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Introduction Target Applications

Application: polydisperse multiphase flow

continuous phase

disperse phase

size distribution

finite particle inertia

collisions

variable mass loading

multiphase turbulence

Bidisperse gas-particle flow (DNS of S. Subramaniam)
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Introduction Target Applications

Application: polydisperse multiphase flows

Bubble columns

Power stations

Brown-out

Volcanos

Jet break up

Spray flames
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Introduction Target Applications

Modeling challenges

Strong coupling between continuous and disperse phases

Wide range of particle volume fractions (even in same flow!)

Inertial particles with wide range of Stokes numbers

Collision-dominated to collision-less regimes in same flow

Granular temperature can be very small and very large in same flow

Particle polydispersity (e.g. size, density, shape) is always present

Need a modeling framework that can handle all aspects!
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Introduction Kinetic-based models

Overview of kinetic modeling approach

Microscale Model 
Direct numerical simulation 

Macroscale Model 
Hydrodynamic description 

Euler-Euler models 

Mesoscale Model 
Kinetic equation 

Euler-Lagrange models 

Volume or ensemble averages 
+ closures for “fluctuations” 

Kinetic theory 
+ density function closures 

Moments of density 
+ moment closures 

Mesoscale model incorporates more microscale physics in closures! 
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Introduction Kinetic-based models

Types of mesoscale transport (kinetic) equations

Population balance equation (PBE): n(t, x, ξ)

∂n
∂t

+
∂

∂xi
[ui(t, x, ξ)n] +

∂

∂ξj
[Gj(t, x, ξ)n] =

∂

∂xi

(
D(t, x, ξ) ∂n

∂xi

)
+ S

with known velocity u, acceleration G, diffusivity D and source S
Kinetic equation (KE): n(t, x, v)

∂n
∂t

+
∂

∂xi
(vin) +

∂

∂vi
[Ai(t, x, v)n] = C

with known acceleration A and collision operator C
Generalized population balance equation (GPBE): n(t, x, v, ξ)

∂n
∂t

+
∂

∂xi
(vin) +

∂

∂vi
[Ai(t, x, v, ξ)n] +

∂

∂ξj
[Gj(t, x, v, ξ)n] = C

with known accelerations A, G and collision/aggregation operator C
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Introduction Kinetic-based models

Moment transport equations

PBE: Mk =
∫
ξkn dξ

∂Mk

∂t
+

∂

∂x

(∫
ξkun dξ

)
= k

∫
ξk−1Gn dξ +

∂

∂x

(∫
ξkD

∂n
∂x

dξ
)

+

∫
ξkS dξ

KE: Mk =
∫

vkn dv

∂Mk

∂t
+
∂Mk+1

∂x
= k

∫
vk−1An dv +

∫
vkC dv

GPBE: Mkl =
∫

vkξln dvdξ

∂Mkl

∂t
+
∂Mk+1l

∂x
= k

∫
vk−1ξlAn dvdξ + l

∫
vkξl−1Gn dvdξ +

∫
vkξlC dvdξ

Terms in red will usually require mathematical closure
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Introduction Kinetic-based models

Closure with moment methods

Kinetic Equation 

Moment Equations Moments 
M(t,x) 

Integrate over phase space 
Closure using 
quadrature 

Reconstruct using 
quadrature 

Close moment equations by reconstructing density function 

Density 
 n(t,x,v) 

Reconstructed 
density n*(t,x,v) 

Integrate over 
phase space 

6-D solver 

3-D solver 
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Quadrature-Based Moment Methods Basic idea

Quadrature-based moment methods (QBMM)

Basic idea: Given a set of transported moments, reconstruct the
number density function (NDF)

Things to consider:

Which moments should we choose?

What method should we use for reconstruction?

How can we extend method to multivariate phase space?

How should we design the numerical solver for the moments?

We must be able to demonstrate a priori that numerical
algorithm is robust and accurate!
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Quadrature-Based Moment Methods Gauss quadrature in 1-D (real line)

Gauss quadrature in 1-D (real line)

The formula ∫
g(v)n(v) dv =

N∑
α=1

nαg(vα) + RN(g)

is a Gauss quadrature iff the N nodes vα are roots of an Nth-order
orthogonal polynomial PN(v) (⊥ with respect to n(v))
Recursion formula for PN(v):

Pα+1(v) = (v− aα)Pα(v)− bαPα−1(v), α = 0, 1, 2, . . .

Inversion algorithm (QMOM) for moments Mk =
∫

vkn(v)dv:

{M0,M1, . . . ,M2N−1}
hard
=⇒ {a0, a1, . . . , aN−1}, {b1, b2, . . . , bN−1}

easy
=⇒ {n1, n2, . . . , nN}, {v1, v2, . . . , vN}
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Quadrature-Based Moment Methods Szegö quadrature on unit circle

Szegö quadrature on unit circle

If n(φ) is periodic on the unit circle:∫ π

−π
g(eiφ)n(φ) dφ =

N∑
α=1

nαg(eiφα) + RN(g)

is a Szegö quadrature iff the N nodes zα = eiφα are zeros of an Nth-order
para-orthogonal polynomials BN(z)
Trigonometric moments:

〈cos(nφ)〉 =

∫ π

−π

1
2

(zn + z−n)n(φ) dφ, 〈sin(nφ)〉 =

∫ π

−π

1
2

(zn − z−n)n(φ) dφ

are natural choice for reconstruction

Except for special case [n(φ) symmetric wrt 0], no fast inversion
algorithm is available to find nα and φα

R. O. Fox (ISU & ECP) Quadrature-Based Moment Methods WMMKTII 2014 11 / 45



Quadrature-Based Moment Methods Quadrature method of moments

1-D quadrature method of moments (QMOM)

Use Gaussian quadrature to approximate unclosed terms in moment
equations:

dM
dt

=

∫
S(v)n(v)dv ≈

N∑
α=1

nαS(vα)

where M = {M0,M1, . . . ,M2N−1} and S is “source term”
Exact if S is polynomial of order ≤ 2N − 1
Provides good approximation for most other cases with small N ≈ 4
Complications arise in particular cases (e.g. spatial fluxes)
In all cases, moments M must remain realizable for moment inversion

N.B. equivalent to reconstructed N-point distribution function:

n∗(v) =

N∑
α=1

nαδ(v− vα)

=⇒ realizable if nα ≥ 0 for all α
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Quadrature-Based Moment Methods Quadrature in multiple dimensions

Quadrature in multiple dimensions

No method equivalent to Gaussian quadrature for multiple dimensions!

Given a realizable moment set M = {Mijk : i, j, k ∈ 0, 1, . . . }, find nα
and vα such that

Mijk =

∫
vi

1vj
2vk

3n(v)dv =

N∑
α=1

nαvi
1αvj

2αvk
3α

What moment set to use?
If M corresponds to an N-point distribution, then method should be exact
Avoid brute-force nonlinear iterative solver (poor convergence,
ill-conditioned, too slow, . . . )
Algorithm must be realizable (i.e. non-negative weights, . . . )
Strategy: choose an optimal moment set to avoid ill-conditioned systems
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Quadrature-Based Moment Methods Quadrature in multiple dimensions

Brute-force QMOM (2-D phase space)

Given 3n2 bivariate optimal moments (n = 2):

M00 M01 M02 M03
M10 M11 M12 M13
M20 M21
M30 M31

Solve 12 moment equations:

4∑
α=1

|nα|ui
αvj
α = Mij

to find {n1, . . . , n4; u1, . . . , u4; v1, . . . , v4}
Problem: iterative solver converges slowly (or not at all)

Problem: system is singular for (nearly) degenerate cases
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Quadrature-Based Moment Methods Quadrature in multiple dimensions

Conditional QMOM (2-D phase space)

Conditional density function and conditional moments (2-D)

n(u, v) = f (v|u)n(u) =⇒ 〈Vk|U = u〉 =

∫
vkf (v|u) dv

1-D adaptive quadrature for U direction (n = 2)

〈Uk〉 = Mk0, k ∈ {0, 1, 2, 3} =⇒ find weights ρi, abscissas ui

Solve linear systems for conditional moments 〈Vk|ui〉:[
ρ1 ρ2
ρ1u1 ρ2u2

] [
〈Vk|u1〉
〈Vk|u2〉

]
=

[
〈Vk〉
〈UVk〉

]
=

[
M0k

M1k

]
for k ∈ {1, 2, 3}

In principle, CQMOM controls 10 of 12 optimal moments:

M00 M01 M02 M03
M10 M11 M12 M13
M20
M30
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Quadrature-Based Moment Methods Quadrature in multiple dimensions

Conditional QMOM (cont.)

1-D adaptive quadrature in V direction for each i:

〈Vk|ui〉, k ∈ {0, 1, 2, 3} =⇒ find weights ρij, abscissas vij

Adaptive quadrature sets some ρij = 0 if subset of conditional moments
are not realizable
Reconstructed density: n∗(u, v) =

∑
i

∑
j ρiρijδ(u− ui)δ(v− vij)

Conditioning on V = vi uses 10 of 12 optimal moments:

M00 M01 M02 M03
M10 M11
M20 M21
M30 M31

Union of two sets =⇒ optimal moment set
Extension to higher-dimensional phase space is straightforward
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Quadrature-Based Moment Methods Quadrature in multiple dimensions

Optimal moment set

Moments needed for all CQMOM permutations =⇒ Optimal moment set

N = 4 nodes in 2-D

M00 M10 M20 M30
M01 M11 M21 M31
M02 M12
M03 M13

12 moments

N = 9 nodes in 2-D

M00 M10 M20 M30 M40 M50
M01 M11 M21 M31 M41 M51
M02 M12 M22 M32 M42 M52
M03 M13 M23
M04 M14 M24
M05 M15 M25

27 moments

Only optimal moment set is transported
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Quadrature-Based Moment Methods Quadrature in multiple dimensions

Examples of 2-D quadrature90 CHAPTER 3. QUADRATURE-BASED MOMENT METHODS

(a) ρ = 0 and N = 4 (b) ρ = 0 and N = 9

(c) ρ = 0.5 and N = 4 (d) ρ = 0.5 and N = 9

Figure 3.5: Quadrature approximations for bivariate Gaussian distributions with µ1 = 10, µ2 =

20, σ1 = σ2 = 2 and ρ = 0 (top) and ρ = 0.5 (bottom) for N = 4 (left) and for N = 9 (right).
Brute-force QMOM (green diamonds), tensor-product QMOM (blue circles) and CQMOM (red
squares).

moments. It is interesting to evaluate the performance and the results of the three algo-
rithms when ρ = 0 and ρ = 0.5. Results are reported in Figure 3.5 for N = 4 (left) and
N = 9 (right) and for ρ = 0 (top) and ρ = 0.5 (bottom). As expected when ρ = 0 the
three methods return the very same values. This is due to the fact that the three methods
use the same pure moments, and differ only in the number and type of mixed moments
employed. It should be highlighted moreover that when using brute-force QMOM the
iterative procedure converges only if initial guesses close enough to the final solution
are available. Depending on the distance of the initial guess and on the value of the
under-relaxation factor as many as 1000 iterations are required to calculate the fi-
nal quadrature. On the contrary, as already reported, the tensor-product QMOM and
CQMOM provide the final solution with a non-iterative calculation.

When ρ = 0.5 the results of the different algorithms differ. This is due to the fact
that by changing ρ the mixed moments change, and because the different algorithms
use the same pure moments but different mixed moments, each method results in a
different final quadrature. As it is seen, the position in the internal coordinate space of
the nodes of the quadrature approximation calculated by the tensor-product QMOM is
for ρ = 0.5 the same as for ρ = 0. This is clearly a consequence of the fact that the

QBMM approximations for bivariate
Gaussian with ρ = 0 (top) and ρ = 0.5
(bottom) for N = 4 (left) and N = 9
(right).
Brute-force QMOM (green diamond)
Tensor-product QMOM (blue circle)
CQMOM (red square)
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Quadrature-Based Moment Methods CQMOM on unit circle

CQMOM on unit circle

For n(φ) on the unit circle, define x = cosφ and y = sinφ

Conditional pdf is known exactly n(x, y) = n(x)f (y|x)

f (y|x) = w1(x)δ
(

y−
√

1− x2
)

+ w2(x)δ
(

y +
√

1− x2
)

with one unknown w1(x) (w2 = 1− w1)

Apply QMOM with 2N moments 〈cosn φ〉 to find nα and xα = cosφα

CQMOM requires conditional moment 〈y|xα〉 to find w1(xα)

Apply CQMOM with N moments 〈sinφ cosn φ〉 to find w1α = w1(xα)

Gauss/Swegö quadrature for symmetric ndf, otherwise fast, realizable
reconstruction
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Quadrature-Based Moment Methods CQMOM on unit circle

Example of CQMOM on unit circle

8-pt Gauss quadrature 16-pt CQMOM quadrature

Exactly reproduces trigonometric moments up to N = 8
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Quadrature-Based Moment Methods Extended quadrature

Extended quadrature method of moments (EQMOM)

Can we improve reconstructed distribution using kernel density functions?

n(v) =

N∑
i=1

niδσ(v, vi)

with N weights ni ≥ 0, N abscissas vi but only one spread parameter σ ≥ 0

Gaussian (−∞ < v < +∞):

δσ(v, vi) ≡
1√

2πσ2
exp

(
− (v− vi)

2

2σ2

)

Beta (0 < v < 1): with λi = vi/σ and µi = (1− vi)/σ

δσ(v, vi) ≡
vλi−1(1− v)µi−1

B(λi, µi)
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Quadrature-Based Moment Methods Extended quadrature

EQMOM algorithm
2N + 1 moments of n(v) (denote by mk) for beta-EQMOM:

m0 = m∗0
m1 = m∗1

m2 =
1

1 + σ
(σm∗1 + m∗2 )

m3 =
1

(1 + 2σ)(1 + σ)

(
2σ2m∗1 + 3σm∗2 + m∗3

)
m4 =

1
(1 + 3σ)(1 + 2σ)(1 + σ)

(
6σ3m∗1 + 11σ2m∗2 + 6σm∗3 + m∗4

)
≡ m†2N(σ)

m = A(σ)m∗

m∗ = A(σ)−1m

with m∗k ≡
∑N

i=1 nivk
i (i.e. QMOM moments)

Given mk for k = 0, . . . , 2N
1 Guess σ
2 Solve for m∗ for k = 0, . . . , 2N − 1
3 Solve for ni and vi using 1-D quadrature with m∗k for k = 0, . . . , 2N − 1
4 Compute m∗2N and resulting estimate m†2N
5 Iterate on σ until m2N = m†2N

R. O. Fox (ISU & ECP) Quadrature-Based Moment Methods WMMKTII 2014 22 / 45



Quadrature-Based Moment Methods Extended quadrature

Example: beta-EQMOM with N = 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

ξ

n(
ξ)

 

 

1
0.1
0.01
0.001

n1 = n2 = 1/2, ξ1 = 1/3, ξ2 = 2/3 for different values of σ

First 2N moments always exact with maxσ : m2N ≥ m†2N(σ)

Converges to exact NDF as N →∞ (Gavriliadis and Athanassoulis 2002)
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Quadrature-Based Moment Methods Extended quadrature

Closure with EQMOM

Unclosed integrals (given ni, vi and σ):∫
g(v)n(v)dv =

N∑
i=1

ni

∫
g(v)δσ(v, vi)dv

Use Gaussian quadrature with known weights wij and abscissas vij:∫
g(v)δσ(v, vi)dv =

Mi∑
j=1

wijg(vij)

where Mi can be chosen arbitrarily large to control error
Dual-quadrature representation of EQMOM:

n(v) =

N∑
i=1

Mi∑
j=1

niwijδ (v− vij) (Mi = 1 when σ = 0)

=⇒ exact for polynomials of order ≤ 2N
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Quadrature-Based Moment Methods EQMOM on unit circle

EQMOM on unit circle

For n(φ) on the unit circle, define x = cosφ and y = sinφ , and

n(x, y) =

N∑
α=1

nαδσφ(x, xα)fα(y|x)

where the kernel density δσφ(x, xα) is periodic wrt φ

Conditional pdf is known exactly, but with constant weights:

fα(y|x) = w1αδ
(

y−
√

1− x2
)

+ w2αδ
(

y +
√

1− x2
)

with w2α = 1− w1α

Apply EQMOM with 2N + 1 moments 〈cosn φ〉 to find nα, xα and σφ

Apply CQMOM with N moments 〈sinφ cosn φ〉 to find w1α
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Quadrature-Based Moment Methods EQMOM in multiple dimensions

Multivariate EQMOM

Example: 2-D case⇒ Extended CQMOM

n(u, v) = n(u)f (v|u) =

N∑
α=1

nαδσu(u, uα)

 Nα∑
β=1

nαβδσv,α(v, vαβ)


with N abscissas uα, N =

∑N
α=1 Nα weights wαβ = nαnαβ ≥ 0 and N

abscissas vαβ , but only one parameter σu ≥ 0 and N parameters σv,α

Define moments:

Mij =

∫
uivjn(u, v) du dv =

N∑
α=1

Nα∑
β=1

wαβm(α)
1,i m(αβ)

2,j

where
m(α)

1,i ≡
∫

uiδσu(u, uα) du m(αβ)
2,j ≡

∫
vjδσv,α(v, vαβ) dv

are known functions of the EQMOM parameters
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Quadrature-Based Moment Methods EQMOM in multiple dimensions

Algorithm for 2-D ECQMOM

1-D EQMOM for moments in u:

Mi0 =

N∑
α=1

nαm(α)
1,i for i = 0, . . . , 2N =⇒ nα, uα and σu

Use CQMOM to find conditional moments 〈V j〉α ≡
∑Nα
β=1 nαβm(αβ)

2,j from
the bivariate moments (i.e. solve linear system):

N∑
α=1

nαm(α)
1,i 〈V

j〉α = Mij for i = 0, . . . ,N − 1

For each α, apply 1-D EQMOM to conditional moments:

{1, 〈V〉α, . . . , 〈V2Nα〉α} =⇒ nαβ , vαβ and σv,α

Uses the extended optimal moment set
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Quadrature-Based Moment Methods EQMOM in multiple dimensions

Extended optimal moment set

All CQMOM permutations =⇒ Extended optimal moment set

N = 4 nodes in 2-D

M00 M10 M20 M30 M40
M01 M11 M21 M31 M41
M02 M12
M03 M13
M04 M14

16 moments

N = 9 nodes in 2-D

M00 M10 M20 M30 M40 M50 M60
M01 M11 M21 M31 M41 M51 M61
M02 M12 M22 M32 M42 M52 M62
M03 M13 M23
M04 M14 M24
M05 M15 M25
M06 M16 M26

33 moments

Only extended optimal moment set is transported
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Quadrature-Based Moment Methods ECQMOM on unit sphere

ECQMOM on unit sphere

For n(φ, θ) on the unit sphere, ECQMOM reconstruction is

n(φ, θ) =

N∑
α=1

nαδσθ (θ, θα)

 Nα∑
β=1

nαβδσφ,α(φ, φαβ)


with periodic kernel density functions for θ ∈ [0, π] and φ ∈ [−π, π]

Define z = cos θ and conditional pdf f (φ|z)

Apply EQMOM for 2N + 1 moments 〈zn〉 to find nα, θα and σθ

Use CQMOM to find trigonometric moments involving φ conditioned on
zα = cos θα

For each α, apply EQMOM on unit circle to conditional moments to find
nαβ , φαβ , σφα and w1αβ
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Quadrature-Based Moment Methods Summary of QBMM

Summary of QBMM

Extended optimal moment set =⇒ reconstruct NDF with fast, robust
algorithm

NDF must be realizable and moment-inversion algorithm must be robust

CQMOM is always realizable by construction
EQMOM gives a smooth NDF with low computational cost

Current “best” moment-inversion algorithms:
1-D phase space =⇒ EQMOM
Multivariate phase space =⇒ multivariate ECQMOM

Dual-quadrature representation used to close source terms

Given smooth NDF, high-order kinetic-based transport solvers can be
derived to ensure realizability
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Kinetic-Based Finite-Volume Methods

Kinetic-based finite-volume methods (KBFVM)

Given a set of extended optimal moments, solve

∂Mkl

∂t
+
∂Mk+1l

∂x
= k

∫
vk−1ξlAn dvdξ + l

∫
vkξl−1Gn dvdξ +

∫
vkξlC dvdξ

where RHS is closed using QBMM:

∂Mkl

∂t
+
∂Mk+1l

∂x
=

N∑
α=1

nα
{

kvk−1
α ξl

αAα + lvk
αξ

l−1
α Gα + vk

αξ
l
αCα

}
Things to consider:

How do we discretize the spatial fluxes?

How do we update the moments in time?

How can we ensure that the moments are always realizable?
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Kinetic-Based Finite-Volume Methods Kinetic-based spatial fluxes

Kinetic-based spatial fluxes

Spatial fluxes can use kinetic formulation: e.g. ∂tM00 + ∂xM10 = 0

M10 = Q−10 + Q+
10

=

∫ 0

−∞
u
(∫

n∗(u, v)dv
)

du +

∫ ∞
0

u
(∫

n∗(u, v)dv
)

du

Using reconstructed n∗, downwind and upwind flux components are

Q−10 =

N∑
α=1

nαuαI(−∞,0) (uα) Q+
10 =

N∑
α=1

nαuαI(0,∞) (uα)

where IS(x) is the indicator function for the interval S

Kinetic-based fluxes are always hyperbolic
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Kinetic-Based Finite-Volume Methods Kinetic-based spatial fluxes

Finite-volume method: definitions

1-D advection problem:

∂M
∂t

+
∂F(M)

∂x
= 0

where M =
∫

K(v)n(v)dv and F(M) =
∫

vK(v)n(v)dv

Finite-volume representation of moment vector:

Mn
i ≡

1
∆x

∫ xi+1

xi

M(tn, x)dx

Finite-volume formula:

Mn+1
i = Mn

i − λ
[
G
(

Mn
i+ 1

2 ,l
,Mn

i+ 1
2 ,r

)
−G

(
Mn

i− 1
2 ,l
,Mn

i− 1
2 ,r

)]
where G (Ml,Mr) =

∫
v+K(v)nl(v)dv +

∫
v−K(v)nr(v)dv
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Kinetic-Based Finite-Volume Methods Kinetic-based spatial fluxes

Realizability and spatial fluxes

Flux functions: given Mn
i define G (Ml,Mr) to achieve high-order

spatial accuracy but keep Mn+1
i realizable!

Discrete distribution function: Define

Mn+1
i ≡

∫
K(v)hi(v)dv

and finite-volume formula can be written as

hi(v) = λ|v−|nn
i+ 1

2 ,r
+ λv+nn

i− 1
2 ,l

+ nn
i − λ|v−|nn

i− 1
2 ,r
− λv+nn

i+ 1
2 ,l

(black part ≥ 0, red part can be negative)

Sufficient condition for realizable moments: hi(v) ≥ 0 for all v and i
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Kinetic-Based Finite-Volume Methods Quasi-high-order realizable schemes

Realizable, high-order, spatial fluxes

First order: nn
i− 1

2 ,r
= nn

i+ 1
2 ,l

= nn
i so that

h = λ|v−|nn
i+1 + λv+nn

i−1 + (1− λ|v−| − λv+) nn
i ⇒ 1

|v−|+v+ ≥ λ
Moments are realizable, but scheme is diffusive ...

Quasi-higher order: Let nn
i =

∑
α ρ

n
α,iδ(v− vn

α,i)
and define

nn
i− 1

2 ,r
=
∑
α ρ

n
α,i− 1

2 ,r
δ(v − vn

α,i)

nn
i+ 1

2 ,l
=
∑
α ρ

n
α,i+ 1

2 ,l
δ(v − vn

α,i)

so that
h = λ|v−|nn

i+ 1
2 ,r

+ λv+nn
i− 1

2 ,l
+
∑
α

(
ρn
α,i − λ|v−|ρn

α,i− 1
2 ,r
− λv+ρn

α,i+ 1
2 ,l

)
δ(v− vn

α,i)

=⇒ minα

 ρn
α,i

|v−α,i|ρ
n
α,i− 1

2 ,r
+v+α,iρ

n
α,i+ 1

2 ,l

 ≥ λ
Use high-order, finite-volume schemes only for the weights
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Kinetic-Based Finite-Volume Methods Realizable time-stepping schemes

Realizable time-stepping schemes

First-order explicit:

Mn+1
i = Mn

i − λ
[
G
(

Mn
i+ 1

2 ,l
,Mn

i+ 1
2 ,r

)
−G

(
Mn

i− 1
2 ,l
,Mn

i− 1
2 ,r

)]
is realizable

Second-order Runga-Kutta (RK2) is not realizable
RK2SSP:

M∗i = Mn
i − λ

[
G
(

Mn
i+ 1

2 ,l
,Mn

i+ 1
2 ,r

)
−G

(
Mn

i− 1
2 ,l
,Mn

i− 1
2 ,r

)]
M∗∗i = M∗i − λ

[
G
(

M∗i+ 1
2 ,l
,M∗i+ 1

2 ,r

)
−G

(
M∗i− 1

2 ,l
,M∗i− 1

2 ,r

)]
Mn+1

i =
1
2

(Mn
i + M∗∗i )

is realizable

Achieve second order in space and time on unstructured grids
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Kinetic-Based Finite-Volume Methods Example

Bubbly flow

Loading movie. . .

Quasi-second-order realizable finite-volume scheme on unstructured mesh
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Kinetic-Based Finite-Volume Methods Summary of KBFVM

Summary of KBFVM

When solving moment transport equations, we must guarantee
realizability

First-order FV methods are realizable, but too diffusive

Standard high-order FV methods lead to unrealizable moments

Kinetic-based flux functions can be designed to be realizable

Use dual-quadrature representation with high-order spatial reconstruction

High-order time-stepping schemes are also possible

KBFVM provide robust treatment of shocks/discontinuous solutions
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Conclusions Final remarks

Final remarks

Mesoscopic models have direct link with underlying physics and result
in a kinetic equation

QBMM solves kinetic equation by reconstructing distribution function
from moments

Reconstruction requires realizable moments

Numerical schemes must ensure that moments are always realizable

QBMM on unit sphere can be used for radiation transport
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Conclusions The end

Thanks for your attention!

Questions?
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