CLOSED MODELS	Open Models	OSCILLATORY DYNAMICS	SUMMARY
0000000000000	0000000	0000	000

Dynamics from Seconds to Hours in Hodgkin–Huxley Model with Time–Dependent Ion Concentrations and Buffer Reservoirs

Niklas Hübel Technische Universität Berlin

July 9, 2014

▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶

CLOSED MODELS	Open Models	OSCILLATORY DYNAMICS	SUMMARY
0000000000000	0000000	0000	000

OUTLINE

Closed Models

- model review
- dynamics \rightarrow bistability
- ► bifurcation analysis \rightarrow insufficiency of ion pumps

Open Models with External Reservoirs

- dynamics \rightarrow CSD
- $\blacktriangleright \ time \ scales \rightarrow slow-fast \ analysis$

Oscillatory Dynamics

- ► seizure–like activity (SLA) and SD
- $\blacktriangleright\,$ bifurcation analysis $\rightarrow\,$ assign specific bifurcations to SLA and SD

▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶

INTRODUCTION

Trying to find and analyze the **simplest possible model** of local ion dynamics that...

- ... can be **biophysically** interpreted.
- ... shows **spreading depression** dynamics.

What has been done?

A lot! An incomplete list...

- Hodgkin–Huxley
- cardiac models (DiFrancesco, Noble, 1980s)
- cortical ion dynamics: Kager, Wadman, Somjen
- ► Barreto, Cressman
- ► Schiff, Ullah
- Bazhenov, Fröhlich
- ► Zandt

What do we do?

- investigate entire repertoire of ion dynamics in simple model
- bifurcation analysis of ion dynamics
- slow-fast interpretation of ion dynamics in SD
- phase space interpretation of ion dynamics

+ = + + # + + = + + = +

Sac

CLOSED MODELS	Open Models	OSCILLATORY DYNAMICS	SUMMARY
• 0000 000000000	0000000	0000	000
			í.

HODGKIN-HUXLEY MODEL (HH)

Developed for the description of **action potentials**.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

OPEN MODELS

OSCILLATORY DYNAMICS

Summary 000

HODGKIN-HUXLEY MODEL (HH)

Four rate equations of HH

$$\frac{\mathrm{d}V}{\mathrm{d}t} = -\frac{1}{C_m}(I_{Na} + I_K + I_{Cl} - I_{app})$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{x_{\infty}(V) - x}{\tau_x(V)} \quad \text{for } x \in \{n, m, h\}$$

Model parameters

- ► capitance *C*_m
- ► leak conductances g_{ion}^l
- max. gated conductances g_{ion}^g
- ion concentrations $ion_{i/e}$

Three ion currents

$$I_{Na} = (g_{Na}^{l} + g_{Na}^{g}m^{3}h)(V - E_{Na})$$

$$I_{K} = (g_{K}^{l} + g_{K}^{g}n^{4})(V - E_{K})$$

$$I_{Cl} = g_{Cl}^{l}(V - E_{Cl})$$

Nernst potentials
$$E_{ion} = -\frac{26.6 \text{mV}}{z} \ln(ion_i/ion_e)$$

for
$$ion \in \{Na^+, K^+, Cl^-\}$$

・ロト
 ・モト
 ・モト
 ・モー
 ・マー

► assuming a functional dependence between sodium inactivation and potassium activation: *h* = *f*(*n*)

Two-dimensional HH model
rate eqations:gating constraints: $\dot{V} = -\frac{1}{C_m} \sum_{ion} I_{ion}$ $m = m_{\infty}(V)$ $\dot{n} = \frac{n_{\infty} - n}{\tau_n}$ $h = -\frac{1}{1 + \exp(-6.5(n - 0.35))}$

nac

OPEN MODELS

OSCILLATORY DYNAMICS

Sac

ION-BASED MODEL

The ion-based model contains

- intracellular space (ICS)
- extracellular space (ECS)

Note: The membrane separates ICS and ECS. Effects from surroundings are not included here \longrightarrow *closed* system

Ion dynamics

The flux of ions across the membrane is induced by the transmembrane currents.

The novel effects include:

 Nernst potentials are dynamic:

 $E_{ion} = -\frac{26.6 \text{mV}}{z} \ln \left(\frac{ion_i}{ion_e} \right)$

 Ion pumps are needed to maintain the resting state.

$$I_p = \rho \left(1 + \exp\left(\frac{25 - Na_i}{3}\right) \right)^{-1}$$
$$\cdot \left(1 + \exp\left(5.5 - K_e\right) \right)^{-1}$$

CLOSED MODELS

Open Models 00000000 OSCILLATORY DYNAMICS

Summary 000

Sac

3

ION-BASED MODEL

Rate equations

$$\begin{split} \dot{V} &= -\frac{1}{C_m}(I_{Na} + I_K + I_{Cl} - I_p) \\ \dot{n} &= \frac{n_{\infty} - n}{\tau_n} \\ \dot{N}a_i &= -\frac{\gamma}{\omega_i}(I_{Na} + 3I_p) \\ \dot{K}_i &= -\frac{\gamma}{\omega_i}(I_K - 2I_p) \\ \dot{C}l_i &= +\frac{\gamma}{\omega_i}I_{Cl} \end{split}$$

Note: $\dot{N}a_i + \dot{K}_i - \dot{C}l_i - \frac{C_m\gamma}{\omega_i}\dot{V} = 0$

- \Rightarrow conservation law
- \Rightarrow four-dimensional dynamics

Constraints

Gating constraints:

$$m = m_{\infty}(V)$$

 $h = h_{sig}(n)$

Mass conservation:

$$Na_e = Na_e^0 + \frac{\omega_i}{\omega_e}(Na_i^0 - Na_i)$$

$$K_e = K_e^0 + \frac{\omega_i}{\omega_e}(K_i^0 - K_i)$$

$$Cl_e = Cl_e^0 + \frac{\omega_i}{\omega_e}(Cl_i^0 - Cl_i)$$

Parameters:

- volumes $\omega_{i/e}$
- conversion factor γ

CLOSED MODELS	Open Models	OSCILLATORY DYNAMICS	SUMMARY
000000000000000000000000000000000000000	0000000	0000	000

DONNAN EQUILIBRIUM IN ION-BASED MODEL

The conservation law implies electroneutrality:

$$0 = \dot{N}a_i + \dot{K}_i - \dot{C}l_i - \frac{C_m\gamma}{\omega_i}\dot{V}$$

$$\Rightarrow \Delta Q_i = \Delta (Na_i + K_i - Cl_i) = \underbrace{\frac{C_m\gamma}{\omega_i}}_{\mathcal{O}(10^{-4}\frac{\text{mM}}{\text{mV}})} \Delta V$$

$$\begin{array}{c|c} \omega_i & 2,160 \mu \text{m}^3 \\ \omega_e & 720 \mu \text{m}^3 \\ F & 96485 \text{C/mol} \\ A_m & 922 \mu \text{m}^2 \\ \gamma & 9.556 \text{e} - 3 \frac{\mu \text{m}^2 \text{mol}}{\text{C}} \end{array}$$

The equilibrium without pumps...

$$0 = \frac{\text{dion}_i}{\text{dt}} = \pm \frac{\gamma}{\omega_i} (g_{ion}^l + \ldots) (V - E_{ion}) \quad \Rightarrow \quad E_{Na} = E_K = E_{Cl}$$

$$E_{Na} = E_K = E_{Cl}$$

 $\Delta Q_i \approx 0$:... is the Donnan equilibrium!

Note: No impermeant anions included!

<□> <@> < 注</p>
< :=> < :=> のQ()

CLOSED MODELS	Open Models	OSCILLATORY DYNAMICS	SUMMARY
000000000000000000000000000000000000000	0000000	0000	000

DONNAN EQUILIBRIUM IN ION-BASED MODEL

The pump is switched off after 50sec. The transition from the physiological resting state to the Donnan equilibrium follows.

- ► ion fluxes until spiking begin
- spiking until depolarization block is reached
- ► final asymptotic phase until Donnan equilibrium is attained

What if we turn the pumps on again?

 \Rightarrow Another stable state shows up!

CLOSED MODELS	
000000000000000000000000000000000000000	

< □ > < □ > < □ > < □ > < □ > < □ >

5990

Э

FREE ENERGY-STARVATION (FES)

Symbol	Physiological	Donnan	FES	Units
V	-68	-24.6	-24.7	mV
п	0.065	0.611	0.609	1
Na _i	27	59.2	58.1	mM
Na _e	120	23.5	26.6	mM
K_i	131	116.9	117.9	mM
K _e	4	46.4	43.4	mМ
Cl_i	9.7	27.7	27.7	mM
Cl_e	124	70.0	70.0	mM
E_{Na}	39.7	-24.6	-20.8	mV
E_K	-92.9	-24.6	-26.6	mV
E_{Cl}	-68	-24.6	-24.7	mV

Despite normal pump activity a stable state exists which...

- ... has largely reduced ion gradients (dissipated energy).
- ... is depolarized and cannot spike.

We frame the term "free energy-starvation (FES)" for this condition.

Phys. resting state

Pumps compensate for leak currents.

FES

Pumps compensate for gated currents. They **cannot re–establish** physiological conditions.

Symbol	phys.	FES	Units
I ^l _{Na}	-1.89	-0.07	$\mu A/cm^2$
I_{Na}^{g}	-0.01	-15.68	$\mu A/cm^2$
$I_{K}^{\hat{l}}$	1.25	0.09	$\mu A/cm^2$
$I_{K}^{\tilde{g}}$	0.02	10.41	$\mu A/cm^2$
I_p	0.63	5.25	$\mu A/cm^2$

Note: This only holds for the closed model.

CLOSED MODELS	Open Models	OSCILLATORY DYNAMICS	SUMMARY
000000000000000000000000000000000000000	0000000	0000	000

MINIMAL PHYSIOLOGICAL AND RECOVERY PUMP RATE

If we increase the pump rate ρ of

$$I_p = \rho \left(1 + \exp\left(\frac{25 - Na_i}{3}\right)\right)^{-1} \cdot (1 + \exp\left(5.5 - K_e\right))^{-1}$$

drastically (normally $\rho = 5.25 \mu \text{A/cm}^2$), recovery from FES after pump interruption is possible.

Two stable FP branches

- physiological (lower)
- ► FES (upper)

Two critical pump rates

► minimal phys. pump rate: 0.89µA/cm² (LP1)

Sac

► recovery pump rate: 24.63µA/cm² (HB3)

CLOSED MODELS	Open Models	OSCILLATORY DYNAMICS	SUMMARY
000000000000000000000000000000000000000	0000000	0000	000

SUMMARY

- The closed neuron system can be driven into FES by pump interruption and long/strong stimulation with applied currents (not shown).
- ► The transition is permanent. The ion pumps would have to be five times stronger to recover the physiological state.

Robustness?

Open Models

OSCILLATORY DYNAMICS

Summary 000

ROBUSTNESS?

Model variants

We tested the effect of:

- ► gating
- leak currents
- ► pump model
- ► GHK

Result

- Model variants with voltage-gated ion channels are bistable.
- ► Variants without voltage–gated ion channels are not.

◆□ → < □ → < Ξ → < Ξ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → <

CLOSED MODELS	Open Models	OSCILLATORY DYNAMICS	SUMMARY
000000000000000000000000000000000000000	0000000	0000	000

EVEN KAGER-WADMAN-SOMJEN

Also for the (single compartment) Kager–Wadman–Somjen model we find a **minimal physiological** pump rate 9.8μ A/cm² and a **recovery** pump rate 107μ A/cm² that is large compared to the normal value (13μ A/cm²).

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Bistability of FES and physiological conditions apparently a **generic feature** of closed neuron models.

CLOSED MODELS	Open Models	OSCILLATORY DYNAMICS	SUMMARY
•••••••••••	0000000	0000	000

REMARK ON "FIXED LEAK CURRENTS"

Many models contain "fixed leak currents":

$$\dot{V} = -\frac{1}{C_m}(I_{Na} + I_K + I_{Cl} - I_p)$$

$$\vdots$$

$$\dot{C}I_i = 0$$

Such a current with a fixed Nernst potential changes the dynamics dramatically!

Closed Models	
000000000000000000000000000000000000000	

OPEN MODELS

OSCILLATORY DYNAMICS

590

OPEN MODELS

Coupling to a reservoir will resolve the bistability!

So far we have considered

- isolated \rightarrow Donnan
- closed \rightarrow bistability

Potassium exchange with a reservoir

Instead of potassium conservation we have:

$$K_e = K_e^0 + \frac{\omega_i}{\omega_e} (K_i^0 - K_i) + \tilde{K}_e$$

 \tilde{K}_e measures the potassium gain or loss.

Dynamics of \tilde{K}_e

- diffusion to ECS bath or vasculature
- glial buffering

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

CSD IN BUFFERED MODELS

Name	Value & unit
\overline{k}_1	5e–5/sec/mM
k_1	5e–5/sec
B^0	500mM

With buffering...

... bistability becomes **ionic excitability** in both KWS and reduced ion–base model! This is CSD!

$$\begin{cases} K_e + B \stackrel{k_2}{\underset{k_1}{\rightleftharpoons}} K_b \\ k_2 = \frac{\bar{k}_1}{1 + \exp(-(K_e - 15)/1.09)} \\ B^0 = K_b + B \end{cases} \begin{cases} d\tilde{K}_e \\ dt \end{cases} = -k_2 K_e (B_0 - K_b) + k_1 K_b \end{cases}$$

<□> <@> < ≥> < ≥> < ≥</p>

CLOSED MODELS	OPEN MODELS	OSCILLATORY DYNAMICS	SUMMARY
0000000000000	0000000	0000	000

TIME SCALES IN BUFFERED MODEL

Time scale for **ion dynamics** from GHK equation with dimensionless potential ξ , permeability P_{ion} :

$$\frac{\text{dion}_{i}}{\text{d}t} = \underbrace{\frac{A_{m}}{\omega_{i}}P_{ion}z}_{1/\tau_{ion}} \cdot \xi \cdot \frac{\text{ion}_{e}\exp(-\xi) - \text{ion}_{i}}{\exp(-\xi) - 1}$$

(with $m^p h^q \approx 0.1$ for gated channels $P_{ion} \approx 5 \mu m/sec$, leak $P_{ion} \approx 0.5 \mu m/sec$)

Forward and backward **buffering time scale**:

$$\begin{array}{lll} \tau^{fw}_{buf\!f} &=& \displaystyle \frac{1}{\bar{k}_1B^0} \\ \tau^{bw}_{buf\!f} &=& \displaystyle \frac{1}{k_1} \end{array}$$

For CSD dynamics in this model particle exchange with reservoirs is by far the slowest process!

JAG.

 \rightarrow slow–fast analysis

CLOSED MODELS	OPEN MODELS	OSCILLATORY DYNAMICS	SUMMARY
0000000000000	0000000	0000	000

POTASSIUM GAIN/LOSS AS BIFURCATION PARAMETER

Slow-fast analysis

- use the slowest variable K
 _e as a bifurcation parameter
- superimpose full dynamics on bifurcation diagram
- \rightarrow Phase space explanation for observed dynamics?

Two stable fixed points

physiological branch B_{phys} free energy–starved B_{FES}

Closed Models	OPEN MODELS	Oscillatory Dynamics	Summary
00000000000000		0000	000

IMPLICATIONS OF BIFURCATION DIAGRAM

Implications

- maximal physiological potassium content (end of B_{phys} at 28.7mM)
- ▶ potassium reduction for recovery from FES (end of B_{FES} at -44mM)
- well-defined levels of stable ECS potassium concentration (limit cycle have almost constant ion concentrations)

590

SLOW CHLORIDE

Chloride is slower than sodium and potassium $(\tau_{Cl} \approx 50 \text{sec})$ \rightarrow vary chloride as a prameter

Result: family of topologically equivalent FP curves

Recovery threshold

The recovery threshold is then the **line of Hopf bifurcations.**

Arrows indicate *K_e* changes due to(m) flux across membrane(r) exchange with reservoir

+ □ + < 同 + < Ξ + <</p>

CSD IN PHASE SPACE

SD in reduced ion-based model and KWS. Ignition by potassium elevation and pump interruption.

Course of events after stimulation

- 1. vertical transition from B_{phys} to B_{FES}
- 2. diagonal transition along B_{FES} until threshold
- 3. abrupt vertical depolarization from B_{FES} to B_{phys}
- 4. slow asymptotic recovery

CLOSED MODELS	OPEN MODELS	OSCILLATORY DYNAMICS	SUMMARY
0000000000000	0000000	0000	000

SCHEMATIC VIEW ON CSD

New insights concerning

- ignition threshold
- recovery mechanism
- recovery threshold
- SD duration

Note: Recovery is not due to the ion pumps!

< 🗆 🕨

SD phases and time scales

- **AB** stimulation
- **BC** ECS potassium accumulation, depolarization
- **CD** buffering, diffusion
- **DE** abrupt repolarization
- **EA** final recovery

(instantaneous)

$$\begin{split} \tau_{ion} &\approx 0.5 \mathrm{sec} \\ \tau_{buff}^{fw} &\approx 50 \mathrm{sec} \\ \tau_{ion} &\approx 0.5 \mathrm{sec} \\ \tau_{buff}^{bw} &\approx 5 \mathrm{h} \end{split}$$

◆□ → < Ξ → < Ξ + < Ξ + < ○ < ○

CLOSED MODELS	Open Models	OSCILLATORY DYNAMICS	SUMMARY
0000000000000	0000000	●000	000

OSCILLATORY DYNAMICS

We investigate oscillatory dynamics for **bath coupling** with elevated potassium concentrations ($\lambda = 3e - 2/sec$).

$$J_{diff} = \lambda (K_{bath} - K_e)$$
$$\frac{d\tilde{K}_e}{dt} = J_{diff}$$

Bifurcation analysis

Classify these pathologically important types of ion dynamics.

- seizures for 8.5mM
- tonic firing for 12mM
- periodic SD 15mM

CLOSED MODELS	Open Models	OSCILLATORY DYNAMICS	SUMMARY
0000000000000	0000000	0000	000

BIFURCATION DIAGRAM FOR *K*_{bath}

Result

- seizure–like activity (SLA) via supercr. torus bif.
- T_{SLA} is 16–45sec
- periodic SD via subcrit. torus bif.
- ► *T_{SD}* is 350–550sec
- ► hysteresis

conclusion

 \rightarrow SLA graded \rightarrow SD all–or–none

CLOSED MODELS	Open Models	Oscillatory Dynamics	Summary
0000000000000	00000000	0000	000

BIFURCATION DIAGRAM FOR K_{bath} AND FOR K_e

Bifurcations can be related:

 $\begin{array}{l} LP1_{lc} \leftrightarrow TR1 \\ LP2_{lc} \leftrightarrow TR2 \\ LP3_{lc} \leftrightarrow TR3 \\ LP4_{lc} \leftrightarrow TR4 \end{array}$

Relevance of Close Model Phase Space

Many results for **parametrical** \tilde{K}_e translate almost directly to the full system.

Sac

CLOSED MODELS	Open Models	OSCILLATORY DYNAMICS	SUMMARY
0000000000000	0000000	0000	000

SLA VS SD IN PHASE SPACE

SLA is oscillation around physiological conditions and LCs at low ECS potassium.

SD is a large excursion to FES and subsequent return.

Sac

 \rightarrow SLA and SD are of fundamentally different nature!

CLOSED MODELS	Open Models	OSCILLATORY DYNAMICS	Summary •00

SUMMARY AND OVERVIEW: OPEN, CLOSED AND ISOLATED

Open vs Closed Model

- Pumps cannot recover physiological conditions from FES.
- In ionic excitability ion exchange with surroundings leads to recovery.
- ▶ time scales, thresholds...

Closed Models	Open Models	OSCILLATORY DYNAMICS	SUMMARY
0000000000000	0000000	0000	000

SUMMARY: OSCILLATORY DYNAMICS

Key results

- SLA and SD related to different bifuractions
- SD and SLA of fundamentally different nature
- ► SD is all-or-none
- SLA is graded (probably model specific)
- ► approximative values of SD and SLA thresholds can be obtained from K̃_e bifurcation diagram

▶ < ≣ ► ≣ • ୬ ۹ Թ

CLOSED MODELS	Open Models	OSCILLATORY DYNAMICS	SUMMARY
0000000000000	0000000	0000	000

< □ > < □ > < □ > < ⊇ > < ⊇ > <

990

æ.

Thank you and...

. . .

Markus Dahlem Eckehard Schöll Frederike Kneer Steven Schiff