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References for this talk

This work was initially motivated by work done at the Fields in 2012 in

[Blass/Dobrinen/Raghavan] The next best thing to a p-point, submitted.

Work in this talk

Ek (2 ≤ k < ω) spaces appear in

[Dobrinen] High dimensional Ellentuck spaces and initial chains in the
Tukey types of non p-points, Journal of Symbolic Logic, to appear.

EB spaces are part of current investigation.

For a survey of pre-2014 Tukey and related Ramsey space results, see

[Dobrinen] Survey on the Tukey theory of ultrafilters, Zbornik Radova,
Mathematical Institute of the Serbian Academy of Sciences, 2015.
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A very brief review of Tukey reduction between ultrafilters

Def. V is Tukey reducible to U (V ≤T U) if there is a map f : U → V
such that each f -image of a filter base for U is a filter base for V.

U ≡T V iff U ≤T V and V ≤T U .

The Tukey equivalence class of an ultrafilter is called its Tukey type.

V ≤RK U iff ∃f : ω → ω such that {f (U) : U ∈ U} generates V.

For ultrafilters, Rudin-Keisler reduction implies Tukey reduction.
Thus, Tukey types are a coarsening of Rudin-Keisler (isomorphism)
equivalence classes of ultrafilters.

For more overview, see my recent survey paper.
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Prior to work in this talk, quite a bit had been done finding embedded
structures and initial structures of Tukey (and RK) types of p-points and
iterated Fubini products of p-points.

[Milovich 2008 (initial work on Tukey and Isbell’s Problem)]

[Dobrinen/Todorcevic 2011 (embeddings), 2014 and 2015 (initial
structures)]

[Dobrinen Continuous cofinal maps 2010 preprint - (extended to become
Continuous and other canonical cofinal maps (2015)) ]

[Raghavan/Todorcevic 2012 (RK versus Tukey and first initial structure
result for Ramsey ultrafilters)]

[Dobrinen/Mijares/Trujillo submitted 2014 (Boolean algebras as initial
structures for Tukey and a rich collection of initial structures for RK)]

[Raghavan/Shelah submitted 2014 (embedding P(ω)/fin into RK and
Tukey types of p-points)]
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The Forcing P(ω × ω)/Fin⊗2

Fin⊗ Fin = {X ⊆ ω × ω : ∀∞i ∈ ω {j ∈ ω : (i , j) ∈ X} is finite}.

That is, for all but finitely many i , the i-th fiber of X is finite.

We also use Fin⊗2 to denote Fin⊗ Fin.

P(ω × ω)/Fin⊗2 forces a generic ultrafilter G2 on base set ω × ω.

G2 is neither a p-point, nor a Fubini product of p-points, but the projection
to the first coordinates π1(G2) is a Ramsey ultrafilter.
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In [Blass/Dobrinen/Raghavan], we showed the following:

Thm. In V [G2], G2
(B) is a weak p-point;

(B) has the best partition property G2 → (G2)2k,3 a non-p-point can
have;

(D,R) is not Tukey maximum;

(D) (G2,⊇) 6≥T ([ω1]<ω,⊆);

(D) G2 >T π1(G2);

(R) is not ‘basically generated’.

This left open what exactly is Tukey reducible to G2; i.e. What is the
initial Tukey structure below G2.
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P(ω × ω)/Fin⊗2 is forcing equivalent to ((Fin⊗ Fin)+,⊆Fin⊗2

),

which is forcing equivalent to

{X ⊆ ω × ω : infinitely many fibers of X are infinite, and all finite fibers of

X are empty}, partially ordered by ⊆Fin⊗2

.

We will thin this even more and put more restrictions on the subsets of
ω × ω we allow in order to obtain a topological Ramsey space E2 which is
forcing equivalent to P(ω × ω)/Fin⊗2. Our space E2 looks and acts like ω
copies of the Ellentuck space, given a judiciously chosen finitization map.
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Review
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Simplest Topological Ramsey Space: The Ellentuck Space

Example. Ellentuck space [ω]ω. Y ≤ X iff Y ⊆ X .

Basis for topology: [s,X ] = {Y ∈ [ω]ω : s < Y ⊆ X}.

Def. X ⊆ [ω]ω is Ramsey iff for each [s,X ], there is s < Y ⊆ X such
that either [s,Y ] ⊆ X or [s,Y ] ∩ X = ∅.

Thm. [Ellentuck 1974] Every X ⊆ [ω]ω with the property of Baire (in
the Ellentuck topology) is Ramsey.

Galvin-Prikry Theorem: All (metrically) Borel sets are Ramsey.
Silver Theorem: All (metrically) Suslin sets are Ramsey.

Associated Forcings: Mathias, P(ω)/fin.

Associated Ultrafilter: Ramsey ultrafilter forced by ([ω]ω,≤∗), has
‘complete combinatorics’.
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Topological Ramsey spaces (R,≤, r)

Basic open sets: [a,A] = {X ∈ R : ∃n(rn(X ) = a) and X ≤ A}.

Def. X ⊆ R is Ramsey iff for each ∅ 6= [a,A], there is a B ∈ [a,A] such
that either [a,B] ⊆ X or [a,B] ∩ X = ∅.

Def. [Todorcevic] A triple (R,≤, r) is a topological Ramsey space if
every subset of R with the Baire property is Ramsey, and if every
meager subset of R is Ramsey null.

Abstract Ellentuck Theorem. [Todorcevic]
If (R,≤, r) satisfies A.1 - A.4 and R is closed (in ARN), then (R,≤, r)
is a topological Ramsey space.

n-th Appproximations: ARn = {rn(X ) : X ∈ R}.
Finite Approximations: AR =

⋃
n<ωARn.
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n-th Appproximations: ARn = {rn(X ) : X ∈ R}.
Finite Approximations: AR =
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n<ωARn.
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tRs’s force ultrafilters with complete combinatorics

Thm. [DiPrisco/Mijares/Nieto (submitted 2014)] Let R be a
topological Ramsey space. If there exists a supercompact cardinal,
then every selective coideal U ⊆ R is (R,≤∗)-generic over L(R).

The upshot is that if we show that P(ω × ω)/Fin⊗2 is forcing
equivalent to some topological Ramsey space, then (with minor
modifcations to their proofs) the above theorem implies that the
generic ultrafilter G2 has ‘complete combinatorics’.
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The structure behind E2: (ω 6 ↓≤2,≺)

Let ω 6 ↓≤2 denote the set of non-decreasing sequences of members of ω of
length less than or equal to 2.
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Figure: ω 6 ↓≤2

The well-order (ω 6 ↓≤2,≺) begins as follows:

() ≺ (0) ≺ (0, 0) ≺ (0, 1) ≺ (1) ≺ (1, 1) ≺ (0, 2) ≺ (1, 2) ≺ (2) ≺ (2, 2) ≺
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Constructing the maximal member of E2
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The space E2
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Figure: W2 ⊆ [ω]2

X ∈ E2 iff X is a subset of W2 such that
(1) X̂ is tree-isomorphic to Ŵ2, and
(2) max values of the nodes of X̂ are strictly increasing according to the
wellordering ≺.

Note that lexicographic o.t.(X ) = ω2 for each X ∈ E2.

Y ≤ X iff Y ⊆ X .
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Typical finite approximations to members of E2
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Why the funny ordering ≺?

It is necessary.

In order to satisfy the Amalgamation Axiom (A3 (2)) in Todorcevic’s
characteriztion of topological Ramsey spaces, some such requirement is
necessary.
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(E2,⊆, r) is a topological Ramsey space

Thm. [D] (E2,⊆, r) is a topological Ramsey space.

Thus, every subset of E2 with the property of Baire is Ramsey.

Def. A set X ⊆ E2 is Ramsey iff for each basic open [a,X ], there is a
Y ∈ [a,X ] such that either [a,Y ] ⊆ X or [a,Y ] ∩ X = ∅.

AR denotes the collection of all finite approximations of members of E2.

For a ∈ AR and X ∈ E2, [a,X ] := {Y ∈ E2 : a < Y ⊆ X}.

The Ellentuck topology is generated by basic open sets of the form
[a,X ], where a ∈ AR and X ∈ E2.
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P(ω × ω)/Fin⊗2 is forcing equivalent to a new topological
Ramsey space

(E2,⊆Fin⊗2

) is forcing equivalent to ((Fin⊗2)+,⊆Fin⊗2

).

(Below any member A ∈ (Fin⊗2)+ is some B ⊆ A which is an isomorphic
copy of W2, and below B, there is a dense subset of (Fin⊗2)+ � B
isomorphic to E2.)
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Higher order forcings

Fin⊗3 is the ideal on ω × ω × ω such that

X ⊆ ω3 is in Fin⊗3 iff for all but finitely many i < ω, the i-th fiber of X ,
{(j , k) ∈ ω × ω : (i , j , k) ∈ X}, is in Fin⊗ Fin.

P(ω3)/Fin⊗3 adds a generic ultrafilter G3 on ω3 such that its projection to
the first two coordinates is a generic ultrafilter forced by P(ω2)/Fin⊗2,
and its projection to the first coordinate is a Ramsey ultrafilter forced by
P(ω)/Fin.

We thin (Fin⊗3)+ to a topological Ramsey space E3 forcing equivalent

(when partially ordered by ⊆Fin⊗3

) to P(ω3)/Fin⊗3 .
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The structure behind E3

The well-order (ω 6 ↓≤3,≺) begins as follows:
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≺ (1, 1, 1) ≺ (0, 0, 2) ≺ (0, 1, 2) ≺ (0, 2) ≺ (0, 2, 2) ≺ (1, 1, 2)
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Figure: W3

X ∈ E3 iff X ⊆W3 and X ∼= W3 as a tree, and also with respect to the ≺
order of the node labels.

Y ≤ X iff Y ⊆ X .
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We now define the spaces Ek , k ≥ 2, in general.
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The well-ordered set (ω 6 ↓≤k ,≺), k ≥ 2.

ω 6 ↓≤k denotes the collection of all non-decreasing sequences of members of
ω of length less than or equal to k .

Define a well-ordering ≺ on ω 6 ↓≤k as follows:
() is the ≺-minimum element.

For (j0, . . . , jp−1) and (l0, . . . , lq−1) in ω 6 ↓≤k with p, q ≥ 1, define
(j0, . . . , jp−1) ≺ (l0, . . . , lq−1) if and only if either

1 jp−1 < lq−1, or

2 jp−1 = lq−1 and (j0, . . . , jp−1) <lex (l0, . . . , lq−1).

Let ~jm denote the ≺ −m-th member of ω 6 ↓≤k .

For ~l ∈ ω 6 ↓≤k , we let m~l
∈ ω denote the m such that ~l = ~jm.
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The spaces Ek , k ≥ 2

Ŵk is the image of the function ~l 7→ {m : ~jm v ~l}, ~l ∈ ω 6 ↓≤k .

We say that X̂ is an Ek -tree if X̂ is a function from ω 6 ↓≤k into Ŵk such
that

(i) For each m < ω, X̂ (~jm) ∈ [ω]|
~jm| ∩ Ŵk ;

(ii) For all 1 ≤ m < ω, max(X̂ (~jm)) < max(X̂ (~jm+1));

(iii) For all m, n < ω, X̂ (~jm) < X̂ (~jn) if and only if ~jm < ~jn.

The space Ek consists of all X := [X̂ ], where X̂ is an Ek -tree.

For X ,Y ∈ Ek , Y ≤ X iff Y ⊆ X .

For each n < ω, the n-th finite aproximation rn(X ) is
X ∩ ({~ip : p < n} ×Wk), where (~ip : p < ω) is the ≺-wellordering on ω 6 ↓k .
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(ii) For all 1 ≤ m < ω, max(X̂ (~jm)) < max(X̂ (~jm+1));

(iii) For all m, n < ω, X̂ (~jm) < X̂ (~jn) if and only if ~jm < ~jn.

The space Ek consists of all X := [X̂ ], where X̂ is an Ek -tree.

For X ,Y ∈ Ek , Y ≤ X iff Y ⊆ X .

For each n < ω, the n-th finite aproximation rn(X ) is
X ∩ ({~ip : p < n} ×Wk), where (~ip : p < ω) is the ≺-wellordering on ω 6 ↓k .

Dobrinen Higher dimensional Ellentuck spaces University of Denver 27 / 43



The spaces Ek , k ≥ 2
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that

(i) For each m < ω, X̂ (~jm) ∈ [ω]|
~jm| ∩ Ŵk ;
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The Ek are high dimensional Ellentuck spaces

Thm. [D] For each 2 ≤ k < ω, (Ek ,⊆, r) is a topological Ramsey space.

Remarks.

1 Each space Ek+1 is comprised of ω many copies of Ek .

2 Moreover, each projection of Ek to levels 1 through j produces a
copy of Ej .

3 The trick was finding the right thinning and finite approximation
scheme to make Axiom A.3 (2) hold. (The Pigeonhole Principle
A.4 was no problem.)
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Initial Tukey and Rudin-Keisler structures below Gk , k ≥ 2

Thm. [D] Let Gk denote the generic ultrafilter forced by P(ωk)/Fin⊗
k
.

1 If V ≤T Gk , then V ≡T πl(Gk) for some l ≤ k .

2 Thus, the Tukey equivalence classes of (nonprincipal) ultrafilters
Tukey reducible to Gk form a chain of length k .

3 Further, the Rudin-Keisler equivalence classes of (nonprincipal)
ultrafilters RK-reducible to Gk form a chain of length k .

Remark. The fact that Ek is dense below any member of (Fin⊗k)+

provides a simple way of reading off the partition relations for the
generic ultrafilter.
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Outline of Proof

1 Show (Ek ,⊆Fin⊗k

) is forcing equivalent to P(ωk)/Fin⊗k .

2 Prove (Ek ,≤, r) is a topological Ramsey space.

3 Prove a Ramsey-classification theorem for equivalence relations on
fronts on Ek , extending the Pudlák-Rödl Theorem for the Ellentuck
space.

4 Prove Basic Cofinal Maps Theorem, the correct analogue for our
spaces of ‘every p-point having continuous Tukey reductions’.

5 For V ≤T Gk , apply Basic Cofinal Maps Theorem to find a front F on
Ek and an f : F → ω such that V = f (〈Gk |F〉).

6 Apply the Ramsey-classification theorem for equivalence relations on
fronts and analyze f (〈Gk |F〉).
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Def. A family of finite approximations F is a front on Ek iff

(i) ∀X ∈ Ek , ∃a ∈ F such that a < X ; and

(ii) for a, b ∈ F , a 6< b.

Def. A map ϕ on a front F ⊆ AR is called

1 inner if for each a ∈ F , ϕ(a) is a subtree of â.

2 Nash-Williams if for all pairs a, b ∈ F , ϕ(a) 6= ϕ(b) implies
ϕ(a) 6< ϕ(b) (in terms of r).

3 irreducible if it is inner and Nash-Williams.
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Ramsey-classification Theorem for equivalence relations on
fronts

Thm. [D] Let F be a front on Ek and f : F → ω. Then there exists an
X ∈ Ek and an irreducible map ϕ on F|X such that

for all a, b ∈ F|X , f (a) = f (b) iff ϕ(a) = ϕ(b).

Rem. This is the analogue (extension) of the Pudlák-Rödl Theorem for
this space. Further, the canonization maps have the form that ϕ(a) is a
projection to some initial segements of the nodes in a.

Thm. [D] Let R be an equivalence relation on some front F on Ek .
Suppose ϕ and ϕ′ are irreducible maps canonizing R. Then there is an
A ∈ Ek such that for each a ∈ F|A, ϕ(a) = ϕ′(a).
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For a front F consisting of the n-th finite approximations ARn, the
canonical equivalence relations are given by projection maps of the form

ϕ(a(0), . . . , a(n − 1)) = (πj0(a(0)), . . . , πjn−1(a(n − 1))),

where πj(a(i)) is the projection of a(i) to its first j levels (in the tree Wk).
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Basic Cofinal Maps from Gk

Def. Given Y ∈ Bk := Gk ∩ Ek , a monotone map g : Bk |Y → P(ω) is
basic if there is a map ĝ : AR|Y → [ω]<ω such that

1 (monotonicity) For all s, t ∈ AR|Y , s ⊆ t → ĝ(s) ⊆ ĝ(t);

2 (initial segment preserving) For s < t in AR|Y , ĝ(s) v ĝ(t);

3 (ĝ represents g) For each V ∈ Bk |Y , g(V ) =
⋃

n<ω ĝ(rn(V )).

Thm. (Basic monotone maps on Gk) [D]
Let Gk generic for P(ωk)/Fin⊗k . In V [Gk ], for each monotone function
g : Gk → P(ω), there is a Y ∈ Bk such that g � (Bk |Y ) is basic.
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Remark. The proofs of the Ramsey-classification Theorem for
equivalence relations on fronts and the Basic Cofinal Maps Theorem
could be proved using only the Abstract Nash-Williams Theorem,
which we originally proved without using A.3 (2).

Dobrinen Higher dimensional Ellentuck spaces University of Denver 35 / 43



Infinite dimensional Ellentuck spaces

The sets [ω]k are actually uniform barriers (on ω) of finite rank.

Uniform barriers B (on ω) of any countably infinite rank provide the
template for building higher order Ellentuck spaces EB.

Such spaces EB are forcing equivalent to forcings constructed by continuing
the process of iteratively constructing ideals built from the ideals Fin⊗k .

Rather than give all the definitions, we shall now provide an example
giving the flavor of these spaces.
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The first infinite dimensional Ellentuck space

Let S denote {a ∈ [ω]<ω : |a| = min(a) + 1}.

S is the Schreier barrier.

FinS is an ideal on S: X ⊆ S is in FinS iff for all but finitely many k < ω,
{a \ {k} : a ∈ X and min(a) = k} ∈ Fin⊗k .

X ⊆ S is in (FinS)+ iff there are infinitely many k such that
{a \ {k} : a ∈ X and min(a) = k} ∈ (Fin⊗k)+.

P(S)/FinS is forcing equivalent to ((FinS)+,⊆FinS ).
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We use the form of S to make our template structure of finite
non-decreasing sequences of natural numbers.

∅
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(3, 4)

(3, 4, 4)
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,4
,4
,4
)

(3, 3)

(3, 3, 4)
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,3
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(3, 3, 3)
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,3
,3
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(3
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(0)

Figure: ω 6 ↓S

() ≺ (0) ≺ (1) ≺ (1, 1) ≺ (1, 2) ≺ (2) ≺ (2, 2) ≺ (2, 2, 2) ≺ (1, 3) ≺
(2, 2, 3) ≺ (2, 3) ≺ (2, 3, 3) ≺ (3) ≺ (3, 3) ≺ (3, 3, 3) ≺ (3, 3, 3, 3) ≺
(1, 4) ≺ . . .
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The space ES , for S the Schreier barrier

ES is the collection of all X ⊆WS such that
1 for infinitely many k , {a \ {k} : a ∈ X and min a = k} ∈ Ek ,
2 if {a ∈ X : min a = k} 6∈ Ek , then it is empty,
3 The values of the nodes in X̂ follow the ≺ order.
4 Finitization is recursively induced by the finitizations on the Ek .
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Current work

Let B be any uniform barrier on ω.

Thm. [D] The space EB is a topological Ramsey space.

Forcing with (EB,⊆FinB) is equivalent to forcing with P(B)/FinB.

Thm. [D]

1 Equivalence relations on AR1 are canonized as uniform fronts on
WB; that is, projections which have the form of a uniform front.

2 The initial Rudin-Keisler structure below the generic ultrafilter GB
is the linear ordering of the GB-equivalence classes of the uniform
fronts on WB.

3 Special Case: For the Schreier barrier S, the initial Rudin-Keisler
structure below the generic ultrafilter GS is the ultrapower of N
modulo the projected Ramsey ultrafilter π1(GS).
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Thm. [D]

1 We have Ramsey-classification theorems canonizing equivalence
relations on barriers on EB in terms of irreducible functions.

2 The initial Tukey structure below GB has cardinality c, and
contains the linear order of the GB equivalence classes of the
uniform fronts on WB.

Work in progress: Double checking the proofs, finding the exact initial
Tukey structures and RK classes within (Is (2) above exact?).
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