A microscopic approach to Souslin trees constructions

Forcing and its Applications Retrospective Workshop The Fields Institute, Toronto, Canada 01-April-2015

> Assaf Rinot Bar-Ilan University

This is joint work with Ari M. Brodsky, and still in progress.

$$\blacktriangleright \ E_{\theta}^{\kappa} = \{ \alpha < \kappa \mid \mathsf{cf}(\alpha) = \theta \}$$

•
$$E_{\theta}^{\kappa} = \{ \alpha < \kappa \mid \mathsf{cf}(\alpha) = \theta \}$$

• CH asserts that $2^{\aleph_0} = \aleph_1$

$$\blacktriangleright \ E_{\theta}^{\kappa} = \{ \alpha < \kappa \mid \mathsf{cf}(\alpha) = \theta \}$$

- CH asserts that $2^{\aleph_0} = \aleph_1$
- CH_{λ} asserts that $2^{\lambda} = \lambda^+$

- $\blacktriangleright \ E_{\theta}^{\kappa} = \{ \alpha < \kappa \mid \mathsf{cf}(\alpha) = \theta \}$
- CH asserts that $2^{\aleph_0} = \aleph_1$
- CH_{λ} asserts that $2^{\lambda} = \lambda^+$

▶
$$\operatorname{acc}(C) = \{ \alpha \in C \mid \sup(C \cap \alpha) = \alpha > 0 \}$$

- $E_{\theta}^{\kappa} = \{ \alpha < \kappa \mid \mathsf{cf}(\alpha) = \theta \}$
- CH asserts that $2^{\aleph_0} = \aleph_1$
- CH_{λ} asserts that $2^{\lambda} = \lambda^+$
- ▶ $\operatorname{acc}(C) = \{ \alpha \in C \mid \sup(C \cap \alpha) = \alpha > 0 \}$
- $nacc(C) = C \setminus acc(C)$

- $E_{\theta}^{\kappa} = \{ \alpha < \kappa \mid \mathsf{cf}(\alpha) = \theta \}$
- CH asserts that $2^{\aleph_0} = \aleph_1$
- CH_{λ} asserts that $2^{\lambda} = \lambda^+$
- ▶ $\operatorname{acc}(C) = \{ \alpha \in C \mid \sup(C \cap \alpha) = \alpha > 0 \}$
- $nacc(C) = C \setminus acc(C)$
- ▶ $\operatorname{succ}_{\sigma}(C) = \{ \alpha \in C \mid \operatorname{otp}(C \cap \alpha) = j + 1 \text{ for some } j < \sigma \}$

•
$$E_{\theta}^{\kappa} = \{ \alpha < \kappa \mid \mathsf{cf}(\alpha) = \theta \}$$

- CH asserts that $2^{\aleph_0} = \aleph_1$
- CH_{λ} asserts that $2^{\lambda} = \lambda^+$
- ▶ $\operatorname{acc}(C) = \{ \alpha \in C \mid \sup(C \cap \alpha) = \alpha > 0 \}$
- $nacc(C) = C \setminus acc(C)$
- ▶ $\operatorname{succ}_{\sigma}(C) = \{ \alpha \in C \mid \operatorname{otp}(C \cap \alpha) = j + 1 \text{ for some } j < \sigma \}$

e.g., $\operatorname{succ}_3(\omega_1 \setminus \omega) = \{\omega + 1, \omega + 2, \omega + 3\}.$

$\kappa\text{-trees}$

Definition

A tree is a poset T = ⟨T, ⊲⟩ in which x↓ := {y ∈ T | y ⊲ x} is well-ordered for all x ∈ T;

$\kappa\text{-trees}$

Definition

A tree is a poset T = ⟨T, ⊲⟩ in which x↓ := {y ∈ T | y ⊲ x} is well-ordered for all x ∈ T;

•
$$\mathcal{T}_{\delta} = \{x \in \mathcal{T} \mid \operatorname{otp}(x_{\downarrow}, \lhd) = \delta\}$$
 is the δ^{th} -level of \mathcal{T} ;

$\kappa\text{-trees}$

- A tree is a poset T = ⟨T, ⊲⟩ in which x_↓ := {y ∈ T | y ⊲ x} is well-ordered for all x ∈ T;
- ▶ $\mathcal{T}_{\delta} = \{x \in \mathcal{T} \mid \operatorname{otp}(x_{\downarrow}, \lhd) = \delta\}$ is the δ^{th} -level of \mathcal{T} ;
- The height of \mathcal{T} is min $\{\delta \in Ord \mid T_{\delta} = \emptyset\}$;

κ -trees

- A tree is a poset T = ⟨T, ⊲⟩ in which x_↓ := {y ∈ T | y ⊲ x} is well-ordered for all x ∈ T;
- $\mathcal{T}_{\delta} = \{x \in \mathcal{T} \mid \operatorname{otp}(x_{\downarrow}, \lhd) = \delta\}$ is the δ^{th} -level of \mathcal{T} ;
- The height of \mathcal{T} is min $\{\delta \in Ord \mid T_{\delta} = \emptyset\}$;
- → *T* is χ-complete if any ⊲-increasing sequence of length < χ admits a bound;

κ -trees

- A tree is a poset T = ⟨T, ⊲⟩ in which x_↓ := {y ∈ T | y ⊲ x} is well-ordered for all x ∈ T;
- $\mathcal{T}_{\delta} = \{x \in \mathcal{T} \mid \operatorname{otp}(x_{\downarrow}, \lhd) = \delta\}$ is the δ^{th} -level of \mathcal{T} ;
- The height of \mathcal{T} is min $\{\delta \in Ord \mid T_{\delta} = \emptyset\}$;
- → *T* is χ-complete if any ⊲-increasing sequence of length < χ admits a bound;
- \mathcal{T} is χ -slim if $|\mathcal{T}_{\alpha}| = |\alpha|$ whenever $\alpha \ge \chi$.

κ -trees

Definition

- A tree is a poset T = ⟨T, ⊲⟩ in which x_↓ := {y ∈ T | y ⊲ x} is well-ordered for all x ∈ T;
- $\mathcal{T}_{\delta} = \{x \in \mathcal{T} \mid \operatorname{otp}(x_{\downarrow}, \lhd) = \delta\}$ is the δ^{th} -level of \mathcal{T} ;
- The height of \mathcal{T} is min $\{\delta \in Ord \mid T_{\delta} = \emptyset\}$;
- → *T* is χ-complete if any ⊲-increasing sequence of length < χ admits a bound;
- \mathcal{T} is χ -slim if $|\mathcal{T}_{\alpha}| = |\alpha|$ whenever $\alpha \ge \chi$.

- A κ -tree is a tree of height κ whose levels are of size $< \kappa$;
- A κ -Aronszajn tree is a κ -tree having no branches of size κ ;
- A κ-Souslin tree is a κ-Aronszajn tree having no antichains of size κ.

The role of κ

Aronszajn and Souslin trees are useful objects that give rise to rich counterexamples in mathematics.

The literature concerning these trees splits roughly into two:

► Papers that deal with the construction of Aronszajn/Souslin trees with some additional features.

► Papers that deal with the construction of the trees from weaker and weaker hypotheses, or consistency results concerning non-existence.

The role of κ

Aronszajn and Souslin trees are useful objects that give rise to rich counterexamples in mathematics.

The literature concerning these trees splits roughly into two:

► Papers that deal with the construction of Aronszajn/Souslin trees with some additional features.

► Papers that deal with the construction of the trees from weaker and weaker hypotheses, or consistency results concerning non-existence.

We shall now dedicate a few minutes to review some known results, highlighting that the behavior of κ -Aronszajn and κ -Souslin trees depends heavily on the identity of κ .

Theorem (König, 1927) There exists no N₀-Aronszajn tree.

Theorem (König, 1927) There exists no №₀-Aronszajn tree. Theorem (Aronszajn, 1935) There exists an №₁-Aronszajn tree.

Theorem (König, 1927) There exists no \aleph_0 -Aronszajn tree. Theorem (Specker, 1949. $\lambda = \omega$ is due to Aronszajn, 1935) If λ is regular and $\lambda^{<\lambda} = \lambda$, then there exists a λ^+ -Aronszajn tree.

Theorem (König, 1927)

There exists no _{ℵ0}-Aronszajn tree.

Theorem (Specker, 1949. $\lambda = \omega$ is due to Aronszajn, 1935)

If λ is regular and $\lambda^{<\lambda} = \lambda$, then there exists a λ^+ -Aronszajn tree.

Theorem (Magidor-Shelah, 1996)

Modulo large cardinals, it is consistent with GCH, that for some singular cardinal λ , there exists no λ^+ -Aronszajn tree.

Theorem (König, 1927)

There exists no _{ℵ0}-Aronszajn tree.

Theorem (Specker, 1949. $\lambda = \omega$ is due to Aronszajn, 1935)

If λ is regular and $\lambda^{<\lambda} = \lambda$, then there exists a λ^+ -Aronszajn tree.

Theorem (Magidor-Shelah, 1996)

Modulo large cardinals, it is consistent with GCH, that for some singular cardinal λ , there exists no λ^+ -Aronszajn tree.

Theorem (Erdős-Taski, 1943)

If κ is weakly compact, then there exists no κ -Aronszajn tree.

Definition (Jensen, 1972)

For $S \subseteq \kappa$, $\Diamond(S)$ asserts the existence of a sequence $\langle A_{\alpha} \mid \alpha \in S \rangle$ such that $\{\alpha \in S \mid A \cap \alpha = A_{\alpha}\}$ is stationary for all $A \subseteq \kappa$.

Definition (Jensen, 1972)

For $S \subseteq \kappa$, $\Diamond(S)$ asserts the existence of a sequence $\langle A_{\alpha} \mid \alpha \in S \rangle$ such that $\{\alpha \in S \mid A \cap \alpha = A_{\alpha}\}$ is stationary for all $A \subseteq \kappa$.

Theorem (Jensen, 1972)

If $\lambda^{<\lambda} = \lambda$ and $\Diamond(E_{\lambda}^{\lambda^{+}})$ holds, then there exists a λ -complete λ^{+} -Souslin tree.

Definition (Jensen, 1972)

For $S \subseteq \kappa$, $\Diamond(S)$ asserts the existence of a sequence $\langle A_{\alpha} \mid \alpha \in S \rangle$ such that $\{\alpha \in S \mid A \cap \alpha = A_{\alpha}\}$ is stationary for all $A \subseteq \kappa$.

Theorem (Jensen, 1972) If $\lambda^{<\lambda} = \lambda$ and $\Diamond(E_{\lambda}^{\lambda^+})$ holds, then there exists a λ -complete λ^+ -Souslin tree.

This gives a method to construct Souslin tree at the level of successor of regulars. How to handle successor of singulars?

Definition (Jensen, 1972)

For $S \subseteq \kappa$, $\Diamond(S)$ asserts the existence of a sequence $\langle A_{\alpha} \mid \alpha \in S \rangle$ such that $\{\alpha \in S \mid A \cap \alpha = A_{\alpha}\}$ is stationary for all $A \subseteq \kappa$.

Theorem (Jensen, 1972) If $\lambda^{<\lambda} = \lambda$ and $\Diamond(E_{\lambda}^{\lambda^{+}})$ holds, then there exists a λ -complete λ^{+} -Souslin tree.

Definition (Jensen, 1972)

 $\Box_{\lambda}(S)$ asserts the existence of a sequence $\langle C_{\delta} | \delta < \lambda^+ \rangle$ such that for all limit $\delta < \lambda^+$:

- C_{δ} is a club in δ of order-type $\leq \lambda$;
- if $\beta \in \operatorname{acc}(C_{\delta})$, then $\beta \notin S$ and $C_{\delta} \cap \beta = C_{\beta}$.

Write \Box_{λ} for $\Box_{\lambda}(\emptyset)$.

Definition (Jensen, 1972)

For $S \subseteq \kappa$, $\Diamond(S)$ asserts the existence of a sequence $\langle A_{\alpha} \mid \alpha \in S \rangle$ such that $\{\alpha \in S \mid A \cap \alpha = A_{\alpha}\}$ is stationary for all $A \subseteq \kappa$.

Theorem (Jensen, 1972) If $\lambda^{<\lambda} = \lambda$ and $\Diamond(E_{\lambda}^{\lambda^{+}})$ holds, then there exists a λ -complete λ^{+} -Souslin tree.

Definition (Jensen, 1972)

 $\Box_{\lambda}(S)$ asserts the existence of a sequence $\langle C_{\delta} | \delta < \lambda^+ \rangle$ such that for all limit $\delta < \lambda^+$:

- C_{δ} is a club in δ of order-type $\leq \lambda$;
- if $\beta \in \operatorname{acc}(C_{\delta})$, then $\beta \notin S$ and $C_{\delta} \cap \beta = C_{\beta}$.

Theorem (Jensen, 1972)

If there exists $S \subseteq \lambda^+$ for which $\Box_{\lambda}(S) + \Diamond(S)$ holds, then there exists a λ^+ -Souslin tree.

Special and specializable λ^+ -trees

Definition A λ^+ -tree is special if it is the union of λ many antichains.

Special and specializable $\lambda^+\text{-trees}$

Definition

A λ^+ -tree is special if it is the union of λ many antichains.

Note

- A special λ^+ -tree is λ^+ -Aronszajn;
- A λ^+ -Souslin tree is non-special.

Special and specializable $\lambda^+\text{-trees}$

Definition

A λ^+ -tree is special if it is the union of λ many antichains.

Note

- A special λ^+ -tree is λ^+ -Aronszajn;
- A λ^+ -Souslin tree is non-special.

Remark

Aronszajn's and Specker's constructions from $\lambda^{<\lambda} = \lambda$ may be steered to yield a special λ^+ -tree.

Special and specializable $\lambda^+\text{-trees}$

Definition

A λ^+ -tree is special if it is the union of λ many antichains.

Definition

A $\lambda^+\text{-tree}$ is specializable if it is special in some extended universe of ZFC with the same cardinal structure.

Special and specializable λ^+ -trees

Definition

A λ^+ -tree is special if it is the union of λ many antichains.

Definition

A λ^+ -tree is specializable if it is special in some extended universe of ZFC with the same cardinal structure.

Theorem (Baumgartner-Mailtz-Reinhardt, 1970) An ℵ₁-tree is Aronszajn iff it is specializable. Special and specializable λ^+ -trees

Definition A $\lambda^+\text{-tree}$ is special if it is the union of λ many antichains.

Definition

A λ^+ -tree is specializable if it is special in some extended universe of ZFC with the same cardinal structure.

Theorem (Baumgartner-Mailtz-Reinhardt, 1970) An ℵ₁-tree is Aronszajn iff it is specializable.

Theorem (implicit in David, 1990)

If V = L, then for every regular λ , the canonical λ -complete λ^+ -Souslin tree constructed using fine structure, is specializable.

Non-specializable λ^+ -Souslin trees

Theorem (Baumgartner, 1970's, building on Laver) \Box_{\aleph_1} entails a non-specializable \aleph_2 -Aronszajn tree.

Non-specializable λ^+ -Souslin trees

Theorem (Baumgartner, 1980's, improving Devlin) $GCH + \Box_{\aleph_1}$ entails a non-specializable \aleph_2 -Souslin tree.

Non-specializable λ^+ -Souslin trees

Theorem (Baumgartner, 1980's, improving Devlin) $GCH + \Box_{\aleph_1}$ entails a non-specializable \aleph_2 -Souslin tree. Theorem (Cummings, 1997) $\aleph_1 \leq \lambda^{<\lambda} = \lambda + \bigotimes_{\lambda}$ entails a non-specializable λ -complete λ^+ -Souslin tree.

Non-specializable λ^+ -Souslin trees

Theorem (Baumgartner, 1980's, improving Devlin) $GCH + \Box_{\aleph_1}$ entails a non-specializable \aleph_2 -Souslin tree. Theorem (Cummings, 1997) $\aleph_1 \leq \lambda^{<\lambda} = \lambda + \bigotimes_{\lambda}$ entails a non-specializable λ -complete λ^+ -Souslin tree.

Theorem (Cummings, 1997)

If λ is a singular cardinal of countable cofinality, $\Box_{\lambda} + CH_{\lambda}$ and $\mu^{\aleph_1} < \lambda$ for all $\mu < \lambda$, then there exists a non-specializable λ^+ -Souslin tree.

Non-specializable λ^+ -Souslin trees

Theorem (Baumgartner, 1980's, improving Devlin) $GCH + \Box_{\aleph_1}$ entails a non-specializable \aleph_2 -Souslin tree. Theorem (Cummings, 1997) $\aleph_1 \leq \lambda^{<\lambda} = \lambda + \bigotimes_{\lambda}$ entails a non-specializable λ -complete λ^+ -Souslin tree.

Theorem (Cummings, 1997)

If λ is a singular cardinal of countable cofinality, $\Box_{\lambda} + CH_{\lambda}$ and $\mu^{\aleph_1} < \lambda$ for all $\mu < \lambda$, then there exists a non-specializable λ^+ -Souslin tree.

Theorem (Cummings, 1997)

If λ is a singular cardinal of uncountable cofinality, $\Box_{\lambda} + CH_{\lambda}$ and $\mu^{\aleph_0} < \lambda$ for all $\mu < \lambda$, then there exists a non-specializable λ^+ -Souslin tree.

The construction of λ^+ -Souslin trees often makes an explicit distinction between the case that λ is a regular cardinal and the case that λ is singular.

The construction of λ^+ -Souslin trees often makes an explicit distinction between the case that λ is a regular cardinal and the case that λ is singular. Some of them also depend on whether or not λ is of countable cofinality.

The construction of λ^+ -Souslin trees often makes an explicit distinction between the case that λ is a regular cardinal and the case that λ is singular. Some of them also depend on whether or not λ is of countable cofinality.

Question

Do one really have to come up with such a long list of variations each time that a fundamental construction is discovered?

The construction of λ^+ -Souslin trees often makes an explicit distinction between the case that λ is a regular cardinal and the case that λ is singular. Some of them also depend on whether or not λ is of countable cofinality.

Question

Do one really have to come up with such a long list of variations each time that a fundamental construction is discovered? Isn't there any automatic translation between the different cardinals?

An idea

Find a proxy!

- Introduce a family of combinatorial principles from which the constructions can be carried out <u>uniformly</u>;
- 2. Prove that this operational principle is a consequence of the "usual" hypotheses.

An idea

Find a proxy!

- Introduce a family of combinatorial principles from which the constructions can be carried out <u>uniformly</u>;
- 2. Prove that this operational principle is a consequence of the "usual" hypotheses. This part is done only once, and then will be utilized each time that a new construction is discovered.

Goal

The proxy principle will allow to translate constructions from one cardinal to another, to calibrate the hypotheses needed to carry a construction, and will capture all known \diamond -based constructions.

Goal

The proxy principle will allow to translate constructions from one cardinal to another, to calibrate the hypotheses needed to carry a construction, and will capture all known \diamond -based constructions.

Definition

 $P(\kappa, \mu, \mathcal{R}, \theta, \mathcal{S}, \nu, \sigma, \varpi)$ asserts that $\Diamond(\kappa)$ holds, and so is the corresponding $P^{-}(\kappa, \mu, \mathcal{R}, \theta, \mathcal{S}, \nu, \sigma, \varpi)$.

Definition

 $P(\kappa, \mu, \mathcal{R}, \theta, \mathcal{S}, \nu, \sigma, \varpi)$ asserts that $\Diamond(\kappa)$ holds, and so is the corresponding $P^{-}(\kappa, \mu, \mathcal{R}, \theta, \mathcal{S}, \nu, \sigma, \varpi)$.

Definition

 $P(\kappa, \mu, \mathcal{R}, \theta, \mathcal{S}, \nu, \sigma, \varpi)$ asserts that $\Diamond(\kappa)$ holds, and so is the corresponding $P^{-}(\kappa, \mu, \mathcal{R}, \theta, \mathcal{S}, \nu, \sigma, \varpi)$.

Definition

Definition

 $P^{-}(\kappa,\mu,\mathcal{R},\theta,\mathcal{S},\nu,\sigma,\varpi)$ asserts the existence of $\langle \mathcal{C}_{\delta} \mid \delta < \kappa \rangle$ s.t.:

▶ for every limit $\delta < \kappa$, C_{δ} is a collection of club subsets of δ ;

Definition

- for every limit $\delta < \kappa$, C_{δ} is a collection of club subsets of δ ;
- $0 < |\mathcal{C}_{\delta}| < \mu$ for all $\delta < \kappa$;

Definition

- for every limit $\delta < \kappa$, C_{δ} is a collection of club subsets of δ ;
- $0 < |\mathcal{C}_{\delta}| < \mu$ for all $\delta < \kappa$;
- \mathcal{R} is a binary relation over $\mathcal{P}(\kappa)$;

Definition

- for every limit $\delta < \kappa$, C_{δ} is a collection of club subsets of δ ;
- $0 < |\mathcal{C}_{\delta}| < \mu$ for all $\delta < \kappa$;
- \mathcal{R} is a binary relation over $\mathcal{P}(\kappa)$;

Definition

- for every limit $\delta < \kappa$, C_{δ} is a collection of club subsets of δ ;
- $0 < |\mathcal{C}_{\delta}| < \mu$ for all $\delta < \kappa$;
- \mathcal{R} is a binary relation over $\mathcal{P}(\kappa)$;
- if $C \in C_{\delta}$ and $\beta \in \operatorname{acc}(C)$, then $\exists D \in C_{\beta}$ with $(D, C) \in \mathcal{R}$;

Example of a binary relation \mathcal{R} \sqsubseteq , where $D \sqsubseteq C$ iff $\exists \beta$ such that $D = C \cap \beta$.

Definition

- for every limit $\delta < \kappa$, C_{δ} is a collection of club subsets of δ ;
- $0 < |\mathcal{C}_{\delta}| < \mu$ for all $\delta < \kappa$;
- if $C \in C_{\delta}$ and $\beta \in \operatorname{acc}(C)$, then $\exists D \in C_{\beta}$ with $(D, C) \in \mathcal{R}$;

Example of a binary relation \mathcal{R} \sqsubseteq_{χ} , where $D \sqsubseteq_{\chi} C$ iff $D \sqsubseteq C$ or $otp(C) < \chi$.

Definition

- for every limit $\delta < \kappa$, C_{δ} is a collection of club subsets of δ ;
- $0 < |\mathcal{C}_{\delta}| < \mu$ for all $\delta < \kappa$;
- if $C \in C_{\delta}$ and $\beta \in \operatorname{acc}(C)$, then $\exists D \in C_{\beta}$ with $(D, C) \in \mathcal{R}$;

Example of a binary relation \mathcal{R} \sqsubseteq^* , where $D \sqsubseteq^* C$ iff $\exists \alpha < \sup(D)$ with $D \setminus \alpha \sqsubseteq C \setminus \alpha$.

Definition

- ▶ for every limit $\delta < \kappa$, C_{δ} is a collection of club subsets of δ ;
- $0 < |\mathcal{C}_{\delta}| < \mu$ for all $\delta < \kappa$;
- if $C \in C_{\delta}$ and $\beta \in \operatorname{acc}(C)$, then $\exists D \in C_{\beta}$ with $(D, C) \in \mathcal{R}$;

Example of a binary relation \mathcal{R} $\chi \sqsubseteq^*$, where $D_{\chi} \sqsubseteq^* C$ iff cf(sup(D)) < χ or $D \sqsubseteq^* C$.

Definition

- ▶ for every limit $\delta < \kappa$, C_{δ} is a collection of club subsets of δ ;
- $0 < |\mathcal{C}_{\delta}| < \mu$ for all $\delta < \kappa$;
- if $C \in C_{\delta}$ and $\beta \in \operatorname{acc}(C)$, then $\exists D \in C_{\beta}$ with $(D, C) \in \mathcal{R}$;

Definition

- for every limit $\delta < \kappa$, C_{δ} is a collection of club subsets of δ ;
- $0 < |\mathcal{C}_{\delta}| < \mu$ for all $\delta < \kappa$;
- if $C \in C_{\delta}$ and $\beta \in \operatorname{acc}(C)$, then $\exists D \in C_{\beta}$ with $(D, C) \in \mathcal{R}$;
- ▶ for every sequence $\langle A_i \mid i < \theta \rangle$ of cofinal subsets of κ

Definition

- ▶ for every limit $\delta < \kappa$, C_{δ} is a collection of club subsets of δ ;
- $0 < |\mathcal{C}_{\delta}| < \mu$ for all $\delta < \kappa$;
- if $C \in C_{\delta}$ and $\beta \in \operatorname{acc}(C)$, then $\exists D \in C_{\beta}$ with $(D, C) \in \mathcal{R}$;
- for every sequence (A_i | i < θ) of cofinal subsets of κ, and every S ∈ S,

Definition

- for every limit $\delta < \kappa$, C_{δ} is a collection of club subsets of δ ;
- $0 < |\mathcal{C}_{\delta}| < \mu$ for all $\delta < \kappa$;
- if $C \in C_{\delta}$ and $\beta \in \operatorname{acc}(C)$, then $\exists D \in C_{\beta}$ with $(D, C) \in \mathcal{R}$;
- For every sequence (A_i | i < θ) of cofinal subsets of κ, and every S ∈ S, there exists δ ∈ S</p>

Definition

- ▶ for every limit $\delta < \kappa$, C_{δ} is a collection of club subsets of δ ;
- $0 < |\mathcal{C}_{\delta}| < \mu$ for all $\delta < \kappa$;
- if $C \in C_{\delta}$ and $\beta \in \operatorname{acc}(C)$, then $\exists D \in C_{\beta}$ with $(D, C) \in \mathcal{R}$;
- For every sequence (A_i | i < θ) of cofinal subsets of κ, and every S ∈ S, there exists δ ∈ S with |C_δ| < ν such that:</p>

Recall $\operatorname{succ}_{\sigma}(\mathcal{C}) = \{ \alpha \in \mathcal{C} \mid \operatorname{otp}(\mathcal{C} \cap \alpha) = j + 1 \text{ for some } j < \sigma \}.$

Definition

- for every limit $\delta < \kappa$, C_{δ} is a collection of club subsets of δ ;
- $0 < |\mathcal{C}_{\delta}| < \mu$ for all $\delta < \kappa$;
- if $C \in C_{\delta}$ and $\beta \in \operatorname{acc}(C)$, then $\exists D \in C_{\beta}$ with $(D, C) \in \mathcal{R}$;
- for every sequence (A_i | i < θ) of cofinal subsets of κ, and every S ∈ S, there exists δ ∈ S with |C_δ| < ν such that:</p>
 - $∀i < \min{\delta, \theta} ∀C ∈ C_{\delta} \sup{\beta ∈ C | succ_{\sigma}(C \setminus \beta) ⊆ A_i} = \delta;$

Recall $\operatorname{succ}_{\varpi}(\mathcal{C}) = \{ \alpha \in \mathcal{C} \mid \operatorname{otp}(\mathcal{C} \cap \alpha) = j + 1 \text{ for some } j < \varpi \}.$

Definition

- for every limit $\delta < \kappa$, C_{δ} is a collection of club subsets of δ ;
- $0 < |\mathcal{C}_{\delta}| < \mu$ for all $\delta < \kappa$;
- if $C \in C_{\delta}$ and $\beta \in \operatorname{acc}(C)$, then $\exists D \in C_{\beta}$ with $(D, C) \in \mathcal{R}$;
- for every sequence (A_i | i < θ) of cofinal subsets of κ, and every S ∈ S, there exists δ ∈ S with |C_δ| < ν such that:</p>
 - $\flat \ \forall i < \min\{\delta, \theta\} \forall C \in \mathcal{C}_{\delta} \sup\{\beta \in C \mid \text{succ}_{\sigma}(C \setminus \beta) \subseteq A_i\} = \delta;$
 - ∀i < min{δ, θ} sup ∩_{C∈Cδ} {β ∈ C | succ_∞(C \ β) ⊆ A_i} = δ, unless ∞ = 0.

Don't worry, we have some default values! Whenever omitted, let $\theta = 1, S = {\kappa}, \nu = 2, \sigma = 1, \varpi = 0.$

Don't worry, we have some default values! Whenever omitted, let $\theta = 1, S = {\kappa}, \nu = 2, \sigma = 1, \varpi = 0.$

Definition

- ▶ for every limit $\delta < \kappa$, C_{δ} is a collection of club subset of δ ;
- $0 < |\mathcal{C}_{\delta}| < \mu$ for all $\delta < \kappa$;
- ▶ if $C \in C_{\delta}$ and $\beta \in \operatorname{acc}(C)$, then $\exists D \in C_{\beta}$ with $(D, C) \in \mathcal{R}$;
- for every sequence (A_i | i < θ) of cofinal subsets of κ, and every S ∈ S, there exists δ ∈ S with |C_δ| < ν such that:</p>
 - $\forall i < \min\{\delta, \theta\} \forall C \in C_{\delta} \sup\{\beta \in C \mid \operatorname{succ}_{\sigma}(C \setminus \beta) \subseteq A_i\} = \delta;$
 - ∀i < min{δ, θ} sup ∩_{C∈C_δ} {β ∈ C | succ_∞(C \ β) ⊆ A_i} = δ, unless ∞ = 0.

Don't worry, we have some default values! Whenever omitted, let $\theta = 1, S = {\kappa}, \nu = 2, \sigma = 1, \varpi = 0.$

Special case

- $P^-(\kappa,\mu,\mathcal{R})$ asserts the existence of $\langle \mathcal{C}_\delta \mid \delta < \kappa \rangle$ such that:
 - for every limit $\delta < \kappa$, C_{δ} is a collection of club subset of δ ;
 - $0 < |\mathcal{C}_{\delta}| < \mu$ for all $\delta < \kappa$;
 - ▶ if $C \in C_{\delta}$ and $\beta \in \operatorname{acc}(C)$, then $\exists D \in C_{\beta}$ with $(D, C) \in \mathcal{R}$;

Don't worry, we have some default values! Whenever omitted, let $\theta = 1, S = {\kappa}, \nu = 2, \sigma = 1, \varpi = 0.$

Special case

- $P^-(\kappa,\mu,\mathcal{R})$ asserts the existence of $\langle \mathcal{C}_\delta \mid \delta < \kappa \rangle$ such that:
 - for every limit $\delta < \kappa$, C_{δ} is a collection of club subset of δ ;

•
$$0 < |\mathcal{C}_{\delta}| < \mu$$
 for all $\delta < \kappa$;

- if $C \in C_{\delta}$ and $\beta \in \operatorname{acc}(C)$, then $\exists D \in C_{\beta}$ with $(D, C) \in \mathcal{R}$;
- for every cofinal A ⊆ κ, there exists δ < κ with C_δ = {C_δ}, such that sup(nacc(C_δ) ∩ A) = δ.

A Souslin tree from the weakest principle

Let κ denote a regular uncountable cardinal.

Proposition $P(\kappa, \kappa, \sqsubseteq^*, 1, \{\kappa\}, \kappa)$ entails a κ -Souslin tree. A Souslin tree from the weakest principle

Let κ denote a regular uncountable cardinal.

Proposition $P(\kappa, \kappa, \sqsubseteq^*, 1, \{\kappa\}, \kappa)$ entails a κ -Souslin tree.

Proposition

$$\begin{split} & P(\kappa,\kappa,\sqsubseteq^*,1,\{E_{\geq\chi}^\kappa\},\kappa) \text{ entails a } \chi\text{-complete }\kappa\text{-Souslin tree,} \\ & \text{provided } |\alpha|^{<\chi} < \kappa \text{ for all } \alpha < \kappa. \end{split}$$

A Souslin tree from the weakest principle

Let κ denote a regular uncountable cardinal.

Proposition $P(\kappa, \kappa, \sqsubseteq^*, 1, \{\kappa\}, \kappa)$ entails a κ -Souslin tree.

Proposition

$$\begin{split} & P(\kappa,\kappa,\chi\sqsubseteq^*,1,\{E_{\geq\chi}^\kappa\},\kappa) \text{ entails a } \chi\text{-complete }\kappa\text{-Souslin tree,} \\ & \text{provided } |\alpha|^{<\chi} < \kappa \text{ for all } \alpha < \kappa. \end{split}$$

Sanity check #1

Let λ denote an uncountable cardinal.

Theorem (Jensen, 1972) If $\lambda^{<\lambda} = \lambda$ and $\Diamond(E_{\lambda}^{\lambda^{+}})$ holds, then there exists a λ -complete λ^{+} -Souslin tree.

Sanity check #1

Let λ denote an uncountable cardinal.

Theorem (Jensen, 1972) If $\lambda^{<\lambda} = \lambda$ and $\Diamond (E_{\lambda}^{\lambda^{+}})$ holds, then there exists a λ -complete λ^{+} -Souslin tree.

Theorem $(E_{\lambda}^{\lambda^+})$ entails $P(\lambda^+, 2, \lambda \sqsubseteq, \{E_{\lambda}^{\lambda^+}\})$.

Let λ denote an uncountable cardinal.

Theorem (Jensen, 1972) If $\lambda^{<\lambda} = \lambda$ and $\Diamond (E_{\lambda}^{\lambda^{+}})$ holds, then there exists a λ -complete λ^{+} -Souslin tree. Theorem $\Diamond (E_{\lambda}^{\lambda^{+}})$ entails $P(\lambda^{+}, 2, \lambda \sqsubseteq, \{E_{\lambda}^{\lambda^{+}}\})$. Corollary If $\lambda^{<\lambda} = \lambda$ and $\Diamond (E_{\lambda}^{\lambda^{+}})$ holds, then there exists a λ -complete λ^{+} -Souslin tree.

Let λ denote an uncountable cardinal.

Theorem (Jensen, 1972)

If there exists $S \subseteq \lambda^+$ for which $\Box_{\lambda}(S) + \Diamond(S)$ holds, then there exists a λ^+ -Souslin tree.

Let λ denote an uncountable cardinal.

Theorem (Jensen, 1972)

If there exists $S \subseteq \lambda^+$ for which $\Box_{\lambda}(S) + \Diamond(S)$ holds, then there exists a λ^+ -Souslin tree.

Theorem

 $\Box_{\lambda} + \mathsf{CH}_{\lambda} \text{ entails } \mathsf{P}(\lambda^{+}, 2, \sqsubseteq, \{ E_{\geq \theta}^{\lambda^{+}} \mid \theta < \lambda \}).$

Let λ denote an uncountable cardinal.

Theorem (Jensen, 1972)

If there exists $S \subseteq \lambda^+$ for which $\Box_{\lambda}(S) + \Diamond(S)$ holds, then there exists a λ^+ -Souslin tree.

Theorem

$$\Box_{\lambda} + \mathsf{CH}_{\lambda} \text{ entails } \mathsf{P}(\lambda^{+}, 2, \sqsubseteq, \{ \mathsf{E}_{\geq \theta}^{\lambda^{+}} \mid \theta < \lambda \}).$$

Corollary

If $\Box_{\lambda} + CH_{\lambda}$ holds, then for every $\chi < \lambda$ with $\lambda^{<\chi} = \lambda$, there exists a χ -complete λ^+ -Souslin tree.

Let λ denote an uncountable cardinal.

Theorem (Gregory, 1976) If $\lambda^{<\lambda} = \lambda, 2^{\lambda} = \lambda^{+}$ and exists a nonreflecting stationary subset of $E_{<\lambda}^{\lambda^{+}}$, then there exists a λ^{+} -Souslin tree.

Let λ denote an uncountable cardinal.

Theorem (Gregory, 1976) If $\lambda^{<\lambda} = \lambda, 2^{\lambda} = \lambda^{+}$ and exists a nonreflecting stationary subset of $E_{<\lambda}^{\lambda^{+}}$, then there exists a λ^{+} -Souslin tree. Theorem If $2^{\lambda} = \lambda^{+}$ and there exists a nonreflecting stationary subset of $E_{<\lambda}^{\lambda^{+}}$, then $P(\lambda^{+}, 2, \lambda \sqsubseteq^{*}, \{E_{\lambda}^{\lambda^{+}}\})$ holds.

17 / 32

Let λ denote an uncountable cardinal.

Theorem (Gregory, 1976) If $\lambda^{<\lambda} = \lambda, 2^{\lambda} = \lambda^{+}$ and exists a nonreflecting stationary subset of $E_{<\lambda}^{\lambda^{+}}$, then there exists a λ^{+} -Souslin tree.

Theorem

If $2^{\lambda} = \lambda^+$ and there exists a nonreflecting stationary subset of $E_{<\lambda}^{\lambda^+}$, then $P(\lambda^+, 2, \lambda \sqsubseteq^*, \{E_{\lambda}^{\lambda^+}\})$ holds.

Corollary (Kojman-Shelah, 1993)

If $\lambda^{<\lambda} = \lambda, 2^{\lambda} = \lambda^+$ and there exists a nonreflecting stationary subset of $E_{<\lambda}^{\lambda^+}$, then there exists a λ -complete λ^+ -Souslin tree.

Let λ denote an uncountable cardinal.

Theorem (Shelah, 1984) If $2^{\aleph_0} = \aleph_1$, NS_{\aleph_1} is saturated, then there exists an \aleph_2 -Souslin tree.

Let λ denote an uncountable cardinal.

Theorem (Shelah, 1984) If $2^{\aleph_0} = \aleph_1$, NS_{\aleph_1} is saturated, then there exists an \aleph_2 -Souslin tree. Theorem If $2^{\aleph_1} = \aleph_2$, NS_{\aleph_1} is saturated, then $P(\aleph_2, 2, \aleph_1 \sqsubseteq^*, \{E_{\aleph_1}^{\aleph_2}\})$ holds.

Let λ denote an uncountable cardinal.

Theorem (Shelah, 1984) If $2^{\aleph_0} = \aleph_1$, NS_{\aleph_1} is saturated, then there exists an \aleph_2 -Souslin tree. Theorem If $2^{\aleph_1} = \aleph_2$, NS_{\aleph_1} is saturated, then $P(\aleph_2, 2, \aleph_1 \sqsubseteq^*, \{E_{\aleph_1}^{\aleph_2}\})$ holds. Corollary If $2^{\aleph_0} = \aleph_1$, NS_{\aleph_1} is saturated, then there exists an \aleph_1 -complete \aleph_2 -Souslin tree. And so on..

And so on..

Okay, so you seem to found a way to redirect all \diamond -based constructions of Souslin trees through a single construction. You haven't yet shown me anything new!

Definition

A subtree T of ${}^{<\kappa}\kappa$ is said to be coherent if for all $\delta < \kappa$:

- if $x, y \in T_{\delta}$, then $\{\alpha < \delta \mid x(\alpha) \neq y(\alpha)\}$ is finite;
- ▶ if $x, y \in {}^{\delta}\kappa$, and $\{\alpha < \delta \mid x(\alpha) \neq y(\alpha)\}$ is finite, then $x \in T_{\delta}$ iff $y \in T_{\delta}$.

Definition

A subtree T of ${}^{<\kappa}\kappa$ is said to be coherent if for all $\delta < \kappa$:

- if $x, y \in T_{\delta}$, then $\{\alpha < \delta \mid x(\alpha) \neq y(\alpha)\}$ is finite;
- ▶ if $x, y \in {}^{\delta}\kappa$, and $\{\alpha < \delta \mid x(\alpha) \neq y(\alpha)\}$ is finite, then $x \in T_{\delta}$ iff $y \in T_{\delta}$.

```
Theorem (Jensen, 1970's) (\aleph_1) entails a coherent \aleph_1-Souslin tree.
```

Definition

A subtree T of ${}^{<\kappa}\kappa$ is said to be coherent if for all $\delta < \kappa$:

- if $x, y \in T_{\delta}$, then $\{\alpha < \delta \mid x(\alpha) \neq y(\alpha)\}$ is finite;
- ▶ if $x, y \in {}^{\delta}\kappa$, and $\{\alpha < \delta \mid x(\alpha) \neq y(\alpha)\}$ is finite, then $x \in T_{\delta}$ iff $y \in T_{\delta}$.

```
Theorem (Jensen, 1970's) \Diamond(\aleph_1) entails a coherent \aleph_1-Souslin tree.
```

Theorem (Veličković, 1986) ∑_{ℵ1} entails a coherent ℵ₂-Souslin tree.

In my talk at "Young Set Theory 2011" workshop, I asked about the consistency of a coherent λ^+ -Souslin tree for λ singular.

Theorem (Jensen, 1970's) ◊(ℵ₁) entails a coherent ℵ₁-Souslin tree.

Theorem (Veličković, 1986) ∑_{ℵ1} entails a coherent ℵ₂-Souslin tree.

In my talk at "Young Set Theory 2011" workshop, I asked about the consistency of a coherent λ^+ -Souslin tree for λ singular.

Theorem (Jensen, 1970's) ◊(ℵ₁) entails a coherent ℵ₁-Souslin tree.

Theorem (Veličković, 1986) ∑_{ℵ1} entails a coherent ℵ₂-Souslin tree.

Theorem

• $\Diamond(\aleph_1)$ entails $P(\aleph_1, 2, \sqsubseteq, \aleph_1)$

Theorem (Jensen, 1970's) (\aleph_1) entails a coherent \aleph_1 -Souslin tree.

Theorem (Veličković, 1986) ∑_{ℵ1} entails a coherent ℵ₂-Souslin tree.

Theorem

- $\Diamond(\aleph_1)$ entails $P(\aleph_1, 2, \sqsubseteq, \aleph_1)$
- \bigotimes_{λ} entails $P(\lambda^+, 2, \sqsubseteq, \lambda^+)$

Theorem (Veličković, 1986) ∑_{ℵ1} entails a coherent ℵ₂-Souslin tree.

Theorem

- $\Diamond(\aleph_1)$ entails $P(\aleph_1, 2, \sqsubseteq, \aleph_1)$
- \bigotimes_{λ} entails $P(\lambda^+, 2, \sqsubseteq, \lambda^+)$
- $\Box_{\lambda} + CH_{\lambda}$ entails $P(\lambda^+, 2, \sqsubseteq, \lambda^+)$ for λ singular

Theorem

- $\Diamond(\aleph_1)$ entails $P(\aleph_1, 2, \sqsubseteq, \aleph_1)$
- \bigotimes_{λ} entails $P(\lambda^+, 2, \sqsubseteq, \lambda^+)$
- $\Box_{\lambda} + CH_{\lambda}$ entails $P(\lambda^+, 2, \sqsubseteq, \lambda^+)$ for λ singular

Corollary

If $\Box_{\lambda} + CH_{\lambda}$ holds for λ singular, then there exists a coherent λ^+ -Souslin tree.

Theorem

- $\Diamond(\aleph_1)$ entails $P(\aleph_1, 2, \sqsubseteq, \aleph_1)$
- \bigotimes_{λ} entails $P(\lambda^+, 2, \sqsubseteq, \lambda^+)$
- $\Box_{\lambda} + CH_{\lambda}$ entails $P(\lambda^+, 2, \sqsubseteq, \lambda^+)$ for λ singular
- V = L entails P(κ, 2, ⊑, κ) for all regular uncountable κ which is not weakly compact

Corollary

If $\Box_{\lambda} + CH_{\lambda}$ holds for λ singular, then there exists a coherent λ^+ -Souslin tree.

Theorem

- $\Diamond(\aleph_1)$ entails $P(\aleph_1, 2, \sqsubseteq, \aleph_1)$
- \bigotimes_{λ} entails $P(\lambda^+, 2, \sqsubseteq, \lambda^+)$
- $\Box_{\lambda} + CH_{\lambda}$ entails $P(\lambda^+, 2, \sqsubseteq, \lambda^+)$ for λ singular
- V = L entails P(κ, 2, ⊑, κ) for all regular uncountable κ which is not weakly compact

Corollary

If $\Box_{\lambda} + CH_{\lambda}$ holds for λ singular, then there exists a coherent λ^+ -Souslin tree.

Corollary

If V = L, then any regular uncountable κ is not weakly compact iff there exists a coherent κ -Souslin tree.

Definition

A κ -Souslin tree T is free, if for every nonzero $n < \omega$ and any sequence of distinct nodes $\langle t_i | i < n \rangle$ from a fixed level $\delta < \kappa$, the product tree of the upper cones $\bigotimes_{i < n} t_i^{\uparrow}$ is again κ -Souslin.

Definition

A κ -Souslin tree T is free, if for every nonzero $n < \omega$ and any sequence of distinct nodes $\langle t_i | i < n \rangle$ from a fixed level $\delta < \kappa$, the product tree of the upper cones $\bigotimes_{i < n} t_i^{\uparrow}$ is again κ -Souslin.

```
Theorem (Jensen, 1970's) \Diamond(\aleph_1) entails a free \aleph_1-Souslin tree.
```

Definition

A κ -Souslin tree T is free, if for every nonzero $n < \omega$ and any sequence of distinct nodes $\langle t_i | i < n \rangle$ from a fixed level $\delta < \kappa$, the product tree of the upper cones $\bigotimes_{i < n} t_i^{\uparrow}$ is again κ -Souslin.

Theorem (Jensen, 1970's) $\Diamond(\aleph_1)$ entails a free \aleph_1 -Souslin tree.

Jensen construct the levels of the tree by recursion, where the nodes of limit level α are obtained by forcing with finite conditions over some countable elementary submodel that knows about the diamond sequence and the tree constructed so far.

Definition

A κ -Souslin tree T is free, if for every nonzero $n < \omega$ and any sequence of distinct nodes $\langle t_i | i < n \rangle$ from a fixed level $\delta < \kappa$, the product tree of the upper cones $\bigotimes_{i < n} t_i^{\uparrow}$ is again κ -Souslin.

Theorem (Jensen, 1970's) $\Diamond(\aleph_1)$ entails a free \aleph_1 -Souslin tree.

Jensen construct the levels of the tree by recursion, where the nodes of limit level α are obtained by forcing with finite conditions over some countable elementary submodel that knows about the diamond sequence and the tree constructed so far. Genericity entails freeness.

Definition

A κ -Souslin tree T is free, if for every nonzero $n < \omega$ and any sequence of distinct nodes $\langle t_i | i < n \rangle$ from a fixed level $\delta < \kappa$, the product tree of the upper cones $\bigotimes_{i < n} t_i^{\uparrow}$ is again κ -Souslin.

Observation CH + $\diamond(E_{\aleph_1}^{\aleph_2})$ entails a free \aleph_2 -Souslin tree.

Definition

A κ -Souslin tree T is free, if for every nonzero $n < \omega$ and any sequence of distinct nodes $\langle t_i | i < n \rangle$ from a fixed level $\delta < \kappa$, the product tree of the upper cones $\bigotimes_{i < n} t_i^{\uparrow}$ is again κ -Souslin.

Observation CH + $\diamond(E_{\aleph_1}^{\aleph_2})$ entails a free \aleph_2 -Souslin tree.

Construct a \aleph_1 -complete tree by recursion, where the nodes of level α of uncountable cofinality are obtained by forcing with countable conditions over some \aleph_1 -sized elementary submodel that knows about anything relevant.

Definition

A κ -Souslin tree T is free, if for every nonzero $n < \omega$ and any sequence of distinct nodes $\langle t_i | i < n \rangle$ from a fixed level $\delta < \kappa$, the product tree of the upper cones $\bigotimes_{i < n} t_i^{\uparrow}$ is again κ -Souslin.

Observation CH + $\diamond(E_{\aleph_1}^{\aleph_2})$ entails a free \aleph_2 -Souslin tree.

Construct a \aleph_1 -complete tree by recursion, where the nodes of level α of uncountable cofinality are obtained by forcing with countable conditions over some \aleph_1 -sized elementary submodel that knows about anything relevant.

The model is of size \aleph_1 to accompany all relevant dense sets.

Definition

A κ -Souslin tree T is free, if for every nonzero $n < \omega$ and any sequence of distinct nodes $\langle t_i | i < n \rangle$ from a fixed level $\delta < \kappa$, the product tree of the upper cones $\bigotimes_{i < n} t_i^{\uparrow}$ is again κ -Souslin.

Observation CH + $\diamond(E_{\aleph_1}^{\aleph_2})$ entails a free \aleph_2 -Souslin tree.

Construct a \aleph_1 -complete tree by recursion, where the nodes of level α of uncountable cofinality are obtained by forcing with countable conditions over some \aleph_1 -sized elementary submodel that knows about anything relevant.

The model is of size \aleph_1 to accompany all relevant dense sets. The \aleph_1 -completeness of the tree and the countable conditions are necessary for the existence of a generic over the \aleph_1 -sized model.

Question How about free λ^+ -Souslin tree for λ singular?

```
Observation
CH + \diamond(E_{\aleph_1}^{\aleph_2}) entails a free \aleph_2-Souslin tree.
```

Construct a \aleph_1 -complete tree by recursion, where the nodes of level α of uncountable cofinality are obtained by forcing with countable conditions over some \aleph_1 -sized elementary submodel that knows about anything relevant.

The model is of size \aleph_1 to accompany all relevant dense sets. The \aleph_1 -completeness of the tree and the countable conditions are necessary for the existence of a generic over the \aleph_1 -sized model.

Question

How about free λ^+ -Souslin tree for λ singular?

Freeness requires that the generic meet λ many dense sets, but the tree cannot be λ -complete, and there cannot be a generic for the relevant poset over a model of size λ .

Question

How about free λ^+ -Souslin tree for λ singular?

Freeness requires that the generic meet λ many dense sets, but the tree cannot be λ -complete, and there cannot be a generic for the relevant poset over a model of size λ . But, there is another way:

Theorem

 $P(\kappa, \mu, \sqsubseteq, \kappa)$ entails a μ -slim, free κ -Souslin tree.

Theorem $P(\kappa, \mu, \sqsubseteq, \kappa)$ entails a μ -slim, free κ -Souslin tree. Corollary If $\Box_{\lambda} + CH_{\lambda}$ holds for λ singular, then there exists a free λ^+ -Souslin tree.

Corollary If \Box_{λ} + CH_{λ} holds for λ singular, then there exists a free λ^+ -Souslin tree.

Corollary

If V = L, then any regular uncountable κ is not weakly compact iff there exists a free κ -Souslin tree.

A concept of "being productive" for Souslin trees

Definition

A κ -Souslin tree T is χ -free, if for every nonzero $\nu < \chi$ and any sequence of distinct nodes $\langle t_i | i < \nu \rangle$ from a fixed level $\delta < \kappa$, the product tree of the upper cones $\bigotimes_{i < \nu} t_i^{\uparrow}$ is again κ -Souslin.

A concept of "being productive" for Souslin trees

Definition

A κ -Souslin tree T is χ -free, if for every nonzero $\nu < \chi$ and any sequence of distinct nodes $\langle t_i | i < \nu \rangle$ from a fixed level $\delta < \kappa$, the product tree of the upper cones $\bigotimes_{i < \nu} t_i^{\uparrow}$ is again κ -Souslin.

From GCH-type assumption, we can also construct χ -free trees for uncountable χ . For instance:

Corollary

If $\Box_{\lambda} + CH_{\lambda}$ holds for λ singular, then there exists a $\log_{\lambda}(\lambda^{+})$ -free λ^{+} -Souslin tree.

P. Larson proved that any coherent \aleph_1 -Souslin tree contains a regularly emebedded free \aleph_1 -Souslin tree.

P. Larson proved that any coherent $\aleph_1\text{-}\mathsf{Souslin}$ tree contains a regularly emebedded free $\aleph_1\text{-}\mathsf{Souslin}$ tree.

In particular, a coherent \aleph_1 -Souslin tree entails a free one.

P. Larson proved that any coherent \aleph_1 -Souslin tree contains a regularly emebedded free \aleph_1 -Souslin tree.

In particular, a coherent \aleph_1 -Souslin tree entails a free one.

Larson and Zapletal (independently) proved that the following is consistent: there exists a free \aleph_1 -Souslin tree, but no coherent \aleph_1 -Souslin tree.

P. Larson proved that any coherent \aleph_1 -Souslin tree contains a regularly emebedded free \aleph_1 -Souslin tree.

In particular, a coherent \aleph_1 -Souslin tree entails a free one.

Larson and Zapletal (independently) proved that the following is consistent: there exists a free \aleph_1 -Souslin tree, but no coherent \aleph_1 -Souslin tree. The same is true for \aleph_2 -Souslin trees.

P. Larson proved that any coherent \aleph_1 -Souslin tree contains a regularly emebedded free \aleph_1 -Souslin tree. In particular, a coherent \aleph_1 -Souslin tree entails a free one.

Larson and Zapletal (independently) proved that the following is consistent: there exists a free \aleph_1 -Souslin tree, but no coherent \aleph_1 -Souslin tree. The same is true for \aleph_2 -Souslin trees.

So, one would expect that the fact that free is weaker than coherent be reflected in the hypothesis needed to construct such.

P. Larson proved that any coherent \aleph_1 -Souslin tree contains a regularly emebedded free \aleph_1 -Souslin tree. In particular, a coherent \aleph_1 -Souslin tree entails a free one.

Larson and Zapletal (independently) proved that the following is consistent: there exists a free \aleph_1 -Souslin tree, but no coherent \aleph_1 -Souslin tree. The same is true for \aleph_2 -Souslin trees.

So, one would expect that the fact that free is weaker than coherent be reflected in the hypothesis needed to construct such.

Theorem

 $P(\kappa, 2, \sqsubseteq, \kappa)$ entails a coherent κ -Souslin tree.

P. Larson proved that any coherent \aleph_1 -Souslin tree contains a regularly emebedded free \aleph_1 -Souslin tree. In particular, a coherent \aleph_1 -Souslin tree entails a free one.

Larson and Zapletal (independently) proved that the following is consistent: there exists a free \aleph_1 -Souslin tree, but no coherent \aleph_1 -Souslin tree. The same is true for \aleph_2 -Souslin trees.

So, one would expect that the fact that free is weaker than coherent be reflected in the hypothesis needed to construct such.

Theorem $P(\kappa, 2, \sqsubseteq, \kappa)$ entails a coherent κ -Souslin tree.

Theorem $P(\kappa, \kappa, \sqsubseteq, \kappa)$ entails a free κ -Souslin tree.

P. Larson proved that any coherent \aleph_1 -Souslin tree contains a regularly emebedded free \aleph_1 -Souslin tree. In particular, a coherent \aleph_1 -Souslin tree entails a free one.

Larson and Zapletal (independently) proved that the following is consistent: there exists a free \aleph_1 -Souslin tree, but no coherent \aleph_1 -Souslin tree. The same is true for \aleph_2 -Souslin trees.

So, one would expect that the fact that free is weaker than coherent be reflected in the hypothesis needed to construct such.

Theorem $P(\kappa, 2, \sqsubseteq, \kappa)$ entails a coherent κ -Souslin tree.

Theorem $P(\kappa, \kappa, \sqsubseteq, \kappa)$ entails a free κ -Souslin tree.

```
Theorem P(\kappa, \kappa, \sqsubseteq^*, 1) entails a \kappa-Souslin tree.
```

Recall (implicit in David, 1990) If V = L, then for every regular λ , there exists a λ^+ -Souslin tree which is specializable.

Recall (implicit in David, 1990)

If V = L, then for every regular λ , there exists a λ^+ -Souslin tree which is specializable.

Proposition

If $\lambda^{<\lambda} = \lambda$, then any coherent λ -splitting λ^+ -Souslin tree is specializable.

Recall (implicit in David, 1990)

If V = L, then for every regular λ , there exists a λ^+ -Souslin tree which is specializable.

Proposition

If $\lambda^{<\lambda} = \lambda$, then any coherent λ -splitting λ^+ -Souslin tree is specializable.

Corollary

If $\lambda^{<\lambda} = \lambda$, $P(\lambda^+, 2, \sqsubseteq, \lambda^+)$ entails a specializable λ^+ -Souslin tree.

Theorem If $\lambda^{<\lambda} = \lambda$, $P(\lambda^+, \lambda^+, \lambda \sqsubseteq^*, 1, \{E_{\lambda}^{\lambda^+}\}, \lambda^+, 1, 1)$ entails a λ -complete, specializable λ^+ -Souslin tree.

Corollary If $\lambda^{<\lambda} = \lambda$, $P(\lambda^+, 2, \sqsubseteq, \lambda^+)$ entails a specializable λ^+ -Souslin tree.

Theorem If $\lambda^{<\lambda} = \lambda$, $P(\lambda^+, \lambda^+, \lambda \sqsubseteq^*, 1, \{E_{\lambda}^{\lambda^+}\}, \lambda^+, 1, 1)$ entails a λ -complete, specializable λ^+ -Souslin tree.

Recall If $2^{\lambda} = \lambda^+$ and there exists a nonreflecting stationary subset of $E_{<\lambda}^{\lambda^+}$, then $P(\lambda^+, 2, \lambda \sqsubseteq^*, \{E_{\lambda}^{\lambda^+}\})$ holds.

Theorem If $\lambda^{<\lambda} = \lambda$, $P(\lambda^+, \lambda^+, \lambda \sqsubseteq^*, 1, \{E_{\lambda}^{\lambda^+}\}, \lambda^+, 1, 1)$ entails a λ -complete, specializable λ^+ -Souslin tree.

Recall

If $2^{\lambda} = \lambda^+$ and there exists a nonreflecting stationary subset of $E_{<\lambda}^{\lambda^+}$, then $P(\lambda^+, 2, \lambda \sqsubseteq^*, \{E_{\lambda}^{\lambda^+}\})$ holds.

Corollary

If $\lambda^{<\lambda} = \lambda, 2^{\lambda} = \lambda^+$ and there exists a nonreflecting stationary subset of $E_{<\lambda}^{\lambda^+}$, then there exists a λ -complete, specializable λ^+ -Souslin tree.

Recall (implicit in David, 1990) If V = L, then for every regular λ , there exists a λ^+ -Souslin tree which is specializable.

Recall (Gregory, 1976) If $\lambda^{<\lambda} = \lambda, 2^{\lambda} = \lambda^+$ and there exists a nonreflecting stationary subset of $E_{\lambda}^{\lambda^+}$, then there exists a λ^+ -Souslin tree.

Theorem If $\lambda^{<\lambda} = \lambda, 2^{\lambda} = \lambda^+$ and there exists a nonreflecting stationary subset of $E_{<\lambda}^{\lambda^+}$, then there exists a λ -complete, specializable λ^+ -Souslin tree.

Let $\chi < \lambda$ denote infinite cardinals.

Theorem

 $P(\lambda^+, 2, \sqsubseteq_{\chi}, 1, \{\lambda^+\}, 2, \omega)$ entails a non-Specializable λ^+ -Souslin tree.

Let $\chi < \lambda$ denote infinite cardinals.

Theorem $P(\lambda^+, 2, \sqsubseteq_{\chi}, 1, \{E_{\geq \kappa}^{\lambda^+}\}, 2, \omega)$ entails a non-Specializable λ^+ -Souslin tree, which is κ -complete, provided that $\lambda^{<\kappa} = \lambda$.

Let $\chi < \lambda$ denote infinite cardinals.

Theorem $P(\lambda^+, 2, \sqsubseteq_{\chi}, 1, \{E_{\geq \kappa}^{\lambda^+}\}, 2, \omega)$ entails a non-Specializable λ^+ -Souslin tree, which is κ -complete, provided that $\lambda^{<\kappa} = \lambda$.

This covers the Baumgartner and Cummings constructions from $GCH + \Box_{\lambda}$ and \bigotimes_{λ} .

Let $\chi < \lambda$ denote infinite cardinals.

Theorem

 $P(\lambda^+, 2, \sqsubseteq_{\chi}, 1, \{E_{\geq \kappa}^{\lambda^+}\}, 2, \omega)$ entails a non-Specializable λ^+ -Souslin tree, which is κ -complete, provided that $\lambda^{<\kappa} = \lambda$.

This covers the Baumgartner and Cummings constructions from $GCH + \Box_{\lambda}$ and \bigotimes_{λ} . In addition, the relation \sqsubseteq_{χ} is weak enough to make $P(\lambda^+, 2, \sqsubseteq_{\chi}, 1, \{\lambda^+\}, 2, \omega)$ consistent with large cardinals that refute \Box^*_{λ} .

Let $\chi < \lambda$ denote infinite cardinals.

Theorem

 $P(\lambda^+, 2, \sqsubseteq_{\chi}, 1, \{E_{\geq \kappa}^{\lambda^+}\}, 2, \omega)$ entails a non-Specializable λ^+ -Souslin tree, which is κ -complete, provided that $\lambda^{<\kappa} = \lambda$.

This covers the Baumgartner and Cummings constructions from GCH + \Box_{λ} and \bigotimes_{λ} . In addition, the relation \sqsubseteq_{χ} is weak enough to make $P(\lambda^+, 2, \sqsubseteq_{\chi}, 1, \{\lambda^+\}, 2, \omega)$ consistent with large cardinals that refute \Box^*_{λ} . Thereby, covering a seemingly unrelated scenario of Shelah and Ben-David.

Let $\chi < \lambda$ denote infinite cardinals.

Theorem

 $P(\lambda^+, 2, \sqsubseteq_{\chi}, 1, \{E_{\geq \kappa}^{\lambda^+}\}, 2, \omega)$ entails a non-Specializable λ^+ -Souslin tree, which is κ -complete, provided that $\lambda^{<\kappa} = \lambda$.

This covers the Baumgartner and Cummings constructions from GCH + \Box_{λ} and \bigotimes_{λ} . In addition, the relation \sqsubseteq_{χ} is weak enough to make $P(\lambda^+, 2, \sqsubseteq_{\chi}, 1, \{\lambda^+\}, 2, \omega)$ consistent with large cardinals that refute \Box^*_{λ} . Thereby, covering a seemingly unrelated scenario of Shelah and Ben-David.

A model of "all Aronszajn trees are nonspecial"

It is consistent that κ is supercompact, $\lambda = \kappa^{+\omega}$, and there exists a non-Specializable λ^+ -Souslin tree.

Let $\chi < \lambda$ denote infinite cardinals.

Theorem

 $P(\lambda^+, 2, \sqsubseteq_{\chi}, 1, \{E_{\geq \kappa}^{\lambda^+}\}, 2, \omega)$ entails a non-Specializable λ^+ -Souslin tree, which is κ -complete, provided that $\lambda^{<\kappa} = \lambda$.

Theorem $P(\lambda^+, 2, \sqsubseteq_{\chi}, \lambda^+, \{\lambda^+\}, 2, \omega)$ entails a free, non-Specializable λ^+ -Souslin tree.

Let $\chi < \lambda$ denote infinite cardinals.

Theorem

 $P(\lambda^+, 2, \sqsubseteq_{\chi}, 1, \{E_{\geq \kappa}^{\lambda^+}\}, 2, \omega)$ entails a non-Specializable λ^+ -Souslin tree, which is κ -complete, provided that $\lambda^{<\kappa} = \lambda$.

Theorem

 $P(\lambda^+, 2, \sqsubseteq_{\chi}, \lambda^+, \{E_{\geq\kappa}^{\lambda^+}\}, 2, \omega)$ entails a free, non-Specializable λ^+ -Souslin tree, which is κ -complete, provided that $\lambda^{<\kappa} = \lambda$.

Let $\chi < \lambda$ denote infinite cardinals.

Theorem $P(\lambda^+, 2, \sqsubseteq_{\chi}, \lambda^+, \{E_{\geq\kappa}^{\lambda^+}\}, 2, \omega)$ entails a free, non-Specializable λ^+ -Souslin tree, which is κ -complete, provided that $\lambda^{<\kappa} = \lambda$.

A model of "all Aronszajn trees are nonspecial"

It is consistent that κ is supercompact, $\lambda = \kappa^{+\omega}$, and there exists a free, non-Specializable λ^+ -Souslin tree.

Some more

Recall (Gregory, 1976)

If $\lambda^{<\lambda} = \lambda$, CH_{λ} and there exists a nonreflecting stationary subset of $E_{<\lambda}^{\lambda^+}$, then there exists a λ^+ -Souslin tree.

Theorem If $2^{<\lambda} = \lambda$, $CH_{\lambda} + \Box_{\lambda}^{*}$ and exists a nonreflecting stationary subset of $E_{\neq cf(\lambda)}^{\lambda^{+}}$, then $P(\lambda^{+}, \lambda^{+}, \sqsubseteq)$ holds.

Recall (Gregory, 1976)

If $\lambda^{<\lambda} = \lambda$, CH_{λ} and there exists a nonreflecting stationary subset of $E_{<\lambda}^{\lambda^+}$, then there exists a λ^+ -Souslin tree.

Theorem If $2^{<\lambda} = \lambda$, $CH_{\lambda} + \Box_{\lambda}^{*}$ and exists a nonreflecting stationary subset of $E_{\neq cf(\lambda)}^{\lambda^{+}}$, then $P(\lambda^{+}, \lambda^{+}, \sqsubseteq)$ holds.

Theorem (Cummings-Foreman-Magidor, 2001)

After Prikry forcing over a supercompact cardinal λ , \Box_{λ}^* holds, yet, any stationary subset of $E_{\neq cf(\lambda)}^{\lambda^+}$ reflects.

Recall (Gregory, 1976)

If $\lambda^{<\lambda} = \lambda$, CH_{λ} and there exists a nonreflecting stationary subset of $E_{<\lambda}^{\lambda^+}$, then there exists a λ^+ -Souslin tree.

Theorem If $2^{<\lambda} = \lambda$, $CH_{\lambda} + \Box_{\lambda}^{*}$ and exists a nonreflecting stationary subset of $E_{\neq cf(\lambda)}^{\lambda^{+}}$, then $P(\lambda^{+}, \lambda^{+}, \sqsubseteq)$ holds.

Theorem (Cummings-Foreman-Magidor, 2001)

After Prikry forcing over a supercompact cardinal λ , \Box_{λ}^* holds, yet, any stationary subset of $E_{\neq cf(\lambda)}^{\lambda^+}$ reflects.

Theorem

After Prikry forcing over a measurable cardinal λ satisfying CH_{λ} , $P(\lambda^+, \lambda^+, \sqsubseteq, \lambda^+)$ holds.

Theorem If $2^{<\lambda} = \lambda$, $CH_{\lambda} + \Box_{\lambda}^{*}$ and exists a nonreflecting stationary subset of $E_{\neq cf(\lambda)}^{\lambda^{+}}$, then $P(\lambda^{+}, \lambda^{+}, \sqsubseteq)$ holds.

Theorem After Prikry forcing over a measurable cardinal λ satisfying CH_{λ} , $P(\lambda^+, \lambda^+, \sqsubseteq, \lambda^+)$ holds.

The derived trees

- P(λ⁺, λ⁺, ⊑) entails a rigid λ⁺-Souslin tree;
- ▶ $P(\lambda^+, \lambda^+, \sqsubseteq, \lambda^+)$ entails a free λ^+ -Souslin tree;
- ► $P(\lambda^+, \lambda^+, \sqsubseteq, \lambda^+)$ entails an homogeneous λ^+ -Souslin tree.

Theorem If $2^{<\lambda} = \lambda$, $CH_{\lambda} + \Box_{\lambda}^{*}$ and exists a nonreflecting stationary subset of $E_{\neq cf(\lambda)}^{\lambda^{+}}$, then $P(\lambda^{+}, \lambda^{+}, \sqsubseteq)$ holds.

Theorem After Prikry forcing over a measurable cardinal λ satisfying CH_{λ} , $P(\lambda^+, \lambda^+, \sqsubseteq, \lambda^+)$ holds.

More results

Let $\lambda^{<\lambda} = \lambda$ denote a regular uncountable cardinal.

 If CH_λ, then adding a single λ-Cohen set entails P(λ⁺, λ⁺, ⊑, λ⁺, {E^{λ⁺}_λ}), and hence free/homogeneous/specializable trees.

More results

Let $\lambda^{<\lambda} = \lambda$ denote a regular uncountable cardinal.

- If CH_λ, then adding a single λ-Cohen set entails P(λ⁺, λ⁺, ⊑, λ⁺, {E^{λ⁺}_λ}), and hence free/homogeneous/specializable trees.
- If □_λ + CH_λ, then a single λ-Cohen set entails P(λ⁺, 2, ⊑, λ⁺, {E^{λ⁺}_λ}, 2, ω), and hence free/coherent/specializable/non-specializable trees.

More results

Let $\lambda^{<\lambda} = \lambda$ denote a regular uncountable cardinal.

- If CH_λ, then adding a single λ-Cohen set entails P(λ⁺, λ⁺, ⊑, λ⁺, {E^{λ⁺}_λ}), and hence free/homogeneous/specializable trees.
- If □_λ + CH_λ, then a single λ-Cohen set entails P(λ⁺, 2, ⊑, λ⁺, {E^{λ⁺}_λ}, 2, ω), and hence free/coherent/specializable/non-specializable trees.
- If □_λ + ◊*(λ⁺), then there exists a (free) λ⁺-Souslin tree *T*, whose ω-reduced power tree ^ω*T*/*U* is λ⁺-Kurepa for any nonprincipal ultrafilter *U* over ω.

The microscopic approach

Recall that $P(\kappa, \cdots)$ asserts that $\diamondsuit(\kappa) + P^{-}(\kappa, \cdots)$ holds.

Recall that $P(\kappa, \cdots)$ asserts that $\diamondsuit(\kappa) + P^{-}(\kappa, \cdots)$ holds.

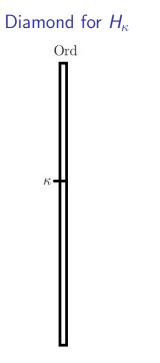
Proposition

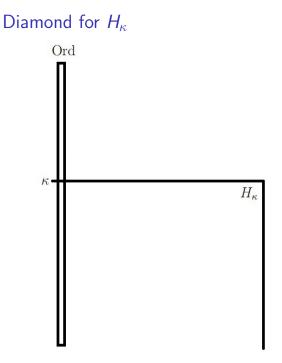
For κ regular uncountable, $\diamondsuit(\kappa)$ iff $\diamondsuit(H_{\kappa})$.

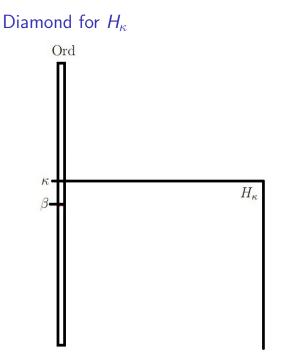
Definition

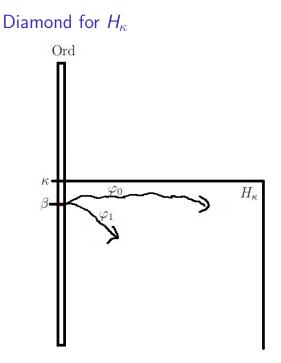
 $\Diamond(H_{\kappa})$ asserts the existence of $\varphi_0 : \kappa \to H_{\kappa}$ and $\varphi_1 : \kappa \to H_{\kappa}$ as follows. For every $a \in H_{\kappa}$, $A \subseteq H_{\kappa}$, and $p \in H_{\kappa^{++}}$, there exists an elementary submodel $\mathcal{M} \prec H_{\kappa^{++}}$ such that:

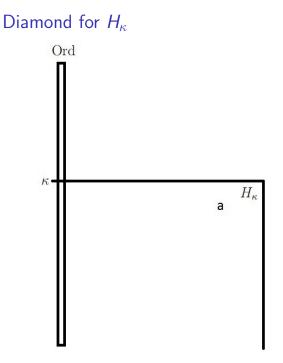
- ▶ $p \in \mathcal{M};$
- $\mathcal{M} \cap \kappa \in \kappa;$
- $\varphi_0(\mathcal{M} \cap \kappa) = a;$
- $\varphi_1(\mathcal{M} \cap \kappa) = \mathcal{M} \cap A.$

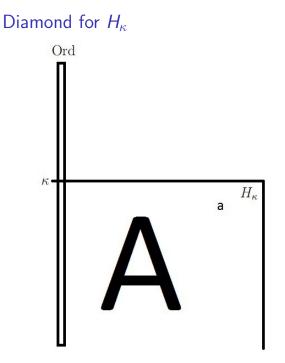


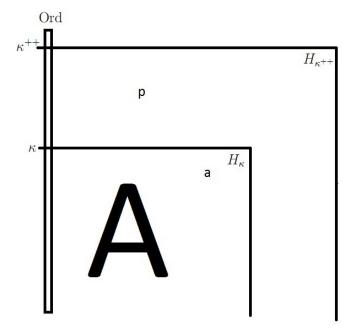


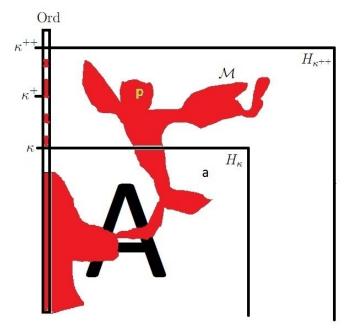


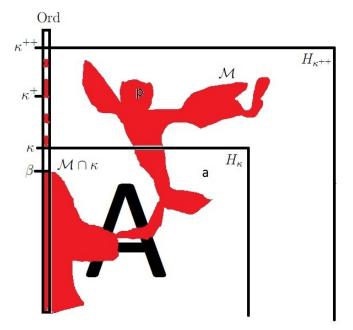


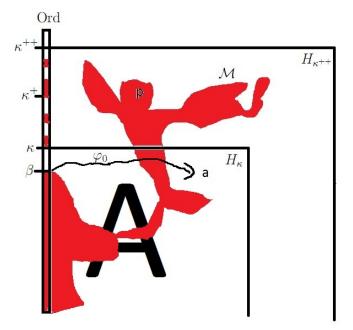


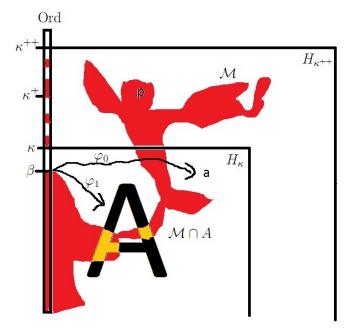












A construction á la microscopic approach

#include <NormalTree.h>
#include <SealAntichain.h>
//#include <Specialize.h>
#include <SealAutomorphism.h>
//#include <SealProductTree.h>