Blass-Shelah Forcing Revisited

Heike Mildenberger

Forcing and Its Applications Retrospective Workshop Fields Institute, March 31, 2015

F1420 by Blass, Mildenberger, Shelah A Simple P_{\aleph_1} -Point and a Simple P_{\aleph_2} -Point

Let \mathbb{P} be a notion of forcing. Let \mathcal{U} be an ultrafilter over I. We say \mathbb{P} preserves \mathcal{U} if

 $\Vdash_{\mathbb{P}} "(\forall X \subseteq I)(\exists Y \in \mathcal{U})(Y \subseteq X \lor Y \subseteq I \smallsetminus X)".$

Let \mathbb{P} be a notion of forcing. Let \mathcal{U} be an ultrafilter over I. We say \mathbb{P} preserves \mathcal{U} if

$$\Vdash_{\mathbb{P}} "(\forall X \subseteq I)(\exists Y \in \mathcal{U})(Y \subseteq X \lor Y \subseteq I \smallsetminus X)".$$

Remark

Preservation of *P*-points. Some development ...

Let \mathbb{P} be a notion of forcing. Let \mathcal{U} be an ultrafilter over I. We say \mathbb{P} preserves \mathcal{U} if

$$\Vdash_{\mathbb{P}} "(\forall X \subseteq I)(\exists Y \in \mathcal{U})(Y \subseteq X \lor Y \subseteq I \smallsetminus X)".$$

Remark

Preservation of *P*-points. Some development

Theorem, Shelah 1994 Any forcing adding a real destroys an ultrafilter over ω .

Theorem, Blass, Shelah

Let \mathcal{E} be a P-point. Let $\langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\beta} : \beta < \gamma, \alpha \leq \gamma \rangle$ be a countable support iteration such that each \mathbb{P}_{α} is proper. If each $\mathbb{P}_{\alpha}, \alpha < \gamma$, preserves \mathcal{E} , then also \mathbb{P}_{γ} preserves \mathcal{E} .

- (1) $\langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\beta} : \beta < \omega_2, \alpha \leq \omega_2 \rangle$ is a countable support iteration of proper iterands, and
- (2) in $V^{\mathbb{P}_{\omega_2}}$ there is a simple P_{\aleph_2} -point \mathcal{U} .

- (1) $\langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\beta} : \beta < \omega_2, \alpha \leq \omega_2 \rangle$ is a countable support iteration of proper iterands, and
- (2) in $V^{\mathbb{P}_{\omega_2}}$ there is a simple P_{\aleph_2} -point \mathcal{U} .

Then there is an ω_1 -club of stages at which $\mathcal{U} \cap V^{\mathbb{P}_{\alpha}}$ is a *P*-point.

- (1) $\langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\beta} : \beta < \omega_2, \alpha \leq \omega_2 \rangle$ is a countable support iteration of proper iterands, and
- (2) in $V^{\mathbb{P}_{\omega_2}}$ there is a simple P_{\aleph_2} -point \mathcal{U} .

Then there is an ω_1 -club of stages at which $\mathcal{U} \cap V^{\mathbb{P}_{\alpha}}$ is a P-point. We take such a stage α , and consider the least $\beta > \alpha$ such that there is $X \in \mathcal{U} \setminus V^{\mathbb{P}_{\alpha}}$. $\mathcal{U} \cap V^{\mathbb{P}_{<\beta}}$ is destroyed by \mathbb{P}_{β} (and complemented) later in the iteration.

- (1) $\langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\beta} : \beta < \omega_2, \alpha \leq \omega_2 \rangle$ is a countable support iteration of proper iterands, and
- (2) in $V^{\mathbb{P}_{\omega_2}}$ there is a simple P_{\aleph_2} -point \mathcal{U} .

Then there is an ω_1 -club of stages at which $\mathcal{U} \cap V^{\mathbb{P}_{\alpha}}$ is a *P*-point.

We take such a stage α , and consider the least $\beta > \alpha$ such that there is $X \in \mathcal{U} \setminus V^{\mathbb{P}_{\alpha}}$. $\mathcal{U} \cap V^{\mathbb{P}_{<\beta}}$ is destroyed by \mathbb{P}_{β} (and complemented) later in the iteration.

So a forcing destroying some P-points and keeping others is requested.

The Rudin-Blass order

Let $\mathcal{H}, \mathcal{H}' \subseteq [\omega]^{\omega}$ be closed under almost supersets. We write $\mathcal{H} \leq_{\mathrm{RB}} \mathcal{H}'$ and say \mathcal{H} is Rudin-Blass-below \mathcal{H}' iff there is a finite-to-one f such that $f(\mathcal{H}) \subseteq f(\mathcal{H}')$. Here $f(\mathcal{H}) = \{X : f^{-1}[X] \in \mathcal{H}\}.$

The Rudin-Blass order

Let $\mathcal{H}, \mathcal{H}' \subseteq [\omega]^{\omega}$ be closed under almost supersets. We write $\mathcal{H} \leq_{\mathrm{RB}} \mathcal{H}'$ and say \mathcal{H} is Rudin-Blass-below \mathcal{H}' iff there is a finite-to-one f such that $f(\mathcal{H}) \subseteq f(\mathcal{H}')$. Here $f(\mathcal{H}) = \{X : f^{-1}[X] \in \mathcal{H}\}.$

Theorem, Eisworth, 2002

Let \mathcal{U} be a stable ordered-union ultrafilter over the set of blocks. The Matet forcing $\mathbb{M}(\mathcal{U})$ preserves \mathcal{E} iff $\Phi(\mathcal{U}) \not\leq_{\mathrm{RB}} \mathcal{E}$.

The Rudin-Blass order

Let $\mathcal{H}, \mathcal{H}' \subseteq [\omega]^{\omega}$ be closed under almost supersets. We write $\mathcal{H} \leq_{\mathrm{RB}} \mathcal{H}'$ and say \mathcal{H} is Rudin-Blass-below \mathcal{H}' iff there is a finite-to-one f such that $f(\mathcal{H}) \subseteq f(\mathcal{H}')$. Here $f(\mathcal{H}) = \{X : f^{-1}[X] \in \mathcal{H}\}.$

Theorem, Eisworth, 2002

Let \mathcal{U} be a stable ordered-union ultrafilter over the set of blocks. The Matet forcing $\mathbb{M}(\mathcal{U})$ preserves \mathcal{E} iff $\Phi(\mathcal{U}) \not\leq_{\mathrm{RB}} \mathcal{E}$.

However, Matet forcing not add an unsplit real.

Definition

A real $X\in V[G]\smallsetminus V$ is called an unsplit real if every $Y\in [\omega]^\omega\cap V$ we have

$$Y \subseteq^* X \lor Y \subseteq^* \omega \smallsetminus X.$$

So we work with suborders of Blass-Shelah forcing, for example the one of [BsSh:242]. For today we take a forgetful version.

Definition

(1) A finite ω is called a block. A set of possibilities is a subset of the power set of a block that contains the empty set. We denote by \mathcal{P} the set of all sets of possibilities. Typically we use variables s, t for blocks and a, b, c for sets of possibilities.

(2) Let a be a set of possibilities and
$$Y \subseteq \omega$$
. We let $a \upharpoonright Y = \{s \cap Y : s \in a\}.$

Let a be a subset of the power set of a finite set, $\emptyset \in a$. We define a norm:

(a) $\operatorname{nor}(a) \ge 0$, always,

- Let a be a subset of the power set of a finite set, $\emptyset \in a$. We define a norm:
 - (a) $\operatorname{nor}(a) \ge 0$, always,
 - (b) $nor(a) \ge 1$ iff |a| > 1,

Let a be a subset of the power set of a finite set, $\emptyset \in a$. We define a norm:

- (a) $\operatorname{nor}(a) \ge 0$, always,
- (b) $nor(a) \ge 1$ iff |a| > 1,
- (c) $\operatorname{nor}(a) \ge k + 1$ iff whenever $\bigcup a = Y_1 \cup Y_2$ then $\max(\operatorname{nor}(a \upharpoonright Y_1), \operatorname{nor}(a \upharpoonright Y_2)) \ge k.$

Let a be a subset of the power set of a finite set, $\emptyset \in a$. We define a norm:

(a)
$$\operatorname{nor}(a) \ge 0$$
, always,

(b)
$$nor(a) \ge 1$$
 iff $|a| > 1$,

(c) $\operatorname{nor}(a) \ge k+1$ iff whenever $\bigcup a = Y_1 \cup Y_2$ then $\max(\operatorname{nor}(a \upharpoonright Y_1), \operatorname{nor}(a \upharpoonright Y_2)) \ge k.$

If $nor(a) \ge 1$, then a contains a non-empty set.

(1) For
$$a, b \in \mathcal{P}$$
 with $\bigcup a, \bigcup b \neq \emptyset$ we write $a < b$ if $(\forall n \in \bigcup a)(\forall m \in \bigcup b)(n < m)$.

- (1) For $a, b \in \mathcal{P}$ with $\bigcup a, \bigcup b \neq \emptyset$ we write a < b if $(\forall n \in \bigcup a)(\forall m \in \bigcup b)(n < m)$.
- (2) A sequence $\bar{a} = \langle a_n : n \in \omega \rangle$ of members of \mathcal{P} is called unmeshed if for all $n, a_n < a_{n+1}$.

- (1) For $a, b \in \mathcal{P}$ with $\bigcup a, \bigcup b \neq \emptyset$ we write a < b if $(\forall n \in \bigcup a)(\forall m \in \bigcup b)(n < m)$.
- (2) A sequence $\bar{a} = \langle a_n : n \in \omega \rangle$ of members of \mathcal{P} is called unmeshed if for all n, $a_n < a_{n+1}$.
- (3) By $(\mathcal{P})^{\omega}$ we denote the set of unmeshed sequences \bar{a} such that $(\forall n)(\operatorname{nor}(a_n) \ge n+1)$.

- (1) For $a, b \in \mathcal{P}$ with $\bigcup a, \bigcup b \neq \emptyset$ we write a < b if $(\forall n \in \bigcup a)(\forall m \in \bigcup b)(n < m)$.
- (2) A sequence $\bar{a} = \langle a_n : n \in \omega \rangle$ of members of \mathcal{P} is called unmeshed if for all $n, a_n < a_{n+1}$.
- (3) By $(\mathcal{P})^{\omega}$ we denote the set of unmeshed sequences \bar{a} such that $(\forall n)(\operatorname{nor}(a_n) \ge n+1)$.
- (4) Let $\bar{a} \in (\mathcal{P})^{\omega}$. We write $a \in \bar{a}$ for $a \in \{a_n : n \in \omega\}$.

For sequences $\bar{a}, \bar{b} \in (\mathcal{P})^{\omega}$ we write $\bar{b} \leq \bar{a}$ or " \bar{b} stronger than \bar{a} " iff there is a strictly increasing function $g: \omega \to \omega$ such that for any n,

$$b_n \subseteq a_{g(n)} \circ \cdots \circ a_{g(n+1)-1},$$

and $a \circ b = \{s \cup t : s \in a, t \in b\}.$

The next two notions connect generated sets in $(\mathcal{P})^\omega$ with semifilters over $\omega.$

Definition

(1) For $\bar{a} \in (\mathcal{P})^{\omega}$ we let $\operatorname{set}_2(\bar{a}) = \bigcup \{\bigcup a_n : n \in \omega\}$. We write 2 to distinguish it from notions that are used in Matet forcing.

The next two notions connect generated sets in $(\mathcal{P})^\omega$ with semifilters over $\omega.$

- (1) For $\bar{a} \in (\mathcal{P})^{\omega}$ we let $\operatorname{set}_2(\bar{a}) = \bigcup \{\bigcup a_n : n \in \omega\}$. We write 2 to distinguish it from notions that are used in Matet forcing.
- (2) Let $\mathcal{H} \subseteq (\mathcal{P})^{\omega}$. The projection of \mathcal{H} into $[\omega]^{\omega}$ is $\Phi_2(\mathcal{H}) = \{ \operatorname{set}_2(\bar{a}) : \bar{a} \in \mathcal{H} \}.$

There is a connection to adding a real that is not split by any real in the ground model and to ultrafilters over ω :

Lemma

If $\bar{a} \in (\mathcal{P})^{\omega}$ and $X \subseteq \omega$ then there is $\bar{b} \leq \bar{a}$ such that $\operatorname{set}_2(\bar{b}) \subseteq X$ or $\operatorname{set}_2(\bar{b}) \subseteq (\omega \setminus X)$.

Let $\bar{a} \in (\mathcal{P})^{\omega}$, $n \in \omega$. We write $(\bar{a} \text{ past } n)$ for $\langle a_i : i \in [k, \omega) \rangle$, where k is the minimal number such that $n \leq \min \bigcup a_k$.

Let $\bar{a} \in (\mathcal{P})^{\omega}$, $n \in \omega$. We write $(\bar{a} \text{ past } n)$ for $\langle a_i : i \in [k, \omega) \rangle$, where k is the minimal number such that $n \leq \min \bigcup a_k$.

Definition

Let $\langle \bar{a}_n : n \in \omega \rangle$ be a \leq -descending sequence in $(\mathcal{P})^{\omega}$. A sequence $\bar{b} \in (\mathcal{P})^{\omega}$ is a diagonal lower bound of $(\bar{a}_n)_n$ iff

 $(\forall b \in \overline{b})((\overline{b} \operatorname{past} \max(b)) \le \overline{a}_{\max(b)}).$

Definition Let $\bar{a} \in (\mathcal{P})^{\omega}$, s a finite set, $s < \min(a_0)$. Lev $\leq k(s, \bar{a}) = \bigcup \{\{s\} \circ a_{i_0} \circ \cdots \circ a_{i_{n-1}} : i_0 < \cdots < i_{n-1} \le k\}$. $T(s, \bar{a}) = \bigcup \{\text{Lev}_{\leq k}(\bar{a}) : k \in \omega.\}.$

Theorem, Blass, Shelah

For any $C : [\omega]^{<\omega} \to 2$ and any $\bar{a} \in (\mathcal{P})^{\omega}$ there is $\bar{b} \leq \bar{a}$ such that $C \upharpoonright T(\bar{b})$ is constant.

Theorem, Blass, Shelah

For any $C \colon [\omega]^{<\omega} \to 2$ and any $\bar{a} \in (\mathcal{P})^{\omega}$ there is $\bar{b} \leq \bar{a}$ such that $C \upharpoonright T(\bar{b})$ is constant.

Now we fix a P-point \mathcal{E} and assume CH.

Suitable sets of pure parts of conditions

Definition

A set $\mathcal{H} \subseteq (\mathcal{P})^{\omega}$ is called a suitable set if the following hold:

- (1) (Upwards Closure) $\mathcal{H} \subseteq (\mathcal{P})^{\omega}$, and $\bar{a} \in \mathcal{H}$ and $\bar{b} \geq^* \bar{a}$ implies $\bar{b} \in \mathcal{H}$,
- (2) (Existence of Diagonal Lower Bounds) If $\langle \bar{a}_n : n \in [\omega]^{<\omega} \rangle$ is a \leq -descending sequence of elements of \mathcal{H} then there is $\bar{b} \in \mathcal{H}$ such that $(\forall b \in \bar{b})((\bar{b} \operatorname{past} \max(b)) \leq \bar{a}_{\max(b)}).$
- (3) (Fullness) For any $Y \subseteq \omega$, there is $\bar{a} \in \mathcal{H}$ such that $\operatorname{set}_2(\bar{a}) \subseteq Y$ or $\operatorname{set}_2(\bar{a}) \subseteq Y^c$.
- (4) (Ramsey property: Monochromatic trees of possibilities) For any $C : [\omega]^{<\omega} \to 2$ and any $\bar{a} \in \mathcal{H}$ there is $\bar{b} \leq \bar{a} \in \mathcal{H}$ such that $C \upharpoonright T(\bar{b})$ is constant.
- (5) (Avoiding \mathcal{E}) We require $\Phi_2(\mathcal{H}) \not\leq_{RB} \mathcal{E}$.

In the forcing order BS, conditions are pairs (s, \bar{a}) such that $s \in \mathscr{P}_{<\omega}(\omega)$ and $\bar{a} \in (\mathcal{P})^{\omega}$ and $s < a_0$. The forcing order is $(t, \bar{b}) \leq (s, \bar{a})$ (recall the stronger condition is the smaller one) iff

(1) $s \subseteq t$ and

In the forcing order \mathbb{BS} , conditions are pairs (s, \bar{a}) such that $s \in \mathscr{P}_{<\omega}(\omega)$ and $\bar{a} \in (\mathcal{P})^{\omega}$ and $s < a_0$. The forcing order is $(t, \bar{b}) \leq (s, \bar{a})$ (recall the stronger condition is the smaller one) iff

(1) s ⊆ t and
(2) there is k ∈ ω such that t \sigma s ∈ a₀ ∘ · · · ∘ a_{k-1} and

In the forcing order \mathbb{BS} , conditions are pairs (s, \bar{a}) such that $s \in \mathscr{P}_{<\omega}(\omega)$ and $\bar{a} \in (\mathcal{P})^{\omega}$ and $s < a_0$. The forcing order is $(t, \bar{b}) \leq (s, \bar{a})$ (recall the stronger condition is the smaller one) iff

Given a suitable set \mathcal{H} in $(\mathcal{P})^{\omega}$, the notion of forcing $\mathbb{BS}(\mathcal{H})$ consists of all pairs (s, \bar{a}) such that $\bar{a} \in \mathcal{H}$ and $s < \min(a_0)$. The order relation is as in \mathbb{BS} .

We name the generic reals:

Definition

Let G be $\mathbb{BS}(\mathcal{H})$ -generic over V. We call

$$W = \bigcup \{s \, : \, \exists \bar{a}(s, \bar{a}) \in G\}$$

the $\mathbb{BS}(\mathcal{H})$ -generic real.

Remark

If $\Phi_2(\mathcal{H})$ is an ultrafilter, then $\mathbb{BS}(\mathcal{H})$ destroys the ultrafilter $\Phi_2(\mathcal{H})$, since W diagonalises $\Phi_2(\mathcal{H})$. Moreover, $\mathbb{BS}(\mathcal{H})$ destroys any ultrafilter \mathcal{U} such that $\Phi_2(\mathcal{H}) \leq_{\mathrm{RB}} \mathcal{U}$.

The generic real is not split by any set in the ground model:

Lemma

Let \mathcal{H} be a suitable set in $(\mathcal{P})^{\omega}$. If $X \subseteq \omega$, $X \in V$ then after forcing with $\mathbb{BS}(\mathcal{H})$ we have $W \subseteq^* X$ or $W \subseteq^* (\omega \setminus X)$.

Proposition

(Prop. 2.9 in BsSh:242) Let \underline{A} be a $\mathbb{BS}(\mathcal{H})$ -name for a subset of ω . Then every condition (s, \bar{a}) has a 0-extension (s, \bar{b}) with the following property. If $\ell \in \omega$, if $n = n(\ell)$ is the number such that $b_{\ell} \subseteq n$, if $t \in b_0 \circ \cdots \circ b_{\ell-1}$, and if $i < n(\ell-1)$, then $(t, \bar{b} \text{ past } n(\ell-1))$ decides whether $i \in \underline{A}$.

Proposition

(Prop. 2.9 in BsSh:242) Let \underline{A} be a $\mathbb{BS}(\mathcal{H})$ -name for a subset of ω . Then every condition (s, \overline{a}) has a 0-extension (s, \overline{b}) with the following property. If $\ell \in \omega$, if $n = n(\ell)$ is the number such that $b_{\ell} \subseteq n$, if $t \in b_0 \circ \cdots \circ b_{\ell-1}$, and if $i < n(\ell-1)$, then $(t, \overline{b} \text{ past } n(\ell-1))$ decides whether $i \in \underline{A}$.

Theorem

Let \mathcal{H} be an suitable set, and let \mathcal{E} be a P-point such that $\Phi_2(\mathcal{H}) \not\leq_{\mathrm{RB}} \mathcal{E}$. Then \mathcal{E} continues to generate an ultrafilter after we force with $\mathbb{BS}(\mathcal{H})$.

Proof sketch

 $T(s, \overline{b})$ monochromatic as in Proposition. Let for $\ell \in \omega$, $n(\ell) = \max(\lfloor \rfloor b_{\ell})$. $A(t) = \{i : (\exists \ell) (i < n(\ell) \land (t, (\bar{b} \text{ past } n(\ell))) \Vdash i \in A)\}.$ Assume all $A(t) \in \mathcal{E}$, and $B \subset^* A(t)$, $B \in \mathcal{E}$. Inductively define a sequence $\langle \zeta(n) : n \in \omega \rangle$ of natural numbers, starting with $\zeta(0) = 0$, and increasing so rapidly that, if $t \in \text{Lev}_{<\zeta(k)}(s, \bar{b})$, then (i) $B \setminus A(t) \subseteq \zeta(k+1)$, and (ii) if $i \in A(t)$ and $i < n(\zeta(k))$, then $(t, (\overline{b} \text{ past } \max(b_{\zeta(k)}))) \Vdash i \in A.$ Find $\bar{c} \in \mathcal{H}$, such that $\operatorname{set}_2(\bar{c})$ avoids B in a strong sense.

Then $(s, \overline{c}) \Vdash B \cap X_2 \subset A$.

A request for more preservation theorems for csi

Conjecture of an Induction Lemma

There is a countable support iteration of proper forcings $\langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\beta} : \beta < \omega_2, \alpha \leq \omega_2 \rangle$ such that for each $\beta < \omega$ there is a \mathbb{P}_{β} -name \mathcal{H}_{β} for suitable sets such that for any $\alpha \leq \omega_2$, the initial segment $\langle \mathbb{P}_{\gamma}, \mathbb{Q}_{\beta}, \mathcal{H}_{\beta} : \beta < \alpha, \gamma \leq \alpha \rangle$ fulfils:

(P1) For all $\gamma < \alpha$,

$$\begin{split} \Vdash_{\mathbb{P}_{\gamma}}``\mathbb{Q}_{\gamma} &= \mathbb{BS}(\mathcal{H}_{\gamma}) \text{ for a suitable set } \mathcal{H}_{\gamma} \\ \text{adding } W_{\gamma} \wedge \Phi_{2}(\mathcal{H}_{\gamma}) \not\leq_{\mathrm{RB}} \mathcal{E}''. \end{split}$$

(P2) \mathbb{P}_{α} is proper and

 $\mathbb{P}_{\alpha} \Vdash$ " \mathcal{E} generates an ultrafilter".

$$(\mathsf{P3}) \quad \mathbb{P}_{\alpha} \Vdash \mathcal{H}_{\alpha} = \{ \bar{a} \in (\mathcal{P})^{\omega} : (\forall \gamma < \alpha) (\exists \bar{b} \in (\mathcal{P})^{\omega}) (\bar{b} \leq \bar{a} \land \operatorname{set}_{2}(\bar{b}) \subseteq^{*} W_{\gamma}) \}.$$

Revising the choice of \mathcal{H}_{α}

Definition

 A suitable set C is called centred if any finite subset of C has a lower bound in C.

Revising the choice of \mathcal{H}_{lpha}

Definition

- A suitable set C is called centred if any finite subset of C has a lower bound in C.
- (2) A centred suitable set is called a maximal centred set if for any $\bar{a} \notin C$ there is $\bar{b} \in C$ that is incompatible with \bar{a} .

Revising the choice of \mathcal{H}_{lpha}

Definition

- A suitable set C is called centred if any finite subset of C has a lower bound in C.
- (2) A centred suitable set is called a maximal centred set if for any $\bar{a} \notin C$ there is $\bar{b} \in C$ that is incompatible with \bar{a} .

We name the generic maximal centred set:

Definition

We denote by $\mathcal{C}_{\mathcal{H}}$ the (\mathcal{H},\leq) generic filter.

Factorisation

 $\mathbb{BS}(\mathcal{H}) = (\mathcal{H}, \leq) * \mathbb{BS}(\mathcal{C}_{\mathcal{H}})$

Induction Conjecture

There is a countable support iteration of proper forcings $\langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\beta} : \beta < \omega_2, \alpha \leq \omega_2 \rangle$ such that for each $\beta < \omega$ there is a \mathbb{P}_{β} -name \mathcal{H}_{β} for suitable sets such that for any $\alpha \leq \omega_2$, the initial segment $\langle \mathbb{P}_{\gamma}, \mathbb{Q}_{\beta}, \mathcal{C}_{\beta} : \beta < \alpha, \gamma \leq \alpha \rangle$ fulfils: (P1') For all $\gamma < \alpha$, $\Vdash_{\mathbb{P}_{\gamma}} "\mathbb{Q}_{\gamma} = \mathbb{BS}(\mathcal{C}_{\gamma})$ for a maximal centred suitable set \mathcal{C}_{γ} "... Let W_{γ} denote the $\mathbb{BS}(\mathcal{C}_{\gamma})$ -generic real. (P2) \mathbb{P}_{α} is proper and $\mathbb{P}_{\alpha} \Vdash \mathcal{E}$ generates an ultrafilter". $(\mathsf{P3'}) \quad \mathbb{P}_{\alpha} \Vdash (\forall \gamma < \alpha) (\mathcal{C}_{\gamma} \subseteq \mathcal{C}_{\alpha} \land (\forall \bar{a} \in \mathcal{C}_{\alpha}) (\exists \bar{b} \in \mathcal{C}_{\alpha}) (\bar{b} \leq \mathcal{C}_{\alpha}) (\forall \bar{a} \in \mathcal{C}_{\alpha}) (\forall \bar{b} \in \mathcal$ $\bar{a} \wedge \operatorname{set}_2(\bar{b}) \subset^* W_{\gamma})$

For $\alpha < \omega_2$ of uncountable cofinality, $C_{\alpha} = \bigcup \{C_{\beta} : \beta < \alpha\}$ is a maximal centred suitable set.

Definition

For a sequence $\bar{a} \in (\mathcal{P})^{\omega}$ and $X \subseteq \omega$ is such that $C = \{n : \operatorname{nor}(\bar{a}_n \upharpoonright X) \ge n - 1\}$ is infinite, then we we write $\bar{a} \upharpoonright X$ for $\langle \bar{a}_n \upharpoonright X : n \in C \setminus \min(C) \rangle$.

Lemma

Let $(s, \bar{a}) \in \mathbb{BS}(\mathcal{C})$ and let G be $\mathbb{BS}(\mathcal{C})$ -generic and let W denote the $\mathbb{BS}(\mathcal{C})$ -generic real. Then $V[G] \models \bar{a} \upharpoonright W \in (\mathcal{P})^{\omega}$.

We define tuple $\langle R_{n,\alpha} : n \in \omega \rangle$ of relations such that there is a suitable set as in (P3) is equivalent to

$$V^{\mathbb{P}_{\alpha}} \models (\forall f \in \operatorname{dom}(R_{0,\alpha}))(\exists \bar{g} \in \operatorname{range}(R_{0,\alpha}))(\bigvee_{n \in \omega} fR_{n,\alpha}g).$$

We let $\overline{R} = \langle R_{n,\alpha} : \alpha \leq \omega_2, n \in \omega \rangle$, α being the stage, n the size of the "mistake" in properties of the kind "for all but finitely many".

We define tuple $\langle R_{n,\alpha} : n \in \omega \rangle$ of relations such that there is a suitable set as in (P3) is equivalent to

$$V^{\mathbb{P}_{\alpha}} \models (\forall f \in \operatorname{dom}(R_{0,\alpha}))(\exists \bar{g} \in \operatorname{range}(R_{0,\alpha}))(\bigvee_{n \in \omega} fR_{n,\alpha}g).$$

We let $\overline{R} = \langle R_{n,\alpha} : \alpha \leq \omega_2, n \in \omega \rangle$, α being the stage, n the size of the "mistake" in properties of the kind "for all but finitely many". $R_{n,\alpha}$ will be a closed relation in dom $(R_{n,\alpha}) \times \operatorname{range}(R_{n,\alpha})$ in the Baire space topology. The ordinal α indicates the stage. We define tuple $\langle R_{n,\alpha} : n \in \omega \rangle$ of relations such that there is a suitable set as in (P3) is equivalent to

$$V^{\mathbb{P}_{\alpha}} \models (\forall f \in \operatorname{dom}(R_{0,\alpha}))(\exists \bar{g} \in \operatorname{range}(R_{0,\alpha}))(\bigvee_{n \in \omega} fR_{n,\alpha}g).$$

We let $\overline{R} = \langle R_{n,\alpha} : \alpha \leq \omega_2, n \in \omega \rangle$, α being the stage, n the size of the "mistake" in properties of the kind "for all but finitely many". $R_{n,\alpha}$ will be a closed relation in dom $(R_{n,\alpha}) \times \operatorname{range}(R_{n,\alpha})$ in the Baire space topology. The ordinal α indicates the stage. The definition of the relation, and the proof that it is preserved, are carried on simultaneously by induction on $\alpha < \omega_2$. Now suppose \mathbb{P}_{α} , \mathcal{C}_{β} , $\beta < \alpha$ are defined and we work in $V^{\mathbb{P}_{\alpha}}$:

A relation

Definition

$$f = (\langle \bar{a}_{\ell} \, : \, \ell \in \omega \rangle, X, C, h)$$
 is called a *task* iff

(1)
$$(ar{a}_\ell)_\ell$$
 is a \leq -descending sequence in $(\mathcal{P})^\omega$,

(2)
$$C \colon [\omega]^{\omega} \to 2$$
,

(3)
$$h\colon\omega\to\omega$$
 a finite-to-one function.

Definition

Let f be a task. We say \bar{g} answers the task, iff

(1) $\bar{g} \in (\mathcal{P})^{\omega}$.

- (2) \bar{g} is a diagonal lower bound of $(\bar{a}_{\ell})_{\ell}$.
- (3) $C \upharpoonright T(\overline{g})$ is constant).

(4)
$$\exists E \in \mathcal{E}h[E] \cap h[\operatorname{set}_2(\bar{g})] = \emptyset$$
.

A relation, continued

Definition

Assume that $\langle \mathcal{H}_{\gamma} : \gamma < \alpha \rangle$ is an sequence of suitable sets $\mathcal{H}_{\gamma} \in V^{\mathbb{P}_{\gamma}}$ and in $\langle \mathcal{H}_{\gamma} : \gamma < \alpha \rangle \in V^{\mathbb{P}_{\alpha}}$.

(a) The domain of $R_{n,\alpha}$ is the set of $f = ((\bar{a}^{\ell})_{\ell}, C, h)$ such that f is a task in $V^{\mathbb{P}_{\alpha}}$ and such that all \bar{a}_{ℓ} are compatible with \mathcal{C}_{γ} , $\gamma < \alpha$,

$$(\forall \ell)(\forall \gamma < \alpha)(\exists \bar{b}_{\ell} \leq \bar{a}_{\ell})(\operatorname{set}_2(\bar{b}_{\ell}) \subseteq^* W_{\gamma}).$$

- (b) The range of $R_{n,\alpha}$ is the set of \bar{g} that are compatible such that $(\forall \gamma < \alpha)((\exists \bar{b} \leq \bar{g})(\operatorname{set}_2(\bar{b}) \subseteq^* W_{\gamma}).$
- (c) We write $fR_{n,\alpha}g$ iff

(1)
$$(\forall \ell \in \omega) \Big(((\bar{g} \operatorname{past} g_\ell), \operatorname{past} n+1) \le \bar{a}_{\max(g_\ell)+1} \Big)$$

- (3) $C \upharpoonright T(\bar{g} \operatorname{past} n)$ is constant).
- (4) $\exists E \in \mathcal{E}h[\operatorname{set}_2(\bar{g})] \cap h[E] \subseteq n.$

Lemma

There is a suitable set C_{α} as in (P3') iff $V^{\mathbb{P}_{\alpha}} \models (\forall f \in \operatorname{dom}(R_{0,\alpha}))(\exists \bar{g} \in \operatorname{range}(R_{0,\alpha}))(\bigvee_{n \in \omega} fR_{n,\alpha}\bar{g})).$