha), n)$ iff $n \in r_{\sigma_{M,N}(\alpha)}$.

Note that if *A* is a coherent (*S*)-adequate set $M \cap \omega_1 < N \cap \omega_1$, then there is $N' \in A$ s.t. $N \cap \omega_1 = N' \cap \omega_1$ and $M \in N'$. Since *A* is closed, $\sigma_{N',N}(M) \in N \cap A$. So, $M \cap 2^{\omega} = \sigma_{N',N}(M) \cap 2^{\omega} \subseteq N$.

Lemma

If *M* and *N* are in \mathcal{X} and iso., then $\sigma_{M,N}(\alpha) = \alpha$ for all $\alpha \in M \cap 2^{\omega}$. Hence, $M \cap 2^{\omega} = N \cap 2^{\omega}$.

Proof. It is enough to check that $r_{\alpha} = r_{\sigma_{M,N}(\alpha)}$. But $n \in r_{\alpha}$ iff $M \models Z(\alpha, n)$ iff $N \models Z(\sigma_{M,N}(\alpha), n)$ iff $n \in r_{\sigma_{M,N}(\alpha)}$.

Note that if *A* is a coherent (*S*)-adequate set $M \cap \omega_1 < N \cap \omega_1$, then there is $N' \in A$ s.t. $N \cap \omega_1 = N' \cap \omega_1$ and $M \in N'$. Since *A* is closed, $\sigma_{N',N}(M) \in N \cap A$. So, $M \cap 2^{\omega} = \sigma_{N',N}(M) \cap 2^{\omega} \subseteq N$.

Lemma

If $R \subseteq H(\lambda)$ and $z \in H(\lambda)$, then there are $M, N \in \mathcal{Y}$ satisfying:

- (1) $z \in M \cap N$,
- (2) $\{M, N\}$ is coherent (S)-adequate,
- (3) the structures (M, \in, Y, R) and (N, \in, Y, R) are elementary in $(H(\lambda), \in, Y, R)$ and are isomorphic, and
- (4) there are $\alpha \in M \cap (2^{\omega})^+$ and $\beta \in N \cap (2^{\omega})^+$ s.t. $\alpha \neq \beta$ and $\sigma_{M,N}(\alpha) = \beta$.

Sketch of proof for the case $2^{\omega} \ge \omega_2$: For each $i \in (2^{\omega})^+$ fix $N_i \in \mathcal{Y}$ s.t. *z* and *i* are in N_i and $N_i \prec (H(\lambda), \in, Y, R)$. By a Δ system, there is a cofinal $I \subseteq (2^{\omega})^+$ s.t. for all *i*, *j* in *I*, N_i and N_j are strongly isomorphic.

Lemma

If $R \subseteq H(\lambda)$ and $z \in H(\lambda)$, then there are $M, N \in \mathcal{Y}$ satisfying:

- (1) $z \in M \cap N$,
- (2) $\{M, N\}$ is coherent (S)-adequate,
- (3) the structures (M, \in, Y, R) and (N, \in, Y, R) are elementary in $(H(\lambda), \in, Y, R)$ and are isomorphic, and
- (4) there are $\alpha \in M \cap (2^{\omega})^+$ and $\beta \in N \cap (2^{\omega})^+$ s.t. $\alpha \neq \beta$ and $\sigma_{M,N}(\alpha) = \beta$.

Sketch of proof for the case $2^{\omega} \ge \omega_2$: For each $i \in (2^{\omega})^+$ fix $N_i \in \mathcal{Y}$ s.t. *z* and *i* are in N_i and $N_i \prec (H(\lambda), \in, Y, R)$. By a Δ system, there is a cofinal $I \subseteq (2^{\omega})^+$ s.t. for all *i*, *j* in *I*, N_i and N_j are strongly isomorphic.

Fix $i \in I$ and let $M = N_i$. Now, fix $j \in I$ such that $sup(M \cap (2^{\omega})^+) < j$ and let $N = N_j$. Let us check that M and N witness the lemma. Properties (1) and (3) are obvious.

Since $2^{\omega} \ge \omega_2$ and M and N are isomorphic and by the above lemma, $M \cap \omega_2 = N \cap \omega_2$. So, trivially $\{M, N\}$ is adequate.

Also, $R_M(N) = R_N(M) = \emptyset$ and hence, $\{M, N\}$ is (S) coherent adequate. This verifies (2).

For (4), let $\beta := j$ and use that $(2^{\omega})^+$ is either equal to λ or definable in $H(\lambda)$. So,

 $\alpha := \sigma_{M,N}(\beta) < sup(M \cap (2^{\omega})^+) < j = \beta$

・ロト・西ト・西ト・西ト・日・

Fix $i \in I$ and let $M = N_i$. Now, fix $j \in I$ such that $sup(M \cap (2^{\omega})^+) < j$ and let $N = N_j$. Let us check that M and N witness the lemma. Properties (1) and (3) are obvious.

Since $2^{\omega} \ge \omega_2$ and *M* and *N* are isomorphic and by the above lemma, $M \cap \omega_2 = N \cap \omega_2$. So, trivially $\{M, N\}$ is adequate.

Also, $R_M(N) = R_N(M) = \emptyset$ and hence, $\{M, N\}$ is (S) coherent adequate. This verifies (2).

For (4), let $\beta := j$ and use that $(2^{\omega})^+$ is either equal to λ or definable in $H(\lambda)$. So,

 $\alpha := \sigma_{M,N}(\beta) < sup(M \cap (2^{\omega})^+) < j = \beta$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fix $i \in I$ and let $M = N_i$. Now, fix $j \in I$ such that $sup(M \cap (2^{\omega})^+) < j$ and let $N = N_j$. Let us check that M and N witness the lemma. Properties (1) and (3) are obvious.

Since $2^{\omega} \ge \omega_2$ and *M* and *N* are isomorphic and by the above lemma, $M \cap \omega_2 = N \cap \omega_2$. So, trivially $\{M, N\}$ is adequate.

Also, $R_M(N) = R_N(M) = \emptyset$ and hence, $\{M, N\}$ is (S) coherent adequate. This verifies (2).

For (4), let $\beta := j$ and use that $(2^{\omega})^+$ is either equal to λ or definable in $H(\lambda)$. So,

 $\alpha := \sigma_{M,N}(\beta) < sup(M \cap (2^{\omega})^+) < j = \beta$

(日) (日) (日) (日) (日) (日) (日)

Lemma Let *P* be an (S, \mathcal{Y})-coherent adeq. poset. If *p* forces that $\langle f_i : i < (2^{\omega})^+ \rangle$ is a sequence of functions from ω to ω , then there is $q \leq p$ and $\alpha < \beta$ such that *q* forces that $f_{\alpha} = f_{\beta}$.

Sketch of proof. Define $R \subset H(\lambda)$ by letting R(z, i, n, m) if $z \in P$ and $z \Vdash \dot{f}_i(n) = m$. Fix M and N in \mathcal{Y} satisfying:

(1) $p \in M \cap N$,

(2) $\{M, N\}$ is coherent (S)-adequate,

- (3) the structures (*M*, ∈, *Y*, *R*) and (*N*, ∈, *Y*, *R*) are elementary in (*H*(λ), ∈, *Y*, *R*) and are isomorphic, and
- (4) there are $\alpha \in M \cap (2^{\omega})^+$ and $\beta \in N \cap (2^{\omega})^+$ s.t. $\alpha \neq \beta$ and $\sigma(\alpha) = \beta$, where $\sigma := \sigma_{M,N}$.

By (IV), there is $q = (y, B) \le p$ such that $M, N \in B$. Check that q, α and β work. This follows from the (M, P)-strongly genericity of q, the symmetric clause (III) and the fact that if $z \in M \cap P$ and $n, m \in \omega$: $z \Vdash f_{\alpha}(n) = m$ iff $\sigma(z) \Vdash f_{\beta}(n) = m$.

Lemma Let *P* be an (S, \mathcal{Y})-coherent adeq. poset. If *p* forces that $\langle f_i : i < (2^{\omega})^+ \rangle$ is a sequence of functions from ω to ω , then there is $q \leq p$ and $\alpha < \beta$ such that *q* forces that $f_{\alpha} = f_{\beta}$.

Sketch of proof. Define $R \subset H(\lambda)$ by letting R(z, i, n, m) if $z \in P$ and $z \Vdash f_i(n) = m$. Fix M and N in \mathcal{Y} satisfying:

- (1) $p \in M \cap N$,
- (2) $\{M, N\}$ is coherent (*S*)-adequate,
- (3) the structures (*M*, ∈, *Y*, *R*) and (*N*, ∈, *Y*, *R*) are elementary in (*H*(λ), ∈, *Y*, *R*) and are isomorphic, and
- (4) there are $\alpha \in M \cap (2^{\omega})^+$ and $\beta \in N \cap (2^{\omega})^+$ s.t. $\alpha \neq \beta$ and $\sigma(\alpha) = \beta$, where $\sigma := \sigma_{M,N}$.

By (IV), there is $q = (y, B) \le p$ such that $M, N \in B$. Check that q, α and β work. This follows from the (M, P)-strongly genericity of q, the symmetric clause (III) and the fact that if $z \in M \cap P$ and $n, m \in \omega$: $z \Vdash f_{\alpha}(n) = m$ iff $\sigma(z) \Vdash f_{\beta}(n) = m$.

Corollary

Any (S, \mathcal{Y}) -coherent adeq. P collapses $(2^{\omega})^V$ to ω_1 , forces CH and forces that the successor of $(2^{\omega})^V$ in V is equal to ω_2 .

Proof. If $p \in P$ collapses the successor of $(2^{\omega})^V$, then there is a sequence of names which *p* forces that is an enumeration of ω_1 many distinct functions from ω to ω in order type $(2^{\omega})^+$!!!

Corollary

Any (S, \mathcal{Y}) -coherent adeq. P collapses $(2^{\omega})^V$ to ω_1 , forces CH and forces that the successor of $(2^{\omega})^V$ in V is equal to ω_2 .

Proof. If $p \in P$ collapses the successor of $(2^{\omega})^V$, then there is a sequence of names which *p* forces that is an enumeration of ω_1 many distinct functions from ω to ω in order type $(2^{\omega})^+$!!!

(日) (日) (日) (日) (日) (日) (日)

A (psychoanalytic) retrospective analysis

Prior to this work, Asperó and Mota proved that for any cardinal $\lambda \ge \omega_2$ of uncountable cofinality, the λ -symmetric forcing consisting of finite symmetric systems of countable elementary substructures of $H(\lambda)$ ordered by reverse inclusion preserves *CH*. This is one of the the two forcings that they currently use in the first step of their finite support iterations.

A *symmetric system* is similar to a coherent adequate set, except that it does not have the adequate structure.

A (psychoanalytic) retrospective analysis

Prior to this work, Asperó and Mota proved that for any cardinal $\lambda \ge \omega_2$ of uncountable cofinality, the λ -symmetric forcing consisting of finite symmetric systems of countable elementary substructures of $H(\lambda)$ ordered by reverse inclusion preserves *CH*. This is one of the the two forcings that they currently use in the first step of their finite support iterations.

A *symmetric system* is similar to a coherent adequate set, except that it does not have the adequate structure.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

In an unpublished work from the 80's Todorcevic also noticed that the ω_2 -symm. poset preserves *CH* and adds a Kurepa tree.

Certainly, the *CH* preservation argument of Asperó and Mota slightly intersects the *CH* preservation argument of Krueger and Mota, but the former do not show how to force with side cond. together with another finite set of objects to preserve *CH*.

In an unpublished work from the 80's Todorcevic also noticed that the ω_2 -symm. poset preserves *CH* and adds a Kurepa tree.

Certainly, the *CH* preservation argument of Asperó and Mota slightly intersects the *CH* preservation argument of Krueger and Mota, but the former do not show how to force with side cond. together with another finite set of objects to preserve *CH*.

In an unpublished work from the 80's Todorcevic also noticed that the ω_2 -symm. poset preserves *CH* and adds a Kurepa tree.

Certainly, the *CH* preservation argument of Asperó and Mota slightly intersects the *CH* preservation argument of Krueger and Mota, but the former do not show how to force with side cond. together with another finite set of objects to preserve *CH*.

In an unpublished work from the 80's Todorcevic also noticed that the ω_2 -symm. poset preserves *CH* and adds a Kurepa tree.

Certainly, the *CH* preservation argument of Asperó and Mota slightly intersects the *CH* preservation argument of Krueger and Mota, but the former do not show how to force with side cond. together with another finite set of objects to preserve *CH*.

Recall that a stationary set $S \subseteq \omega_2$ is said to be *fat* iff for every club $C \subseteq \omega_2$, $S \cap C$ contains a closed subset with o. t. $\omega_1 + 1$.

Corollary

Assume CH. If $S \subseteq \omega_2$ is fat stationary (for every club $C \subseteq \omega_2$, $S \cap C$ contains a closed subset with order type $\omega_1 + 1$), then there is an (S, \mathcal{Y}) -coherent adeq. $P \subseteq H(\omega_2)$ preserving ω_1, ω_2 , CH and s.t. $V^P \models S$ contains a club.

Sketch of proof. W.lo.g. we may assume that $S \cap cof(\omega_1)$ is stationary and that for all $\alpha \in S \cap cof(\omega_1)$, $S \cap \alpha$ contains a closed cofinal subset of α .

Let $\lambda = \omega_2$ and let *Y* code *S* together with a well-order of $H(\omega_2)$. In particular, isomorphisms between members of \mathcal{X} preserve membership in *S*.

Recall that a stationary set $S \subseteq \omega_2$ is said to be *fat* iff for every club $C \subseteq \omega_2$, $S \cap C$ contains a closed subset with o. t. $\omega_1 + 1$.

Corollary

Assume CH. If $S \subseteq \omega_2$ is fat stationary (for every club $C \subseteq \omega_2$, $S \cap C$ contains a closed subset with order type $\omega_1 + 1$), then there is an (S, \mathcal{Y}) -coherent adeq. $P \subseteq H(\omega_2)$ preserving ω_1, ω_2 , CH and s.t. $V^P \models S$ contains a club.

Sketch of proof. W.lo.g. we may assume that $S \cap cof(\omega_1)$ is stationary and that for all $\alpha \in S \cap cof(\omega_1)$, $S \cap \alpha$ contains a closed cofinal subset of α .

Let $\lambda = \omega_2$ and let *Y* code *S* together with a well-order of $H(\omega_2)$. In particular, isomorphisms between members of \mathcal{X} preserve membership in *S*.

Let \mathcal{Y} denote the stationary set of $M \in \mathcal{X}$ such that for all $\alpha \in (M \cap S) \cup \{\omega_2\}$, $sup(M \cap \alpha) \in S$.

If $N \cap \omega_2 \nsubseteq \alpha$, let $\alpha_N := \min(N \setminus \alpha)$.

P is the poset consisting of conditions $p = (x_p, A_p)$ satisfying:

- (i) x_p is a finite set of nonoverlapping pairs whose first coordinate is in S,
- (ii) A_{ρ} is a finite coherent adequate subset of \mathcal{Y} ,
- (iii) if $\langle \alpha, \alpha' \rangle \in x_p$, $N \in A_p$ and $N \cap \omega_2 \not\subseteq \alpha$, then $N \cap [\alpha, \alpha'] \neq \emptyset$ implies $\alpha, \alpha' \in N$, and $N \cap [\alpha, \alpha'] = \emptyset$ implies $\langle \alpha_N, \alpha_N \rangle \in x_p$,
- (iv) if γ in R_{A_p} , then $\langle \gamma, \gamma \rangle \in x_p$, and
- (v) p is symmetric