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Motivation 1: Ion Exchange Processes

Regeneration of exhausted (Cu2+-loaded) ion exchange pellets
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Regeneration of Single Pellets

experiment: evolution of regeneration front radius versus time

hindered diffusion inside the pellet (resin)

radius evolution of single pellet can be describe with/without
electrical forces

hindrance factors: 0.072 for Fick, 0.14 for Nernst-Planck fluxes
corresponding H+-diffusivities: 0.67 × 10−9 m2 s−1 (Fick),
1.3 × 10−9 m2 s−1 (Nernst-Planck)
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Regeneration of Single Pellets

Simulated concentration profiles inside the pellet:

profiles: without electrical forces with electrical forces
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CSTR Bulk Concentration Dynamics

Bulk concentrations during regeneration process:

evolution of the bulk concentration in the CSTR
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Motivation 2: Mass Transfer in G/L-Systems

Dissolution of CO2 bubbles
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Chemisorption of CO2 in NaOH solution

Simplified situation near interface:

Preliminary computations: mass transfer results w/o electromigration for

CO2 in acidic solutions can be 10-20% off!
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Chemisorption of CO2 in NaOH solution

Simulated concentration profiles:
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DNS of Mass Transfer with Volume Effects

Simulated dissolution of a CO2 Taylor bubble
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DNS of Conjugated Mass Transfer

Simulated mass transfer at a free CO2 bubble

Dissolved air (N2, O2) from aqueous phase is transfers into the bubble
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Motivation 3: Cross Diffusion Effects

Classical experiment by Duncan and Toor 1962 on ternary diffusion

initial composition: left bulb N2 : CO2 (1:1), right bulb N2 : H2 (1:1)
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Anomalous Diffusion

Typical phenomena in ternary systems
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Chemically Reacting Fluid Mixture

Fluid composed of N chemically reacting components A1, . . . ,AN

NR chemical reactions between the Ai :

αa
1 A1 + . . .+ αa

N AN 
 βa
1 A1 + . . .+ βa

N AN for a = 1, . . . ,NR

with stoichiometric coefficients αa
i , β

a
i ∈ IN0

Let Ra = R f
a − Rb

a be the (molar) rate of reaction a and νai := βa
i − αa

i .
Then

ri =

NR∑
a=1

Miν
a
i Ra with Mi the molar mass of species Ai

is the total rate of change of mass of component Ai

Mass conservation in individual reactions:
∑

i Miν
a
i = 0 ∀a
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Thermodynamics of Irreversible Processes (TIP)

Throughout this talk: v denotes the barycentric velocity of the mixture

Classical mixture balances in T.I.P. (cf. deGroot, Mazur):

partial mass balances:

∂t%i + div (%iv + ji ) = ri
∑

i ji = 0 ⇔ ∂t%+ div (%v) = 0

total momentum balance:

∂t(%v) + div (%v ⊗ v − S) = %b; %b =
∑

i %ibi

internal energy balance:

∂t(%e) + div (%ev + q) = ∇v : S + %π; %π =
∑

i ji · bi

Definition of internal energy: %e = %etot − 1
2%v2
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The 2nd Law: Entropy Inequality

Entropy production:

ζTIP = q · ∇ 1

T
+

N∑
i=1

ji ·
(
∇µi

T
− bi

T

)
+

1

T
Sirr : D− 1

T

NR∑
a=1

RaAa

S = −pI + Sirr, Sirr : D = S◦ : D◦ + Π div v

Notation:

• T denotes the (absolute) temperature

• µi denotes the chemical potentials

• S◦ denotes the traceless part of S

• D◦ denotes the symmetric, traceless part of ∇v

• Π denotes the dynamic pressure (or, irreversible pressure part)

• Aa :=
∑

i µiMiν
a
i are the chemical affinities.
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The Phenomenological Equations

Standard closure: fluxes linear in the (so-called) driving forces

⇒ quadratic form

heat flux and diffusive fluxes:

q = L00∇ 1
T −

∑N−1
i=1 L0i

(
∇µi−µN

T − 1
T (bi − bN)

)
ji = Li0∇ 1

T −
∑N−1

j=1 Lij
(
∇µj−µN

T − 1
T (bj − bN)

)
i = 1, ..,N − 1

viscous stress, dynamic pressure and chemical reaction rates:

S◦ = LD◦, Π = −l div v −
∑

a l0aAa, Ra = −la0 div v −
∑

b labAb

Entropy inequality: [Lij ] and [lab] positive semi-definite and L ≥ 0

Onsager-Casimir reciprocal relations: l0a = −la0, [Lij ], [lab] symmetric
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Remarks on Classical TIP

Curie’s principle: driving forces couple only to fluxes of the same
tensorial rank

is a rigorous consequence of material frame indifference for linear
constitutive relations

Onsager’s reciprocal relations: [Lij ] and [lab] are symmetric

relies on microscopic theory; only derived for rates (ODE case),
not for transport coefficients

some couplings are anti-symmetric: Onsager-Casimir relations

Some disadvantages of classical TIP / Fickean form:

- the Lij show complex nonlinear dependence on the composition

- the linear closure for chemical reaction rates is not appropriate

- in recent applications different species can experience different BCs
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The Maxwell-Stefan Equations

Alternative approach to multicomponent diffusion:

assume local balance between driving and friction forces:

di = −
∑
j 6=i

fij xi xj(vi − vj) = −
∑
j 6=i

xjJi − xiJj

c −Dij

di the thermodynamic driving forces, di =
xi
RT
∇pµ

mol
i +

φi−yi
%RT

∇p − yi
%RT

(bi − b)

c =
∑

i ci total concentration, xi = ci/c molar fractions, Ji = ji/Mi

molar mass fluxes; −Dij = 1/fij the Maxwell-Stefan diffusivities; in many

cases: −Dij nearly constant or affine functions of the composition

Origin of the Maxwell-Stefan Equations:

James Clerk Maxwell: On the dynamical theory of gases,
Phil. Trans. R. Soc. 157, 49-88 (1866).

Josef Stefan: Über das Gleichgewicht und die Bewegung insbesondere die Diffusion von Gasgemengen,
Sitzber. Akad. Wiss. Wien 63, 63-124 (1871).
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Maxwell-Stefan Equations - Criticism

Problems and open issues:

rigorous derivation of the Maxwell-Stefan equations,
including the thermodynamic driving forces

proper coupling to the mass and momentum balance

extension to non-simple fluid mixtures

extension to chemically reacting fluid mixtures

Aim: thermodynamically consistent mathematical modeling of
reacting fluid mixtures, guided by rational thermodynamics

joint work with Wolfgang Dreyer (WIAS, Berlin)

Preprint – arXiv:1401.5991v2 [physics.flu-dyn]
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Maxwell-Stefan Equations - Derivation

Four different derivations of the Maxwell-Stefan equations:

I. Employing only the barycentric momentum balance:

naive balance of forces

ad hoc; mixes continuum balances with kinetic theory

standard T.I.P. with ”resistance form” of the closure

consistency with kinetic theories only achievable via
thermo-diffusive terms

II. Employing partial momentum balances:

diffusive approximation using time-scale separation

not applicable with chemical reactions

entropy invariant model reduction
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Partial Balances of Mass, Momentum and Energy

Continuum mechanical balances of the fluid components Ai

mass : ∂t%i + div (%ivi ) = ri

mom. : ∂t(%ivi ) + div (%ivi ⊗ vi − Si ) = fi + %ibi

energy : ∂t(%iei +
%i
2

v2
i ) + div ((%iei +

%i
2

v2
i )vi − viSi + qi ) = li + %ibi · vi

mass conservation:
∑

i ri = 0

momentum conservation:
∑

i fi = 0

energy conservation:
∑

i li = 0

Note: power due to external forces is %ibi · vi , while internal forces
(mechanical and chemical interactions) contribute to the li
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Balance of internal energy

Partial balance of internal energy:

∂t(%iei ) + div (%ieivi + qi ) = ∇vi : Si + li − vi ·
(
fi − 1

2 rivi )
)

Alternative definition of internal energy:

%e :=
∑

i %iei total internal energy = %(etot − 1
2 v2)−

∑
i

1
2%iu

2
i

Pi := − 1
3 tr(Si ) partial pressures, Pi = pi + Πi with Πi|E = 0

q :=
∑

i (qi + (%iei + pi )ui ) mixture heat flux, p :=
∑

i pi

mixture internal energy balance:

∂t(%e) + div (%ev + q) = −p div v +
∑

i ∇vi : S◦i

−
∑

i ui ·
(
fi − rivi + 1

2 riui −∇pi
)
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Constitutive Modeling

Variables: %1, . . . , %N , v1, . . . , vN , %e

class-II model requires constitutive equations for:

Ra, Si , fi − rivi , q

Decompose the partial stresses as Si = −Pi I + S◦i = −pi I + Sirr
i

We consider non-polar fluids, hence the stresses Si are symmetric.

Universal Principles:

1 material frame indifference

2 entropy principle (second law of thermodynamics)

Notation: any (local) solution of the PDE-system is called
thermodynamic process
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The Entropy Principle

The entropy principle comprises the following postulates:

1) There is an entropy/entropy-flux pair (%s,Φ) as a material
dependent quantity, satisfying the principle of material frame
indifference (%s is an objective scalar, Φ is an objective vector).

2) The pair (%s,Φ) satisfies the balance equation

∂t(%s) + div (%sv + Φ) = ζ,

where the entropy production ζ satisfies

ζ ≥ 0 for every thermodynamic process.

Equilibria are characterized by ζ = 0.
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The Entropy Principle

3) Every admissible entropy flux is such that the entropy production
becomes a sum of binary products according to

ζ =
∑
m

NmPm,

where Nm, Pm denote factors of negative, resp. positive parity.

The parity of a time-dependent quantity characterizes its behavior under
time reversal in the unclosed balance equations. Resulting rule:

[ · ] contains the time units sk with k even ⇒ positive parity

[ · ] contains the time units sk with k odd ⇒ negative parity

Note: parity replaces the classical concept of ”flux × driving force”, since
the latter is misleading!
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The Entropy Principle

4) Each binary product in the entropy production describes a
dissipative mechanism which has to be introduced in advance.

Extended principle of detailed balance:

NmPm ≥ 0 for every m and any thermodynamic process.

Note: the specific form of the decomposition into binary products is not
unique and has to be chosen as part of the modeling. Even the number
of dissipative mechanisms is not fixed, but can be changed.

This non-uniqueness is the basis for:

• introduction of cross-effects via entropy-neutral mixing

• improvement of classical TIP-models
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Consequences of the extended principle of detailed balance

the closure between the co-factors in the entropy production,

ζ =
∑

mNmPm =: 〈N,P〉,

decouples. In a linear (in Nm, Pm) constitutive theory, this enforces
a block-diagonal closure.

Note: NmPm refers to a single mechanism, but may itself be a sum.

structure of entropy production as ζ =
∑

mNmPm is not unique
In particular: mixing of different fluxes or forces is possible!

ζ = 〈AN,B P〉 = 〈N,AT B P〉 = 〈N,P〉 ∀N,P ⇒ A−1 = BT

the diagonal closure implies cross-effects with Onsager symmetry:

AN := ΛB P with Λ = diag(λi ) ≥ 0 ⇒ N := BT ΛB P
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Example: Entropy Inequality of T.I.P.

the strengthened entropy principle can be used in T.I.P. !

ζTIP = q·∇ 1
T +
∑N

i=1 ji ·
(
∇µi

T −
bi

T

)
+ 1

T S◦ : D◦− 1
T Πdiv v − 1

T

∑NR

a=1 RaAa

Consider a coupling between volume variations and chemical reactions

Parity of the factors Π, div v, Ra,Aa: +1, -1, -1, +1

Cross-effects via entropy neutral mixing:

div v Π +
∑NR

a=1 RaAa = div v
(
Π +

∑NR

a=1 laAa

)
+
∑NR

a=1

(
Ra − ladiv v

)
Aa

diagonal closure (with λ > 0, [Lab] pos. def., symmetric):

div v = λ
(
Π +

∑NR

a=1 laAa

)
, Ra − ladiv v =

∑NR

b=1 LabAb

Hence the apparent anti-symmetry (Onsager-Casimir relations):

Π = λ−1div v −
∑NR

a=1 laAa, Ra = ladiv v +
∑NR

b=1 LabAb
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(
Π +

∑NR

a=1 laAa

)
+
∑NR

a=1

(
Ra − ladiv v

)
Aa

diagonal closure (with λ > 0, [Lab] pos. def., symmetric):

div v = λ
(
Π +

∑NR

a=1 laAa

)
, Ra − ladiv v =

∑NR

b=1 LabAb

Hence the apparent anti-symmetry (Onsager-Casimir relations):

Π = λ−1div v −
∑NR

a=1 laAa, Ra = ladiv v +
∑NR

b=1 LabAb
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The Entropy Principle

For the considered fluid mixture class we also postulate:

5) The dissipative mechanisms are: multi-component diffusion,
heat conduction, chemical reaction, viscous flow.

6) The entropy density is given as

%s = h(%e, %1, . . . , %N)

with a strictly concave material function h.

The absolute temperature T and chemical potentials µi are defined
as

1

T
:=

∂%s

∂%e
, −µi

T
:=

∂%s

∂%i
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Entropy Principle evaluated

Evaluation of the entropy principle:

1 entropy flux: Φ = q
T −

∑
i
%iuiµi

T

2 Gibbs-Duhem equation: p + %ψ −
∑

i %iµi = 0

3 restrictions to constitutive equations for dissipative mechanisms:

Entropy inequality, i.e. ζ ≥ 0 with the entropy production rate

ζ = − 1
T

∑NR

a=1 RaAa + 1
T

∑
i Sirr

i : Di +
∑

i qi · ∇ 1
T

−
∑

i ui ·
(
%i∇µi

T + 1
T (fi − rivi + 1

2 riui −∇pi )− (%iei + pi )∇ 1
T

)
Sirr
i = −Πi I + S◦i , i.e. Si = −pi I + Sirr

i
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Nonreactive fluids without viscosity

entropy production without viscosity, no chemical reactions:

ζ = −
∑

i ui ·
(
%i∇µi

T + 1
T (fi −∇pi )− hi∇ 1

T

)
+
∑

i qi · 1
T

with partial enthalpies hi := %iei + pi .

With short-hand notation:

ζ = −
∑

i ui ·
(
Bi + 1

T fi
)

+
∑

i qi · ∇ 1
T

with

Bi := %i∇
µi

T
− 1

T
∇pi − hi∇

1

T

The Gibbs-Duhem equation implies
∑

i Bi = 0 !
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Exploiting the second law

The interaction terms fi necessarily satisfy

−
∑N

i=1 ui ·
(

Bi + 1
T fi
)
≥ 0 and

∑N
i=1 Bi = 0,

∑N
i=1 fi = 0

Hence
−
∑N−1

i=1 (ui − uN) ·
(

Bi + 1
T fi
)
≥ 0,

with build-in constraints.

The standard linear Ansatz for Bi + 1
T fi is

Bi + 1
T fi = −

∑N−1
j=1 τij (uj − uN) (for i = 1, . . . ,N − 1)

with a positive (semi-)definite matrix [τij ].



Intro TIP Balances Nonreactive MS-Eqs NPP

Exploiting the second law

The interaction terms fi necessarily satisfy

−
∑N

i=1 ui ·
(

Bi + 1
T fi
)
≥ 0 and

∑N
i=1 Bi = 0,

∑N
i=1 fi = 0

Hence
−
∑N−1

i=1 (ui − uN) ·
(

Bi + 1
T fi
)
≥ 0,

with build-in constraints.

The standard linear Ansatz for Bi + 1
T fi is

Bi + 1
T fi = −

∑N−1
j=1 τij (uj − uN) (for i = 1, . . . ,N − 1)

with a positive (semi-)definite matrix [τij ].



Intro TIP Balances Nonreactive MS-Eqs NPP

Closure for thermo-mechanical Interactions

Extension to N × N format (positive semi-definite):

τNj = −
∑N−1

i=1 τij (i = 1, . . . ,N − 1), τiN = −
∑N−1

j=1 τij (j = 1, . . . ,N)

Straight forward computation:

Bi + 1
T fi = −

∑N
j=1 τij (uj − uN) = −

∑N
j=1 τij (uj − ui )

Assumption of binary type interactions: (C. Truesdell)

τij = τij(T , %i , %j)→ 0 if %i → 0+ or %j → 0+

This implies symmetry of [τij ] ! (evaluate
∑

i,j τij (ui − uj) = 0)

⇒ τij = − fij%i%j for i 6= j with fij = fji ≥ 0, fij = fij(%i , %j ,T ).
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Momentum Balance with Thermo-mechanical Interactions

partial momentum balances:

%i
(
∂tvi + vi · ∇vi

)
+∇pi = fi + %ibi

with

fi = −%iT∇µi

T +∇pi + hiT∇ 1
T − T

∑
j fij%i%j(vi − vj)

class-II momentum balances (no viscosity, no chemical reactions):

%i
(
∂tvi + vi · ∇vi

)
= −%iT∇µi

T + Thi∇ 1
T − T

∑
j fij%i%j(vi − vj) + %ibi

special case of isothermal conditions:

%i
(
∂tvi + vi · ∇vi

)
= −%i∇µi − T

∑
j fij%i%j(vi − vj) + %ibi

special case of a simple mixture: %ψ(T , %1, . . . , %N) =
∑

i %iψi (T , %i )

%i
(
∂tvi + vi · ∇vi

)
= −∇pi − T

∑
j fij%i%j(vi − vj) + %ibi
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Partial Momentum Balances due to Stefan
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Scale-Reduced Model: Maxwell-Stefan Eqs

Consider the difference: momentum of species i − yi × total momentum

%i (∂t + v · ∇)ui + %iui · ∇vi =

yi∇p − %i∇µi + T (hi − %iµi )∇ 1
T + %i (bi − b)− T

∑
j fij%i%j(ui − uj)

nondimensionalized form:

U
C

V
C yi (∂

∗
t u∗i + v∗ · ∇∗u∗i + u∗i · ∇∗v∗i ) =

yi
∇∗p∗

%∗ −
c0RT0

p0
yi∇∗µ∗i − ( h0

p0

h∗i
%∗ −

c0RT0

p0
yiµ
∗
i )∇∗ lnT ∗

+ %0BL
p0

yi (b∗i − b∗)− c0RT0

p0

UL
D %
∗T ∗

∑
j

yiyj
M∗

i M
∗
j −D

∗
ij

(u∗i − u∗j )

some characteristic reference quantities:

U diffusion velocity, V mixture velocity, τ = L/V convective time scale,
C =

√
p0/%0 about the speed of sound in gas mixture
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Scale-Reduced Model: Maxwell-Stefan Eqs

Approximation for U
C

V
C � 1: generalized Maxwell-Stefan equations

−
∑
j 6=i

yj ji − yi jj
cMiMj−Dij

=
yi
RT
∇µi −

yi
%RT

∇p +
%iµi − hi
%R

∇ 1

T
− yi
%RT

(bi − b)

Phenomena: molecular, pressure, thermo- (partially) & forced diffusion

Chemical Eng. version of the generalized MS-eqs (isothermal case)*:

−
∑
j 6=i

xjJi − xiJj

c−Dij
=

xi
RT
∇pµ

mol
i +

φi − yi
%RT

∇p − yi
%RT

(bi − b)

xi molar fractions, Ji molar mass fluxes, µmol
i = Miµi molar based

chemical potential

*R. Taylor, R. Krishna: Multicomponent Mass Transfer, 1993
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Scale-Reduced Model: Maxwell-Stefan Eqs

Thermodynamic consistency?

The mass fluxes ji determined by the gen. Maxwell-Stefan equations
(and

∑
i ji = 0) need to satisfy:

ζTIP =
(
α∇ 1

T +
∑

i hiui

)
· ∇ 1

T −
1
T

∑
i ji ·

(
T∇µi

T − bi

)
≥ 0 !

Instead of inverting the MS-system, we use

−T
∑

j fij%i%j(ui − uj) = %iT∇µi

T − yi∇p − hiT∇ 1
T − %i (bi − b)

to eliminate
T∇µi

T − bi − hi
%i
T∇ 1

T

This yields:
ζTIP = α

(
∇ 1

T

)2
+ 1

2

∑
i,j fij%i%j

(
ui − uj

)2 ≥ 0
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From Maxwell-Stefan to Nernst-Planck

Assume dilute solution: x0 ≈ 1, xi � 1 for i = 1, . . . ,N. Then

− 1
Di0

ji = ci
RT∇p,Tµi + φi−yi

%RT ∇p −
%i
RT (bi − b) i = 1, . . . ,N

chemical potentials: µi (T , p, x) = gi (T , p) + RT log xi , i = 1, . . . ,N

forces on ions: bi = − F
Mi
zi∇φ (zi charge numbers)

electrical potential: −∇ · (ε∇φ) = F
∑N

k=0 zkck

neglecting pressure diffusion (& assuming c ≈ const):

ji = −Di

(
∇ci + F

RT (zici −
∑N

k=0 zkck)∇φ
)
, i = 1, . . . ,N.

b0 = 0! ⇒ bi − b = bi −
∑N

k=0 ykbk = (1− yi )bi +
∑N

i 6=k=1 ykbk ≈ bi ,

assuming again a dilute solution.
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Remarks on the Nernst-Planck fluxes

Shortcomings of the specialization to Nernst-Planck:

If used for all constituents, Nernst-Planck (like Fickean) fluxes are
inconsistent with the continuity equation

If only used for the dilute components, Nernst-Planck (like Fickean)
fluxes do not yield pointwise upper bounds

Even for globally dilute mixtures, the diluteness assumption breaks
down near interfaces (walls). The solvent concentration can actually
approach zero when transversing the double layer at a wall!

Pressure effects are usually not negligible (especially near walls).
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Implications

Implication for modeling transport of ions in solution:

Use the full set of balance equations together with
thermodynamically consistent fluxes from Maxwell-Stefan theory
instead of only mass balances with Nernst-Planck fluxes!

For first results from a complete and thermodynamically consistent model
see the recent paper by Dreyer, Guhlke and Müller: ”Overcoming the
shortcomings of the Nernst-Planck model”, Phys. Chem. Chem. Phys.
15, 7075-86 (2013).

In particular, it is shown there that the complete model can be applied
simultaneously inside the bulk and in the boundary layer.

Final Remark: Extension to chemically reacting fluid mixtures exists.
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Navier-Stokes-Nernst-Planck-Poisson system (NSNPP)

(NS)


∂tv + (v · ∇)v −∆v +∇p +

∑N
i=1 zici∇Φ = 0 in Ω,

div v = 0 in Ω,
u = 0 on ∂Ω,

v(0) = v0 in Ω.

(NP)

 ∂tci + div (civ − di∇ci − dizici∇Φ) = 0 in Ω,
∂νci + zici∂νΦ = 0 on ∂Ω,

c(0) = c0 in Ω.

(P)

{
−∆Φ−

∑N
i=1 zici = σ in Ω,

∂νΦ + τΦ = ξ on ∂Ω.

Unknowns: v velocity field, p pressure,
ci concentration of species i , Φ electrical potential.

Data: di (t, x) diffusivity, σ(x) fixed charges, ξ(x) boundary datum.
Constants: zi ∈ ZZ charge number, τ > 0 boundary capacity.



Intro TIP Balances Nonreactive MS-Eqs NPP

Energy dissipation for (NSNPP)

Exploit the following Lyapunov structure:

Define the functionals E and D by

E (v , c ,Φ) :=
1

2

∫
Ω

|v |2 +
N∑
i=1

∫
Ω

ci log ci +
1

2

∫
Ω

|∇Φ|2 +
τ

2

∫
∂Ω

|Φ|2,

D(v , c ,Φ) :=

∫
Ω

|∇v |2 +
N∑
i=1

∫
Ω

1

dici

∣∣di∇ci + dizici∇Φ
∣∣2 ≥ 0.

Given a regular solution (v , c ,Φ) to (NSNPP), the functional

V (t) = E (v(t), c(t),Φ(t))

is non-increasing in time with derivative

V̇ (t) = −D(v(t), c(t),Φ(t)) ≤ 0.

Analogous situation for pure (NPP) without kinetic energy term.
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Global existence for NPP in three or higher dimensions

Theorem (B., Fischer, Pierre, Rolland, Nonl. Anal. TMA ’14)

Let n ∈ IN, Ω ⊂ IRn bounded and sufficiently smooth and

di ∈ L∞loc(IR+; L∞(Ω)), 0< d(T )≤ di (t, x)≤ d(T )<∞ a.e. on QT .

c0 ∈ L2(Ω)+, σ = 0, ξ ∈ L2(∂Ω).

Then there exist c ∈ L∞(IR+; L1(Ω)) and Φ ∈ L∞(IR+;H1(Ω)) such that
(NPP) is satisfied in the following sense:

For all T > 0, ci ∈ L1(0,T ;W 1,1
loc (Ω)), di∇ci + dizici∇Φ ∈ L1(QT ) s.t.,

for all ψ ∈ C∞(QT ) with ψ(T ) = 0, ϕ ∈ C∞(Ω),∫
QT

−ci∂tψ + (di∇ci + dizici∇Φ)∇ψ =

∫
Ω

c0
i ψ(0),

∫
Ω

∇Φ(t) · ∇ϕ+

∫
∂Ω

τΦ(t)ϕ =

∫
Ω

N∑
i=1

zici (t)ϕ a.e. t ∈ IR+.
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Nernst-Planck-Poisson in nD

Global weak solutions in nD - Sketch of proof:

A priori estimate for (NPP)

Approximate (NPP) by (NPPε) while conserving the Lyapunov
structure

Global existence and uniqueness for (NPPε)

Compactness for sequence of approximate solutions

Limit as ε→ 0
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Global weak solutions in nD - Sketch of proof

Recall from above (without v): V̇ = −
∑N

i=1

∫
Ω
|di∇ci + dizici∇Φ|2/dici

Integration in time yields

C ≥
∫
QT

N∑
i=1

|∇ci + zici∇Φ|2

ci
=

∫
QT

N∑
i=1

( |∇ci |2
ci

+ z2
i ci |∇Φ|2︸ ︷︷ ︸

≥0

+ 2zi∇ci∇Φ
)

Integration by parts and Poisson equation give∫
QT

N∑
i=1

zi∇ci∇Φ = −
∫
QT

N∑
i=1

zici∆Φ +

∫
ΓT

. . . =

∫
QT

|∆Φ|2︸ ︷︷ ︸
≥0!!

+

∫
ΓT

. . . .

Boundary terms difficult to estimate ⇒ only local W 1,1-regularity,
except in case n = 3, ξ ∈ Lq(∂Ω) for q > 2.

Appr. problem with global solution and similar Lyapunov structure?
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Global weak solutions in nD - Sketch of proof

Approximate problem (based on an idea of Gajewski/Gröger):

∂tci + div(−di∇h(ci )− dizici∇Φ) = 0 in Ω,
∂νh(ci ) + zici∂νΦ = 0 on ∂Ω,

ci (0) = c0
i in Ω,

 (NPη)

−∆Φ−
∑N

i=1 zici = 0 in Ω,
∂νΦ + τΦ = ξ on ∂Ω,

}
(P)

where h(r) = r + ηrp for fixed, large p > 1.

The solutions satisfy the same dissipation inequality, if the free
energy

∑
i ci log ci is replaced by

∑
i (ci log ci + ηcpi /(p − 1)).

⇒ appr. cηi a priori bounded in L∞(0,T ; Lp(Ω)).

⇒ appr. Φη a priori bounded in L∞(0,T ;W 2,p(Ω)).

⇒ appr. solution (cηi ,Φ
η) via fixed point argument for Φ in

⇒ L∞(0,T ;W 1,∞(Ω)), using p > n.
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Thank You for Your Attention !
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