A disjoint union theorem for trees

Konstantinos Tyros

University of Warwick Mathematics Institute

Fields Institute, 2015

Theorem (Folkman)

For every pair of positive integers m and r there is integer n_0 such that for every r-coloring of the power-set $\mathcal{P}(X)$ of some set X of cardinality at least n_0 , there is a family $\mathbf{D} = (D_i)_{i=1}^m$ of pairwise disjoint nonempty subsets of X such that the family

$$\mathcal{U}(\mathbf{D}) = \left\{ \bigcup_{i \in I} D_i : \emptyset \neq I \subseteq \{1, 2, ..., m\} \right\}$$

of non-empty unions is monochromatic.

Theorem (Carlson-Simpson)

For every finite Souslin measurable coloring of the power-set $\mathcal{P}(\omega)$ of ω , there is a sequence $\mathbf{D} = (D_n)_{n < \omega}$ of pairwise disjoint subsets of the natural numbers such that the set

$$\mathcal{U}(\mathbf{D}) = \left\{ \bigcup_{n \in M} D_n : M \text{ is a non-empty subset of } \omega \right\}$$

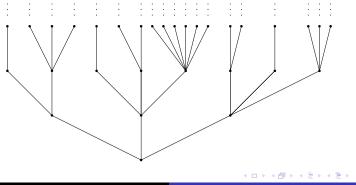
is monochromatic.

A **tree** is a partially ordered set (T, \leq_T) such that

$$\operatorname{Pred}_T(t) = \{s \in T : s <_T t\}$$

is is finite and totally ordered for all t in T.

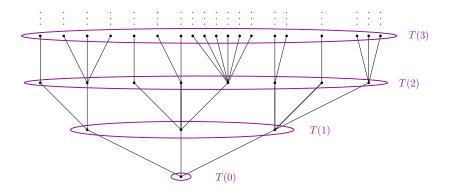
We consider only **uniquely rooted and finitely branching trees with no maximal nodes**.



Levels

For $n < \omega$, the *n*-th level of *T*, is the set

$$T(n) = \{t \in T : |\operatorname{Pred}_{\mathrm{T}}(\mathsf{t})| = n\}.$$



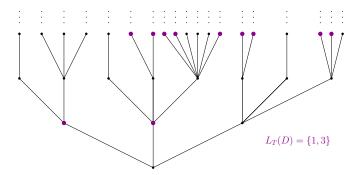
▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ .

æ

Level set

For a subset D of T, we define its level set

 $L_T(D) = \{n \in \omega : D \cap T(n) \neq \emptyset\}$

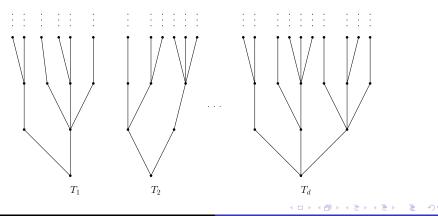


(日)

From now on, fix an integer $d \ge 1$. A vector tree

$$\mathbf{T} = (T_1, ..., T_d)$$

is a *d*-sequence of uniquely rooted and finitely branching trees with no maximal nodes.



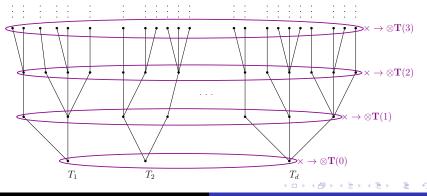
Level products

For a vector tree $\mathbf{T} = (T_1, ..., T_d)$ we define its **level product** as

$$\otimes \mathbf{T} = \bigcup_{n < \omega} T_1(n) \times \ldots \times T_d(n)$$

The *n*-th level of the level product of **T** is

$$\otimes \mathbf{T}(n) = T_1(n) \times \ldots \times T_d(n).$$



Konstantinos Tyros A disjoint union theorem for trees

Let $\mathbf{T} = (T_1, ..., T_d)$ a vector tree. For $\mathbf{t} = (t_1, ..., t_d)$ and $\mathbf{s} = (s_1, ..., s_d)$ in $\otimes \mathbf{T}$, set

 $\mathbf{t} \leq_{\mathbf{T}} \mathbf{s}$ iff $t_i \leq_{T_i} s_i$ for all i = 1, ..., d.

For $\mathbf{t} = (t_1, ..., t_d)$ in $\otimes \mathbf{T}$, we define

$$\operatorname{Succ}_{\mathbf{T}}(\mathbf{t}) = \{\mathbf{s} \in \otimes \mathbf{T} : \mathbf{t} \leq_{\mathbf{T}} \mathbf{s}\}$$

(4) E > (4) E >

Vector subsets and dense vector subsets products

A sequence $\mathbf{D} = (D_1, ..., D_d)$ is called a **vector subset** of **T** if D_i is a subset of T_i for all i = 1, ..., d and

$$L_{T_1}(D_1) = \ldots = L_{T_d}(D_d).$$

For a vector subset **D** of **T** we define its level product

$$\otimes \mathbf{D} = \bigcup_{n < \omega} (T_1(n) \cap D_1) \times ... \times (T_d(n) \cap D_d).$$

For $t \in \otimes T$, a vector subset **D** of **T** is **t-dense**, ,

 $(\forall n)(\exists m)(\forall \mathbf{s} \in \otimes \mathbf{T}(n) \cap \operatorname{Succ}_{\mathbf{T}}(\mathbf{t})(\exists \mathbf{s}' \in \otimes \mathbf{T}(m) \cap \otimes \mathbf{D}) \ \mathbf{s} \leq_{\mathbf{T}} \mathbf{s}'.$

D is called **dense** if it is $root(\otimes T)$ -dense.

Vector subsets and dense vector subsets products

A sequence $\mathbf{D} = (D_1, ..., D_d)$ is called a **vector subset** of **T** if D_i is a subset of T_i for all i = 1, ..., d and

$$L_{T_1}(D_1)=\ldots=L_{T_d}(D_d).$$

For a vector subset **D** of **T** we define its level product

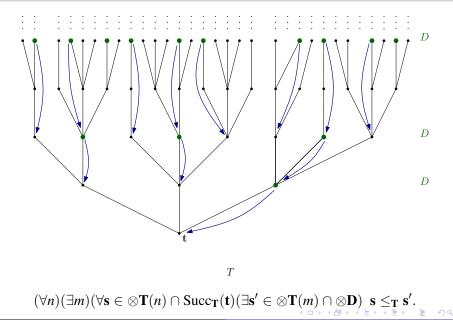
$$\otimes \mathbf{D} = \bigcup_{n < \omega} (T_1(n) \cap D_1) \times ... \times (T_d(n) \cap D_d).$$

For $\mathbf{t} \in \otimes \mathbf{T}$, a vector subset \mathbf{D} of \mathbf{T} is **t-dense**, ,

 $(\forall n)(\exists m)(\forall s \in \otimes T(n) \cap \operatorname{Succ}_{T}(t)(\exists s' \in \otimes T(m) \cap \otimes D) \ s \leq_{T} s'.$

D is called **dense** if it is $root(\otimes T)$ -dense.

Dense vector subset



Theorem (Halpern–Läuchli)

Let **T** be a vector tree. Then for every dense vector subset **D** of **T** and every subset \mathcal{P} of \otimes **D**, there exists a vector subset **D**' of **D** such that either

- (i) $\otimes D'$ is a subset of \mathcal{P} and D' is a dense vector subset of T, or
- (ii) $\otimes \mathbf{D}'$ is a subset of \mathcal{P}^c and \mathbf{D}' is a **t**-dense vector subset of **T** for some **t** in \otimes **T**.

Let **T** be a vector tree. We define

 $\mathcal{U}(\mathbf{T}) = \{ U \subseteq \otimes \mathbf{T} : U \text{ has a minimum} \}.$

We let $\mathcal{U}(\mathbf{T})$ take its topology from $\{0, 1\}^{\otimes \mathbf{T}}$. Let **D** be a vector subset of **T**. A **D-subspace** of $\mathcal{U}(\mathbf{T})$ is a family

$$\mathbf{U} = (U_{\mathbf{t}})_{\mathbf{t} \in \otimes \mathbf{D}}$$

such that

- $U_t \in \mathcal{U}(\mathbf{T})$ for all $\mathbf{t} \in \otimes \mathbf{D}$,
- $U_{\mathbf{s}} \cap U_{\mathbf{t}} = \emptyset \text{ for } \mathbf{s} \neq \mathbf{t},$
- $in U_{\mathbf{t}} = \mathbf{t} \text{ for all } \mathbf{t} \in \otimes \mathbf{D}.$

The span of a subspace

For a subspace $\mathbf{U} = (U_t)_{t \in \otimes \mathbf{D}(\mathbf{U})}$ we define its **span** by

$$\begin{split} [\mathbf{U}] &= \Big\{ \bigcup_{\mathbf{t}\in\Gamma} U_{\mathbf{t}}: \ \Gamma \subseteq \otimes \mathbf{D}(\mathbf{U}) \Big\} \cap \mathcal{U}(\mathbf{T}) \\ &= \Big\{ \bigcup_{\mathbf{t}\in\Gamma} U_{\mathbf{t}}: \ \Gamma \subseteq \otimes \mathbf{D}(\mathbf{U}) \text{ and } \Gamma \in \mathcal{U}(\mathbf{T}) \Big\}. \end{split}$$

If U and U' are two subspaces of $\mathcal{U}(T)$, we say that U' is a subspace of U, and write U' \leq U, if $[U'] \subseteq [U]$.

Remark

 $\mathbf{U}' \leq \mathbf{U}$ implies that $\mathbf{D}(\mathbf{U}')$ is a vector subset of $\mathbf{D}(\mathbf{U})$.

Theorem

Let **T** be a vector tree and \mathcal{P} a Souslin measurable subset of $\mathcal{U}(\mathbf{T})$. Also let **D** be a dense vector subset of **T** and **U** a **D**-subspace of $\mathcal{U}(\mathbf{T})$. Then there exists a subspace **U**' of $\mathcal{U}(\mathbf{T})$ with **U**' \leq **U** such that either

- (i) $[\mathbf{U}']$ is a subset of \mathcal{P} and $\mathbf{D}(\mathbf{U}')$ is a dense vector subset of \mathbf{T} , or
- (ii) [U'] is a subset of P^c and D(U') is a t-dense vector subset of T for some t in ⊗T.

For every finite Souslin measurable coloring of $\mathcal{P}(\omega)$ there is a sequence $\mathbf{D} = (D_n)_{n < \omega}$ of pairwise disjoint subsets of ω such that the set $\mathcal{U}(\mathbf{D})$ is monochromatic.

Let Λ be a finite alphabet. We view the elements of Λ^{ω} as infinite constant words over Λ . Also let $(v_n)_n$ be a sequence of distinct symbols that do not occur in Λ . An infinite dimensional variable word is a map $f : \omega \to \Lambda \cup \{v_n : n \in \mathbb{N}\}$ such that for every *n* we have that $f^{-1}(v_n) \neq \emptyset$ and $\max f^{-1}(v_n) < \min f^{-1}(v_{n+1})$. If $(a_n)_n \in \Lambda^{\omega}$ then by $f((a_n)_n)$ we denote the constant word resulting by substituting each occurrence of v_n by a_n .

Theorem

For every finite Souslin measurable coloring of $\mathcal{P}(\omega)$ there is a sequence $\mathbf{D} = (D_n)_{n < \omega}$ of pairwise disjoint subsets of ω such that the set $\mathcal{U}(\mathbf{D})$ is monochromatic.

Let Λ be a finite alphabet. We view the elements of Λ^{ω} as infinite constant words over Λ . Also let $(v_n)_n$ be a sequence of distinct symbols that do not occur in Λ . An infinite dimensional variable word is a map $f : \omega \to \Lambda \cup \{v_n : n \in \mathbb{N}\}$ such that for every *n* we have that $f^{-1}(v_n) \neq \emptyset$ and $\max f^{-1}(v_n) < \min f^{-1}(v_{n+1})$. If $(a_n)_n \in \Lambda^{\omega}$ then by $f((a_n)_n)$ we denote the constant word resulting by substituting each occurrence of v_n by a_n .

Theorem

For every finite Souslin measurable coloring of $\mathcal{P}(\omega)$ there is a sequence $\mathbf{D} = (D_n)_{n < \omega}$ of pairwise disjoint subsets of ω such that the set $\mathcal{U}(\mathbf{D})$ is monochromatic.

Let Λ be a finite alphabet. We view the elements of Λ^{ω} as infinite constant words over Λ . Also let $(v_n)_n$ be a sequence of distinct symbols that do not occur in Λ . An infinite dimensional variable word is a map $f : \omega \to \Lambda \cup \{v_n : n \in \mathbb{N}\}$ such that for every *n* we have that $f^{-1}(v_n) \neq \emptyset$ and max $f^{-1}(v_n) < \min f^{-1}(v_{n+1})$. If $(a_n)_n \in \Lambda^{\omega}$ then by $f((a_n)_n)$ we denote the constant word resulting by substituting each occurrence of v_n by a_n .

Theorem

For every finite Souslin measurable coloring of $\mathcal{P}(\omega)$ there is a sequence $\mathbf{D} = (D_n)_{n < \omega}$ of pairwise disjoint subsets of ω such that the set $\mathcal{U}(\mathbf{D})$ is monochromatic.

Let Λ be a finite alphabet. We view the elements of Λ^{ω} as infinite constant words over Λ . Also let $(v_n)_n$ be a sequence of distinct symbols that do not occur in Λ . An infinite dimensional variable word is a map $f : \omega \to \Lambda \cup \{v_n : n \in \mathbb{N}\}$ such that for every *n* we have that $f^{-1}(v_n) \neq \emptyset$ and max $f^{-1}(v_n) < \min f^{-1}(v_{n+1})$. If $(a_n)_n \in \Lambda^{\omega}$ then by $f((a_n)_n)$ we denote the constant word resulting by substituting each occurrence of v_n by a_n .

Theorem

For every finite Souslin measurable coloring of $\mathcal{P}(\omega)$ there is a sequence $\mathbf{D} = (D_n)_{n < \omega}$ of pairwise disjoint subsets of ω such that the set $\mathcal{U}(\mathbf{D})$ is monochromatic.

Let Λ be a finite alphabet. We view the elements of Λ^{ω} as infinite constant words over Λ . Also let $(v_n)_n$ be a sequence of distinct symbols that do not occur in Λ . An infinite dimensional variable word is a map $f : \omega \to \Lambda \cup \{v_n : n \in \mathbb{N}\}$ such that for every *n* we have that $f^{-1}(v_n) \neq \emptyset$ and max $f^{-1}(v_n) < \min f^{-1}(v_{n+1})$. If $(a_n)_n \in \Lambda^{\omega}$ then by $f((a_n)_n)$ we denote the constant word resulting by substituting each occurrence of v_n by a_n .

Theorem

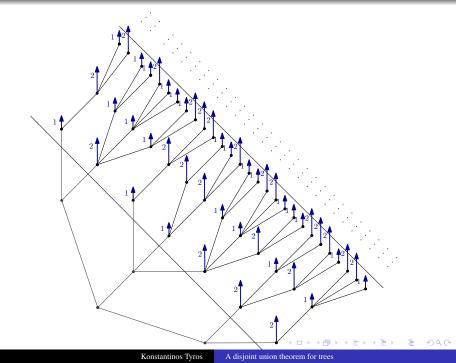
We fix a vector tree **T**. Fix a **finite alphabet** Λ .

For $m < n < \omega$, set

$$\mathbf{W}(\Lambda,\mathbf{T},m,n)=\Lambda^{\otimes\mathbf{T}\upharpoonright[m,n)},$$

where $\otimes \mathbf{T} \upharpoonright [m, n) = \bigcup_{j=m}^{n-1} \otimes \mathbf{T}(j)$. We also set

$$\mathbf{W}(\Lambda, \mathbf{T}) = \bigcup_{m \leq n} \mathbf{W}(\Lambda, \mathbf{T}, m, n).$$



Let $(v_s)_{s \in \otimes T}$ be a collection of distinct **variables**, set of symbols disjoint from Λ .

Fix a vector level subset **D** of **T**. Let

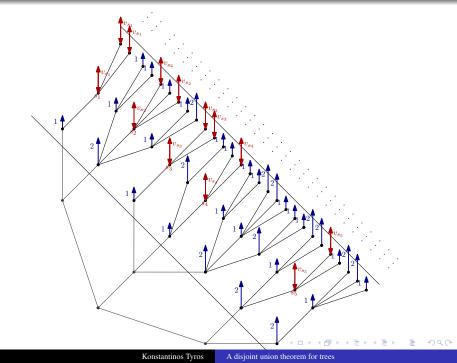
 $W_{\nu}(\Lambda, \mathbf{T}, \mathbf{D}, m, n)$

to be the set of all functions

$$f:\otimes \mathbf{T}\upharpoonright [m,n)\to \Lambda\cup\{v_{\mathbf{s}}:\mathbf{s}\in\otimes \mathbf{D}\}$$

such that

- The set *f*⁻¹({*v*_s}) is nonempty and admits s as a minimum in ⊗T, for all s ∈ ⊗D.
- For every **s** and **s'** in \otimes **D**, we have $L_{\otimes \mathbf{T}}(f^{-1}(\{v_{\mathbf{s}}\})) = L_{\otimes \mathbf{T}}(f^{-1}(\{v_{\mathbf{s}'}\})).$



For $f \in W_{\nu}(\Lambda, \mathbf{T}, \mathbf{D}, m, n)$, set $ws(f) = \mathbf{D}, bot(f) = m and top(f) = n.$

Moreover, we set

$$\begin{split} \mathbf{W}_{\nu}(\Lambda,\mathbf{T}) &= \bigcup \big\{ \mathbf{W}_{\nu}(\Lambda,\mathbf{T},\mathbf{D},m,n) : m \leq n \text{ and} \\ \mathbf{D} \text{ is a vector level subset of } \mathbf{T} \\ & \text{ with } L_{\mathbf{T}}(\mathbf{D}) \subset [m,n) \big\}. \end{split}$$

The elements of $W_{\nu}(\Lambda, \mathbf{T})$ are viewed as variable words over the alphabet Λ .

通 と く ヨ と く ヨ と

For variable words f in $W_{\nu}(\Lambda, \mathbf{T})$ we take **substitutions**: For every family $\mathbf{a} = (a_{\mathbf{s}})_{\mathbf{s} \in \otimes ws(f)} \subseteq \Lambda$, let $f(\mathbf{a}) \in W(\Lambda, \mathbf{T})$ be the result of substituting for every \mathbf{s} in $\otimes ws(f)$ each occurrence of $\nu_{\mathbf{s}}$ by $a_{\mathbf{s}}$, .

Moreover, we set

$$[f]_{\Lambda} = \{ f(\mathbf{a}) : \mathbf{a} = (a_{\mathbf{s}})_{\mathbf{s} \in \otimes \mathrm{ws}(f)} \subseteq \Lambda \},\$$

the constant span of f.

An infinite sequence $X = (f_n)_{n < \omega}$ in $W_v(\Lambda, \mathbf{T})$ is a **subspace**, if:

• $bot(f_0) = 0.$

2 bot
$$(f_{n+1}) = top(f_n)$$
 for all $n < \omega$.

Setting $D_i = \bigcup_{n < \omega} ws_i(f_n)$ for all i = 1, ..., d, where $ws(f_n) = (ws_1(f_n), ..., ws_d(f_n))$, we have that $(D_1, ..., D_d)$ forms a dense vector subset of **T**.

For a subspace $X = (f_n)_{n < \omega}$ we define

$$[X]_{\Lambda} = \Big\{ \bigcup_{q=0}^{n} g_q : n < \omega \text{ and } g_q \in [f_q]_{\Lambda} \text{ for all } q = 0, ..., n \Big\}.$$

For two subspaces X and Y, we write $X \leq Y$ if $[X]_{\Lambda} \subseteq [Y]_{\Lambda}$.

An infinite sequence $X = (f_n)_{n < \omega}$ in $W_v(\Lambda, \mathbf{T})$ is a **subspace**, if:

• $bot(f_0) = 0.$

2 bot
$$(f_{n+1}) = top(f_n)$$
 for all $n < \omega$.

Setting $D_i = \bigcup_{n < \omega} ws_i(f_n)$ for all i = 1, ..., d, where $ws(f_n) = (ws_1(f_n), ..., ws_d(f_n))$, we have that $(D_1, ..., D_d)$ forms a dense vector subset of **T**.

For a subspace $X = (f_n)_{n < \omega}$ we define

$$[X]_{\Lambda} = \Big\{ \bigcup_{q=0}^{n} g_q : n < \omega \text{ and } g_q \in [f_q]_{\Lambda} \text{ for all } q = 0, ..., n \Big\}.$$

For two subspaces *X* and *Y*, we write $X \leq Y$ if $[X]_{\Lambda} \subseteq [Y]_{\Lambda}$.

> < 国 > < 国 >

Theorem

Let Λ be a finite alphabet and \mathbf{T} a vector tree. Then for every finite coloring of the set of the constant words $W(\Lambda, \mathbf{T})$ over Λ and every subspace X of $W(\Lambda, \mathbf{T})$ there exists a subspace X' of $W(\Lambda, \mathbf{T})$ with $X' \leq X$ such that the set $[X']_{\Lambda}$ is monochromatic.

A Ramsey space of sequences of words

Let $W^{\infty}(\Lambda, \mathbf{T})$, be the set of all sequences $(g_n)_{n < \omega}$ in $W(\Lambda, \mathbf{T})$ such that:

• $bot(g_0) = 0$ and

2 bot
$$(g_{n+1}) = \operatorname{top} g_n$$
 for all $n < \omega$.

For a subspace *X*, we set

$$[X]^{\infty}_{\Lambda} = \{(g_n)_{n < \omega} \in \mathbf{W}^{\infty}(\Lambda, \mathbf{T}) : (\forall n < \omega) \bigcup_{q=0}^{n} g_q \in [X]_{\Lambda}.$$

Theorem

Let Λ be a finite alphabet and \mathbf{T} a vector tree. Then for every finite Souslin measurable coloring of the set $W^{\infty}(\Lambda, \mathbf{T})$ and every subspace X of $W(\Lambda, \mathbf{T})$ there exists a subspace X' of $W(\Lambda, \mathbf{T})$ with $X' \leq X$ such that the set $[X']^{\infty}_{\Lambda}$ is monochromatic.

・ 伊 ト ・ ヨ ト ・ ヨ ト