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Preservation of topological properties for topological groups
under taking square

A topological group is a topological space which is also a group such that
its group operations are continuous.

While pseudocompact is not preserved under taking square for Tychonoff
spaces, Comfort and Ross proved the following remarkable theorem:

Theorem (Comfort, Ross)
If a topological group is pseudocompact, so is its square.

What about the others?
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4 topological properties

Arhangel’skii asked (1981) that whether the following topological
properties are preserved under taking square for topological groups:

(a) normality;

(b) weak paracompactness;

(c) paracompactness;

(d) Lindelöfness.

It’s well-known that for regular spaces, Lindelöf ⇒ paracompact ⇒ normal
& weakly paracompact.
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Lindelöf and L groups

A regular space is Lindelöf if every open cover has a countable subcover.

A hereditarily Lindelöf space is a space that every subspace is Lindelöf.

An L space is a hereditarily Lindelöf space which is not separable.

Weaker version: is the square of hereditarily Lindelöf group normal or
weakly paracompact?
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Earlier results

For topological spaces, there is no much difference between taking square
or taking product, since (X ∪ Y )2 contains X × Y as a clopen subspace.
One major difficulty for topological group is that we can’t do this.

Theorem (Douwen, 1984)
There are two Lindelöf groups G and H such that G × H is not Lindelöf.
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Earlier results

Consistent results for taking square of groups.

Theorem (Malykhin,1987)
Asume cof (M) = ω1. There is a Lindelöf group whose square is not
Lindelöf.

Theorem (Todorcevic,1993)
Assume Pr0(ω1, ω1, 4, ω). There is a Lindelöf group whose square is not
Lindelöf.
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Another problem

Why hereditarily Lindelöf? Because there are many situations that just
Lindelöf is not enough.

For example, the S and L space problem which is also linked to our problem.

While separable and Lindelöf are two properties that are easy to
distinguish, it is not for hereditarily separable and hereditarily Lindelöf. See
Rudin’s survey “S and L spaces” for more details.

Theorem (Rudin, 1972)
If there is a Suslin tree, then there is a S space.

Theorem (Todorcevic, 1981)
It is consistent that there are no S spaces.

Theorem (Moore, 2006)
There is an L space.
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A little strengthening - L group

It’s great that we have an L space in ZFC. But can we have a group
version?

Question
Is there an L group - a topological group whose underlying set is an L
space?

The first L group appeared quite early.

Theorem (Hajnal, Juhasz, 1973)
It is consistent to have an L group.
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L group

To get a ZFC example, one may first try the group generated by Moore’s L
space.

Theorem (Repovs, Zdomskyy)
The semigroup generated by Moore’s L space is still an L space.

However, this just gives an L semigroup.

Theorem
The group generated by Moore’s L space is not Lindelöf.

Yinhe Peng (CAS) April 1, 2015 9 / 22



L group

To get a ZFC example, one may first try the group generated by Moore’s L
space.

Theorem (Repovs, Zdomskyy)
The semigroup generated by Moore’s L space is still an L space.

However, this just gives an L semigroup.

Theorem
The group generated by Moore’s L space is not Lindelöf.

Yinhe Peng (CAS) April 1, 2015 9 / 22



L group

To get a ZFC example, one may first try the group generated by Moore’s L
space.

Theorem (Repovs, Zdomskyy)
The semigroup generated by Moore’s L space is still an L space.

However, this just gives an L semigroup.

Theorem
The group generated by Moore’s L space is not Lindelöf.

Yinhe Peng (CAS) April 1, 2015 9 / 22



L group

To get a ZFC example, one may first try the group generated by Moore’s L
space.

Theorem (Repovs, Zdomskyy)
The semigroup generated by Moore’s L space is still an L space.

However, this just gives an L semigroup.

Theorem
The group generated by Moore’s L space is not Lindelöf.

Yinhe Peng (CAS) April 1, 2015 9 / 22



Answers

We answer above mentioned questions by present the following:

Theorem
There is an L group whose square is neither normal nor weakly
paracompact.

Note that for regular spaces, Lindelöf ⇒ paracompact ⇒ normal & weakly
paracompact. So none of these 4 properties is preserved by taking square.
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Combinatorial property of the osc map

Let’s fix the notation frac(x) = x − [x ] where [x ] is the greatest integer
less than or equal to x .

The following is a simple version of Moore’s Theorem.

Theorem (Moore)

Let {θα : α < ω1} be a set of rationally independent reals and A ⊂ [ω1]
k

be an uncountable family of pairwise disjoint sets, B ∈ [ω1]
ω1 . Then for

any sequence Ui ⊂ (0, 1) of open sets (i < k), there are a ∈ A and
β ∈ B \ a such that for any i < k, frac(θa(i)osc(a(i), β)) ∈ Ui .

Roughly speaking,
{(frac(θa(0)osc(a(0), β)), ..., frac(θa(k−1)osc(a(k − 1), β))) : a ∈ A , β ∈
B \ a} is dense in (0, 1)k for any appropriate A ,B . And this is the key to
get the L space property.
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More combinatorial properties of the osc map

We further investigated the osc map and found more combinatorial
properties which is critical in proving our main theorems.

Theorem (Combinatorial property 1)

For any uncountable families of pairwise disjoint sets A ⊂ [ω1]
k and

B ⊂ [ω1]
l , there are A ′ ∈ [A ]ω1 , B′ ∈ [B]ω1 and

〈cij : i < k , j < l〉 ∈ Zk×l such that for any a ∈ A ′, for any b ∈ B′ \ a,
osc(a(i), b(j)) = osc(a(i), b(0)) + cij for any i < k , j < l .

This property allows us to refine A ,B. As we are dealing with problems of
the form: “for any uncountable A ,B,...”, combinatorial property 1 allows
us dealing with the easier case: “for any uncountable A ,B with property
mentioned above,...”.
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More combinatorial properties of the osc map

We also have a complement of combinatorial property 1.

Theorem (Combinatorial property 2)

For any X ∈ [ω1]
ω1 , for any k , l < ω, for any 〈cij : i < k , j < l〉 ∈ Zk×l

such that ci0 = 0 for i < k, there are uncountable families A ⊂ [X ]k ,
B ⊂ [X ]l that are pairwise disjoint and for any a ∈ A , b ∈ B \ a,
osc(a(i), b(j)) = osc(a(i), b(0)) + cij for i < k , j < l .
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An L group

Definition

1 f (x) = sin 1
x

x for x ∈ R \ {0}.

2 L = {wβ ∈ Rω1 : β < ω1} where

wβ(α) =
{

f (frac(θαosc(α, β) + θβ)) : α < β
0 : α ≥ β.

grp(L ) – the group generated by L – is what we need.
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An L group with non-Lindelöf square

Theorem
grp(L ) is an L group whose square is neither normal nor weakly
paracompact.

Recall that for regular spaces, L ⇒ hereditarily Lindelöf ⇒ Lindelöf ⇒
paracompact ⇒ normal & weakly paracompact.

So none of the properties mentioned above is preserved by taking square
for topological groups.
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Sketch proof of L

With the help of Moore’s Theorem, we just need to prove the following:

for any A ∈ [ω1]
ω1 , uncountable B ⊂ [ω1]

l and 〈nj : j < l〉 ∈ (Z \ {0})l ,
rang(A,B) = {

∑
j<l nj f (frac(θαosc(α, b(j)) + θb(j))) : α ∈ A, b ∈ B \ α}

is dense in (0, 1).

Now, with the help of combinatorial property 1 of osc , we can assume that
there is 〈cj : j < l〉 ∈ Zl such that osc(α, b(j)) = osc(α, b(0)) + cj for
appropriate items.∑

j<l nj f (frac(θαosc(α, b(j)) + θb(j))) =∑
j<l nj f (frac(θαosc(α, b(0)) + θαcj + θb(j)))

≈
∑

j<l nj f (frac(x + θcj + θj)).

Using a complete accumulation point argument, θα and θb(j) (j < l) can be
treated as constants. So rang(A,B) is dense follows from Moore’s
Theorem that the first input frac(θαosc(α, b(0))) is dense.
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Question

Cp(X ) is the space of real-valued continuous function on X with the
topology of pointwise convergency. It is a natural topological group.
Whether there is a counterexample of form Cp(X ) is still unknown.

Question (Arhangelskii)
Let Cp(X ) be Lindelöf. Is it then true that Cp(X )× Cp(X ) is Lindelöf?

Question
Let X be a Banach space with weak topology w such that (X ,w) is
Lindelöf. Is it true that (X ,w)2 is Lindelöf?
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Higher finite powers

Question for square is solved, and new arises: if a topological property of a
group is preserved by its square, will it be preserved forever (for every finite
powers)?

For what n < ω do we have a Lindelöf group (L group) whose n-th power
is Lindelöf (L) while its n + 1-th power is not Lindelöf?

The problem is that we didn’t know whether there is an L space whose
square is an L space.
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Higher finite power and strong negative partition relation

Generalize above construction again, we get the following.

Theorem
For any n < ω, there is a topological group G such that G n is an L group
and G n+1 is neither normal nor weakly paracompact.

And this is the best we can do in ZFC.

Theorem (Kunen,1977)
Assume MAω1 . There is no space (group) X such that X n is an L space
(group) for any n < ω.
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On partition relations

Definition
(Strong coloring, Shelah) Pr0(κ, κ, κ, σ) asserts that there is a function
c : [κ]2 → κ such that whenever we are given γ < σ, a family A ⊂ [κ]γ of
κ many pairwise disjoint sets and a function h : γ × γ → κ, then there are
a < b in A such that c(a(i), b(j)) = h(i , j) for any i , j < γ.

The proof for higher finite powers of L groups actually gives us a strong
negative partition relation.

Theorem
For any n < ω, Pr0(ω1, ω1, ω1, n) holds.

The case for n = 2 is ω1 9 [ω1]
2
ω1

proved by Todorcevic.
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On partition relations

For successor of uncountable regular cardinals, we have the following very
strong version:

Theorem (Shelah)

Pr0(λ+, λ+, λ+, ω) for λ = cf (λ) > ω.

We don’t have that strong version on ω1.

Fact
Pr0(ω1, ω1, ω1, ω) is independent of ZFC.
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Thank you!
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