Parametrized &-principles - Introduction Parametrized &-principles - Revised Canonical models

Retrospective workshop on Forcing and its applications

# Parametrized $\diamondsuit$ -principles and canonical models

#### Michael Hrušák joint with Osvaldo Guzmán

CCM Universidad Nacional Autónoma de México michael@matmor.unam.mx

> Toronto March/April 2015

- ∢ ≣ →

-

Parametrized Parametrized Parametrized Canonical models

## Contents



3 Canonical models

□ > < E > < E > -

# Weak diamond

### Definition (Devlin-Shelah 1978)

The weak diamond principle  $\Phi$  is the following assertion:

$$\forall F: 2^{<\omega_1} \to 2 \exists g: \omega_1 \to 2 \forall f \in 2^{\omega_1}$$

$$\{\alpha < \omega_1 : F(f \upharpoonright \alpha) = g(\alpha)\}$$
 is stationary.

### Theorem (Devlin-Shelah 1978)

 $\Phi$  is equivalent to  $2^{\omega} < 2^{\omega_1}$ .

Parametrized Parametrized Parametrized Canonical models

## Parametrized weak diamonds

An invariant is a triple  $(A, B, \rightarrow)$  where  $\rightarrow \subseteq A \times B$  is such that (1)  $\forall a \in A \exists b \in B \ a \rightarrow b$ , and (2)  $\forall b \in B \exists a \in A \ a \not\rightarrow b$ . Given an invariant  $(A, B, \rightarrow)$  the evaluation of  $(A, B, \rightarrow)$  is  $||A, B, \rightarrow || = \min\{|B'| : B' \subseteq B \ \forall a \in A \ \exists b \in B' \ a \rightarrow b\}$ We abbreviate  $(A, A, \rightarrow)$  as  $(A, \rightarrow)$ .

#### Definition $\Phi(A, B, \rightarrow)$

$$\forall F: 2^{<\omega_1} \to \mathbf{A} \exists g: \omega_1 \to \mathbf{B} \forall f \in 2^{\omega_1}$$

 $\{\alpha < \omega_1 : F(f \upharpoonright \alpha) \rightarrow g(\alpha)\}$  is stationary.

Disadvantage:  $\Phi(A, B, \rightarrow)$  implies  $2^{\omega} < 2^{\omega_1}$ .

通 と く ヨ と く ヨ と

-

## Parametrized diamonds - Moore-H.-Džamonja

We restrict to Borel invariants - require A, B and  $\rightarrow$  to be Borel subsets of Polish spaces.

Definition (MHD 2004)  $\diamondsuit$  (*A*, *B*,  $\rightarrow$ )

$$\forall F: 2^{<\omega_1} \rightarrow A \text{ Borel } \exists g: \omega_1 \rightarrow B \ \forall f \in 2^{\omega_1}$$

 $\{\alpha < \omega_1 : F(f \upharpoonright \alpha) \rightarrow g(\alpha)\}$  is stationary.

F is Borel if  $F \upharpoonright 2^{\alpha}$  is Borel for every  $\alpha < \omega_1$ . Easy observations:

• 
$$(A, B, \rightarrow) \Rightarrow ||A, B, \rightarrow || \leq \omega_1$$
,

• 
$$\diamond \Leftrightarrow \diamond (\mathbb{R},=)$$
,

•  $(A, B, \rightarrow) \leq_{GT} (A', B', \rightarrow')$  and  $\Diamond (A', B', \rightarrow') \Rightarrow \Diamond (A, B, \rightarrow).$ 

伺 と く ヨ と く ヨ と

Parametrized Parametrized Parametrized Canonical models

### ... and the point is ...

#### Theorem (MHD 2004)

If W is a canonical model and  $(A, B, \rightarrow)$  is a Borel invariant then  $W \models \diamondsuit(A, B, \rightarrow)$  if and only if  $||A, B, \rightarrow || \le \omega_1$ .

By a canonical model we mean a model which is the result of a CSI of length  $\omega_2$  of a single sufficiently definable (e.g. Suslin) and sufficiently homogeneous ( $\mathbb{P} \simeq \{0,1\} \times \mathbb{P}$ ) proper forcing  $\mathbb{P}$ .

# Results from (MHD)

- $\Diamond(non(\mathcal{M})) \Rightarrow$  There is a Suslin tree.
- $\diamondsuit(\mathfrak{s}^{\omega}) \Rightarrow$  There is an Ostaszewski space.
- $\Diamond(\mathfrak{b}) \Rightarrow$  There is a non-trvial coherent sequence on  $\omega_1$  which can not be uniformized.
- $\Diamond(2,=) \Rightarrow \mathfrak{p} = \omega_1.$
- $\Diamond(2,=) \Rightarrow$  There are no uncountable *Q*-sets.
- $\Diamond(2,=) \Rightarrow$  Every ladder system on  $\omega_1$  has a non-uniformizable coloring.
- $\Diamond(\mathfrak{b}) \Rightarrow$  There is a MAD family of size  $\omega_1$ .
- $\Diamond(\mathfrak{r}) \Rightarrow$  There is a P-point of character  $\omega_1$ .
- $\Diamond(\mathfrak{r}_{nwd}) \Rightarrow$  There is a maximal independent family of size  $\omega_1$ .
- CH + "Almost no diamonds" hold is consistent.

# Further results

- (Yorioka, 2005)  $\Diamond(non(\mathcal{M})) \Rightarrow$  There is a ccc destructible Hausdorff gap.
- (Minami 2005) Separated ◊'s for invariants in the Cichoń diagram under CH.
- (Kastermans-Zhang 2006) ◊(non(M)) ⇒ There is a maximal cofinitary group of size ω<sub>1</sub>.
- (Minami 2008) Parametrized diamonds hold in FSI iterations of Suslin ccc forcings.
- (Mildenberger, Mildenberger-Shelah 2009-2011) No other diamonds in the Cichoń diagram imply the existence of a Suslin tree (all are consistent with "all Aronszajn trees are special").
- (Cancino-H.-Meza 2014)  $\Diamond(\mathfrak{r}) \Rightarrow$  There is a countable irresolvable space of weight  $\omega_1$ .
- (H.–Ramos-García 2014) ◊(2,=) ⇒ There is a separable Fréchet non-metrizable group.
- (Chodounský 2014) ◊(2,=) ⇒ There is a tight Hausdorff gap of functions.

## Contents



### 2 Parametrized ◊-principles - Revised

### 3 Canonical models

□ > < E > < E > -

## Cosmetic changes

### Definition $\Diamond(A, B, \rightarrow)$

$$\forall F: 2^{<\omega_1} \to A \text{ Borel } \exists g: \omega_1 \to B \ \forall f \in 2^{\omega_1}$$

 $\{\alpha < \omega_1 : F(f \upharpoonright \alpha) \rightarrow g(\alpha)\}$  is stationary.

It turns out that the requirement that F be Borel is unnecessarily strong – can be replaced by  $F \upharpoonright 2^{\alpha}$  is definable from an  $\omega_1$ -sequence of reals (or even an  $\omega_1$ -sequence of ordinals), i.e.  $F \upharpoonright 2^{\alpha} \in L(\mathbb{R})[X]$ , where X is an  $\omega_1$ -sequence of ordinals, which we shall call  $\omega_1$ -definable.

#### Definition $\diamondsuit^{\omega_1}(A, B, \rightarrow)$

$$orall F: 2^{<\omega_1} o A \; \omega_1$$
-definable  $\exists g: \omega_1 o B \; orall f \in 2^{\omega_1}$ 

 $\{\alpha < \omega_1 : F(f \upharpoonright \alpha) \rightarrow g(\alpha)\}$  is stationary.

## The weakest weak diamond and failure of Baumgartner

### $\diamondsuit^{\omega_1}(2,=)$ - the Weakest weak diamond

$$orall F: 2^{<\omega_1} o 2 \; \omega_1$$
-definable  $\exists g: \omega_1 o 2 \; orall f \in 2^{\omega_1}$ 

$$\{\alpha < \omega_1 : F(f \upharpoonright \alpha) = g(\alpha)\}$$
 is stationary.

#### Example.

 $\Diamond^{\omega_1}(2,=) \Rightarrow \text{Every } \aleph_1\text{-dense set of reals } X \text{ contains an } \aleph_1\text{-dense set } Y$  such that X and Y are not order isomorphic.

### Proof.

Fix X and Z  $\aleph_1$ -dense subset of X such that  $X \setminus Z$  is uncountable. Enumerate  $X \setminus Z$  as  $\{x_{\alpha} : \alpha < \omega_1\}$ , and let  $H : 2^{\omega} \to Aut(\mathbb{R})$  be Borel and onto. Let F(s) = 0 iff  $|s| < \omega$  or  $H(s \upharpoonright \omega)(x_{|s|}) \in X$ . Given g, let  $Y = Z \cup \{x_{\alpha} : g(\alpha) = 1\}$ . Given an  $h \in Aut(\mathbb{R})$  consider any  $f \in 2^{\omega_1}$  such that  $H(f \upharpoonright \omega) = h$ .

# Sequential composition of invariants

### Definition

Given  $i = (A, B, \rightarrow)$  and  $j = (A', B', \rightarrow')$ , we define the sequential composition i; j of i and j by

$$\mathfrak{i};\mathfrak{j}=(A\times A'^B,B\times B',\rightarrow'') \text{ with } (a,h)\rightarrow''(b,b') \text{ iff } a\rightarrow b\ \&\ h(b)\rightarrow'b'.$$

**Remark:**  $||i;j|| = max\{||i||, ||j||\}.$ 

#### Recall

$$\mathfrak{r}_{\sigma} = \min\{|\mathcal{R}| : \mathcal{R} \subseteq [\omega]^{\omega} \ \forall \langle A_n : n \in \omega \rangle \subseteq [\omega]^{\omega} \\ \exists R \in \mathcal{R} \ \forall n \in \omega \ (R \subseteq^* A_n \text{ or } R \cap A_n =^* \emptyset) \}.$$

伺 と く き と く き と

# Monk's questions

### Questions (D. Monk 2014)

- Is it consistent that there is a maximal family of pairwise incomparable elements of  $\mathcal{P}(\omega)/\text{fin}$  of size less than c?
- Is it consistent that there is a maximal subtree of P(ω)/fin of size less than c?
- On the two be consistently different?

### Definition

A set  $\mathcal{T} \subseteq [\omega]^{\omega}$  is a maximal tree if

- ${\small {\small \bigcirc}} \ {{\mathcal T}} \text{ is a tree (ordered by reverse } \subseteq^*), \text{ and }$
- ∀C ∈ [ω]<sup>ω</sup>(∃T ∈ T such that T ⊆<sup>\*</sup> C or ∃T<sub>0</sub>, T<sub>1</sub> ∈ T incomparable such that C ⊆<sup>\*</sup> T<sub>0</sub> ∩ T<sub>1</sub>).

Note that levels of the tree are incomparable families, not AD families. The answers are NO, YES, YES.

# Monk's questions

### Theorem (Campero-Cancino-H.-Miranda 2015)

 $\Diamond^{\omega_1}(\mathfrak{r}_{\sigma};\mathfrak{d}) \Rightarrow$  There is a maximal tree in  $\mathcal{P}(\omega)/\text{fin}$  of size  $\omega_1$ .

#### Corollary.

It is consistent that here is a maximal tree in  $\mathcal{P}(\omega)/\textit{fin}$  of size less than  $\mathfrak{c}$ .

#### Recall

A set  $\mathcal{T} \subseteq [\omega]^{\omega}$  is a maximal tree if

- it is a tree (ordered by reverse  $\subseteq^*$ ), and
- ∀C ∈ [ω]<sup>ω</sup>(∃T ∈ T such that T ⊆\* C or ∃T<sub>0</sub>, T<sub>1</sub> ∈ T incomparable such that C ⊆\* T<sub>0</sub> ∩ T<sub>1</sub>).

## Further small changes - The strongest weak diamond

Definition  $\diamondsuit_{S}^{\omega_{1}}(\omega_{1},=)$  - the Strongest weak diamond

Let  $S \subseteq \omega_1$  be stationary.

۴

$$\forall F: 2^{<\omega_1} 
ightarrow \omega_1 \; \omega_1$$
-definable  $\exists g: \omega_1 
ightarrow \omega_1 \; orall f \in 2^{\omega_1}$ 

$$\{\alpha \in S : F(f \upharpoonright \alpha) = g(\alpha)\}$$
 is stationary.

Observations:

• 
$$\diamondsuit_{S}^{\omega_{1}}(\omega_{1},=)+||A,B,\rightarrow||\leq\omega_{1} \Rightarrow \diamondsuit_{S}^{\omega_{1}}(A,B,\rightarrow)$$

• 
$$\diamondsuit_S \Leftrightarrow CH + \diamondsuit_S^{\omega_1}(\omega_1, =).$$

#### Theorem

 $\forall S \in NS(\omega_1)^+ \diamondsuit^{\omega_1}_S(\omega_1,=)$  holds in all canonical models.

くぼう くほう くほう

э

# "All" Borel weak diamonds hold in the Sacks model

#### Theorem

$$\forall S \in NS(\omega_1)^+ \diamondsuit_S^{\omega_1}(\omega_1, =)$$
 holds in any canonical model.

### combined with

### Theorem (Zapletal 2008)

For every Borel cardinal invariant  $(A, B, \rightarrow)$  if  $||A, B, \rightarrow || < \mathfrak{c}$  can be forced then  $V^{\mathbb{S}_{\omega_2}} \models ||A, B, \rightarrow || \le \omega_1$ .

### gives

#### Corollary

 $V^{\mathbb{S}_{\omega_2}} \models \Diamond^{\omega_1}(A, B, \rightarrow)$  for every Borel cardinal invariant  $(A, B, \rightarrow)$  such that  $||A, B, \rightarrow || \le \omega_1$  can be forced over any model without collapsing  $\omega_2$ .

## Contents



2 Parametrized ◊-principles - Revised

### 3 Canonical models

回 と く ヨ と く ヨ と

## Canonical models

#### Question

What can be said about all canonical models? Or, which problems can not be solved in any canonical model?

A >

# Canonical models

The following hold in all canonical models:

- All Whitehead groups of size  $\omega_1$  are free (Shelah  $\diamondsuit_S^{\omega_1}(2,=)$ )
- Baumgartner's theorem fails (Baumgartner  $\diamondsuit^{\omega_1}(2,=)$ )
- $\mathfrak{p} = \mathfrak{q} = \omega_1$ ,  $\mathfrak{a} = \mathfrak{b}$ ,  $\mathfrak{r} = \mathfrak{u}$ ,  $\mathfrak{s} = \mathfrak{s}_{\omega} \dots (\mathsf{MHD})$
- There is a non-metrizable separable Fréchet group (H.-Ramos  $\diamondsuit(2,=))$
- There is a Cohen indestructible MAD family (H.-Guzmán  $\mathfrak{b}=\mathfrak{c}+\diamondsuit(\mathfrak{b}))$
- There is a compact sequential space of sequential order >2 (Dow  $\mathfrak{b}=\mathfrak{c}$  + Gaspar-Hernandez-H.  $\diamondsuit(\mathfrak{b}))$
- There is a compact weakly first countable space that is not first countable (Gorelic-Juhasz-Weis  $\mathfrak{b} = \mathfrak{c} + \text{Gaspar-Hernandez-H.} \Diamond(\mathfrak{b})$ )
- There is a ccc forcing adding a real and not adding either random or a Cohen real (Brendle  $cof(\mathcal{M}) = \mathfrak{c} + \text{Guzmán} \Diamond(cof(\mathcal{M})))$ .

<=> = √QQ

# A few more results

- (Gaspar-Hernandez-H. 2015)  $\Diamond(\mathfrak{s}) \Rightarrow$  Counterexample to the Scarborough-Stone problem.
- (Fernández-H. 2015) ◊(t<sub>Hindman</sub>) ⇒ There is a union-ultrafilter of character ω<sub>1</sub>.
- (Fernández-H. 2015) ◊(𝔅<sub>Fin×scattered</sub>) ⇒ There is a gruff ultrafilter of character ω<sub>1</sub>.
- (Cancino-Guzmán-Miller 2014) ◊(τ; ∂) ⇒ There is an ideal independent maximal family of size ω<sub>1</sub>.

# Questions

### Questions

- Is  $\diamondsuit^{\omega_1}(\omega_1, <)$  consistent with  $\neg\diamondsuit^{\omega_1}(\omega_1, =)$ ?
- **2** What happens on  $\omega_2$ ?
- S Clarify what happens in canonical ccc models.
- Suslin trees?
- Is there a non-trivial invariant whose diamond produces \$?

## Thank you for your attention!!!

# Questions

### Questions

- Is  $\diamondsuit^{\omega_1}(\omega_1, <)$  consistent with  $\neg\diamondsuit^{\omega_1}(\omega_1, =)$ ?
- **2** What happens on  $\omega_2$ ?
- S Clarify what happens in canonical ccc models.
- Suslin trees?
- Is there a non-trivial invariant whose diamond produces \$?

## Thank you for your attention!!!