Continuum thermodynamics of multicomponent fluids and implications for modeling electromigration of ionic species

Dieter Bothe

Center of Smart Interfaces Technical University Darmstadt, Germany

Workshop on

Transport of Ionic Particles in Biological Environments Fields Institute, Toronto, July 28 - August 1, 2014

へのへ

Contents

[Motivation](#page-2-0)

- [T.I.P. Fickean vs. Maxwell-Stefan form](#page-13-0)
- [Partial Balances and Constitutive Modeling Framework](#page-30-0)
- [Closure for Non-Reactive Multicomponent Fluids](#page-52-0)
- [The Maxwell-Stefan Equations and Electromigration](#page-63-0)

つくい

[The Nernst-Planck-Poisson System in nD](#page-79-0)

Motivation 1: Ion Exchange Processes

Regeneration of exhausted $(Cu^{2+}$ -loaded) ion exchange pellets

メロメ メ御 メメ ミメメ ミメー 重 $2Q$

Regeneration of Single Pellets

experiment: evolution of regeneration front radius versus time

- hindered diffusion inside the pellet (resin)
- radius evolution of single pellet can be describe with/without electrical forces
- hindrance factors: 0.072 for Fick, 0.14 for Nernst-Planck fluxes corresponding H⁺-diffusivities: 0.67×10^{-9} m² s⁻¹ (Fick), 1.3×10^{-9} m² s⁻¹ (Nernst-Planck)

Regeneration of Single Pellets

Simulated concentration profiles inside the pellet:

profiles: without electrical forces with electrical forces

K ロ ▶ K 伊 ▶ $2Q$ 佳 扂

CSTR Bulk Concentration Dynamics

Bulk concentrations during regeneration process:

K ロ ▶ K 伊 ▶ 目 $2Q$ **B** ≣

Motivation 2: Mass Transfer in G/L-Systems

Dissolution of $CO₂$ bubbles

Dissolution of a $CO₂$ Taylor bubble in a micro-channel 2

Chemisorption of $CO₂$ in NaOH solution

Simplified situation near interface:

Preliminary computations: mass transfer results w/o electromigration for $CO₂$ in acidic solutions can be 10-20% off!

Chemisorption of $CO₂$ in NaOH solution

Simulated concentration profiles:

DNS of Mass Transfer with Volume Effects

Simulated dissolution of a $CO₂$ Taylor bubble

Shrinking of a Taylor bubble in a water/glycerol mixture. Left: Initial setup. Right: Concentration fields at $t = 0.01$ s, 0.03 s, 0.05 s, 0.07 s, 0.09 s

←ロ ▶ → 伊 ▶

 $2Q$

ミト 扂

DNS of Conjugated Mass Transfer

Simulated mass transfer at a free $CO₂$ bubble

Dissolved air (N_2, O_2) from aqueous phase is transfers into the bubble

 \leftarrow \Box

ð \sim E

 $2Q$

Motivation 3: Cross Diffusion Effects

Classical experiment by Duncan and Toor 1962 on ternary diffusion

initial composition: left bulb N_2 : CO_2 (1:1), right bulb N_2 : H_2 (1:1)

Anomalous Diffusion

Typical phenomena in ternary systems

[T.I.P. – Fickean vs. Maxwell-Stefan form](#page-13-0)

- [Partial Balances and Constitutive Modeling Framework](#page-30-0)
- [Closure for Non-Reactive Multicomponent Fluids](#page-52-0)
- [The Maxwell-Stefan Equations and Electromigration](#page-63-0)
- [The Nernst-Planck-Poisson System in nD](#page-79-0)

Chemically Reacting Fluid Mixture

Fluid composed of N chemically reacting components A_1, \ldots, A_N N_R chemical reactions between the A_i :

$$
\alpha_1^a A_1 + \ldots + \alpha_N^a A_N \rightleftharpoons \beta_1^a A_1 + \ldots + \beta_N^a A_N \quad \text{ for } a = 1, \ldots, N_R
$$

with stoichiometric coefficients $\alpha_i^{\mathsf{a}}, \beta_i^{\mathsf{a}} \in \mathbb{N}_0$

Let $R_a = R_a^f - R_a^b$ be the (molar) rate of reaction a and $\nu_i^a := \beta_i^a - \alpha_i^a$. Then $N_{\rm P}$

$$
r_i = \sum_{a=1}^{N} M_i \nu_i^a R_a
$$
 with M_i the molar mass of species A_i

is the total rate of change of mass of component A_i

Mass conservation in individual reactions: $\sum_i M_i \nu_i^a = 0$ $\forall a$

メロメ メ御 メメ ミメ メミメ

Chemically Reacting Fluid Mixture

Fluid composed of N chemically reacting components A_1, \ldots, A_N N_R chemical reactions between the A_i :

$$
\alpha_1^a A_1 + \ldots + \alpha_N^a A_N \rightleftharpoons \beta_1^a A_1 + \ldots + \beta_N^a A_N \quad \text{ for } a = 1, \ldots, N_R
$$

with stoichiometric coefficients $\alpha_i^{\mathsf{a}}, \beta_i^{\mathsf{a}} \in \mathbb{N}_0$

Let $R_a = R_a^f - R_a^b$ be the (molar) rate of reaction a and $\nu_i^a := \beta_i^a - \alpha_i^a$. Then $N_{\rm E}$

$$
r_i = \sum_{a=1}^{N} M_i \nu_i^a R_a
$$
 with M_i the molar mass of species A_i

is the total rate of change of mass of component A_i

Mass conservation in individual reactions: $\sum_i M_i \nu_i^a = 0 \quad \forall a$

つくい

Thermodynamics of Irreversible Processes (TIP)

Throughout this talk: \bf{v} denotes the *barycentric* velocity of the mixture

Classical mixture balances in T.I.P. (cf. deGroot, Mazur): partial mass balances:

$$
\partial_t \varrho_i + \mathrm{div} \left(\varrho_i \mathbf{v} + \mathbf{j}_i \right) = r_i
$$

total momentum balance:

$$
\partial_t(\varrho \mathbf{v}) + \mathrm{div}(\varrho \mathbf{v} \otimes \mathbf{v} - \mathbf{S}) = \varrho \mathbf{b}; \qquad \qquad \varrho \mathbf{b} = \sum_i \varrho_i \mathbf{b}_i
$$

internal energy balance:

$$
\partial_t(\varrho\mathbf{e}) + \mathrm{div}\left(\varrho\mathbf{e}\mathbf{v} + \mathbf{q}\right) = \nabla \mathbf{v} : \mathbf{S} + \varrho\pi; \qquad \varrho\pi = \sum_i \mathbf{j}_i \cdot \mathbf{b}_i
$$

Definition of internal energy: $\rho e = \rho e_{\text{tot}} - \frac{1}{2}\rho \mathbf{v}^2$

へのへ

Thermodynamics of Irreversible Processes (TIP)

Throughout this talk: \bf{v} denotes the *barycentric* velocity of the mixture

Classical mixture balances in T.I.P. (cf. deGroot, Mazur): partial mass balances:

 $\partial_t \varrho_i + \text{div}(\varrho_i \mathbf{v} + \mathbf{j}_i) = r_i \quad \sum_i \mathbf{j}_i = 0 \quad \Leftrightarrow \ \partial_t \varrho + \text{div}(\varrho \mathbf{v}) = 0$

total momentum balance:

$$
\partial_t(\varrho \mathbf{v}) + \mathrm{div}(\varrho \mathbf{v} \otimes \mathbf{v} - \mathbf{S}) = \varrho \mathbf{b}; \qquad \qquad \varrho \mathbf{b} = \sum_i \varrho_i \mathbf{b}_i
$$

internal energy balance:

 $\partial_t(\varrho\mathbf{e}) + \mathrm{div}\left(\varrho\mathbf{e}\mathbf{v} + \mathbf{q}\right) = \nabla \mathbf{v} : \mathbf{S} + \varrho\pi; \qquad \varrho\pi = \sum_i \mathbf{j}_i \cdot \mathbf{b}_i$

Definition of internal energy: $\rho e = \rho e_{\text{tot}} - \frac{1}{2}\rho \mathbf{v}^2$

The $2nd$ Law: Entropy Inequality

Entropy production:

$$
\zeta^{\text{TIP}} = \mathbf{q} \cdot \nabla \frac{1}{\mathcal{T}} + \sum_{i=1}^{N} \mathbf{j}_{i} \cdot \left(\nabla \frac{\mu_{i}}{\mathcal{T}} - \frac{\mathbf{b}_{i}}{\mathcal{T}} \right) + \frac{1}{\mathcal{T}} \mathbf{S}^{\text{irr}} : \mathbf{D} - \frac{1}{\mathcal{T}} \sum_{a=1}^{N_{R}} R_{a} \mathcal{A}_{a}
$$

$$
\mathbf{S} = -p\mathbf{I} + \mathbf{S}^{\text{irr}}, \quad \mathbf{S}^{\text{irr}} : \mathbf{D} = \mathbf{S}^{\circ} : \mathbf{D}^{\circ} + \Pi \operatorname{div} \mathbf{v}
$$

Notation:

- T denotes the (absolute) temperature
- μ_i denotes the chemical potentials
- S^o denotes the traceless part of S
- \mathbf{D}° denotes the symmetric, traceless part of $\nabla \mathbf{v}$
- Π denotes the dynamic pressure (or, irreversible pressure part)
- $\bullet \quad \mathcal{A}_a := \sum_i \mu_i M_i \nu_i^a$ are the *chemical affinities*.

The Phenomenological Equations

Standard closure: fluxes linear in the (so-called) driving forces \Rightarrow quadratic form

heat flux and diffusive fluxes:

$$
\mathbf{q} = L_{00} \nabla \frac{1}{T} - \sum_{i=1}^{N-1} L_{0i} \left(\nabla \frac{\mu_{i} - \mu_{N}}{T} - \frac{1}{T} (\mathbf{b}_{i} - \mathbf{b}_{N}) \right)
$$

$$
\mathbf{j}_{i} = L_{i0} \nabla \frac{1}{T} - \sum_{j=1}^{N-1} L_{ij} \left(\nabla \frac{\mu_{j} - \mu_{N}}{T} - \frac{1}{T} (\mathbf{b}_{j} - \mathbf{b}_{N}) \right) \quad i = 1, ..., N-1
$$

viscous stress, dynamic pressure and chemical reaction rates:

 $\mathbf{S}^{\circ} = L \mathbf{D}^{\circ}, \quad \Pi = -l \operatorname{div} \mathbf{v} - \sum_{a} I_{0a} A_{a}, \qquad R_{a} = -I_{a0} \operatorname{div} \mathbf{v} - \sum_{b} I_{ab} A_{b}$

Entropy inequality: $[L_{ii}]$ and $[L_{ab}]$ positive semi-definite and $L \geq 0$

The Phenomenological Equations

Standard closure: fluxes linear in the (so-called) driving forces \Rightarrow quadratic form

heat flux and diffusive fluxes:

$$
\mathbf{q} = L_{00} \nabla \frac{1}{T} - \sum_{i=1}^{N-1} L_{0i} \left(\nabla \frac{\mu_i - \mu_N}{T} - \frac{1}{T} (\mathbf{b}_i - \mathbf{b}_N) \right)
$$

$$
\mathbf{j}_i = L_{i0} \nabla \frac{1}{T} - \sum_{j=1}^{N-1} L_{ij} \left(\nabla \frac{\mu_j - \mu_N}{T} - \frac{1}{T} (\mathbf{b}_j - \mathbf{b}_N) \right) \quad i = 1, ..., N-1
$$

viscous stress, dynamic pressure and chemical reaction rates:

$$
\mathbf{S}^{\circ} = L \mathbf{D}^{\circ}, \quad \Pi = -l \operatorname{div} \mathbf{v} - \sum_{a} I_{0a} A_{a}, \qquad R_{a} = -I_{a0} \operatorname{div} \mathbf{v} - \sum_{b} I_{ab} A_{b}
$$

Entropy inequality: $[L_{ii}]$ and $[I_{ab}]$ positive semi-definite and $L \geq 0$

The Phenomenological Equations

Standard closure: fluxes linear in the (so-called) driving forces \Rightarrow quadratic form

heat flux and diffusive fluxes:

$$
\mathbf{q} = L_{00} \nabla \frac{1}{T} - \sum_{i=1}^{N-1} L_{0i} \left(\nabla \frac{\mu_{i} - \mu_{N}}{T} - \frac{1}{T} (\mathbf{b}_{i} - \mathbf{b}_{N}) \right)
$$

$$
\mathbf{j}_{i} = L_{i0} \nabla \frac{1}{T} - \sum_{j=1}^{N-1} L_{ij} \left(\nabla \frac{\mu_{j} - \mu_{N}}{T} - \frac{1}{T} (\mathbf{b}_{j} - \mathbf{b}_{N}) \right) \quad i = 1, ..., N-1
$$

viscous stress, dynamic pressure and chemical reaction rates:

 $\mathbf{S}^{\circ} = L \mathbf{D}^{\circ}, \quad \Pi = -l \operatorname{div} \mathbf{v} - \sum_{a} I_{0a} A_{a}, \qquad R_{a} = -I_{a0} \operatorname{div} \mathbf{v} - \sum_{b} I_{ab} A_{b}$

Entropy inequality: $[L_{ij}]$ and $[I_{ab}]$ positive semi-definite and $L \geq 0$

Onsager-Casimir reciprocal relations: $[L_{ii}]$, $[I_{ab}]$ symmetric, but $I_{0a} = -I_{a0}$

Remarks on Classical TIP

• Curie's principle: driving forces couple only to fluxes of the same tensorial rank

is a rigorous consequence of material frame indifference for linear constitutive relations

 \bullet Onsager's reciprocal relations: $[L_{ii}]$ and $[I_{ab}]$ are symmetric relies on microscopic theory; only derived for rates (ODE case), not for transport coefficients

some couplings are anti-symmetric: Onsager-Casimir relations

へのへ

Remarks on Classical TIP

• Curie's principle: driving forces couple only to fluxes of the same tensorial rank

is a rigorous consequence of material frame indifference for linear constitutive relations

 \bullet Onsager's reciprocal relations: $[L_{ii}]$ and $[I_{ab}]$ are symmetric relies on microscopic theory; only derived for rates (ODE case), not for transport coefficients

some couplings are anti-symmetric: Onsager-Casimir relations

- Some disadvantages of classical TIP / Fickean form:
	- the L_{ii} show complex nonlinear dependence on the composition
	- the linear closure for chemical reaction rates is not appropriate
	- in recent applications different species can experience different BCs

Remarks on Classical TIP

Curie's principle: driving forces couple only to fluxes of the same tensorial rank

is a rigorous consequence of material frame indifference for linear constitutive relations

 \bullet Onsager's reciprocal relations: $[L_{ii}]$ and $[I_{ab}]$ are symmetric relies on microscopic theory; only derived for rates (ODE case), not for transport coefficients

some couplings are anti-symmetric: Onsager-Casimir relations

- Some disadvantages of classical TIP / Fickean form:
	- the L_{ii} show complex nonlinear dependence on the composition
	- the linear closure for chemical reaction rates is not appropriate
	- in recent applications different species can experience different BCs

The Maxwell-Stefan Equations

Alternative approach to multicomponent diffusion:

assume local balance between driving and friction forces:

$$
\mathbf{d}_i = -\sum_{j \neq i} f_{ij} x_i x_j (\mathbf{v}_i - \mathbf{v}_j) = -\sum_{j \neq i} \frac{x_j \mathbf{J}_i - x_i \mathbf{J}_j}{c \mathbf{B}_{ij}}
$$

d_i the thermodynamic driving forces, $d_i = \frac{x_i}{RT} \nabla_p \mu_i^{\text{mol}} + \frac{\phi_i - y_i}{\varrho RT} \nabla_p - \frac{y_i}{\varrho RT} (b_i - b)$

 $c = \sum_i c_i$ total concentration, $x_i = c_i/c$ molar fractions, $\mathbf{J}_i = \mathbf{j}_i/M_i$ molar mass fluxes; $\Theta_{ii} = 1/f_{ii}$ the *Maxwell-Stefan diffusivities*; in many cases: Θ_{ii} nearly constant or affine functions of the composition

Origin of the Maxwell-Stefan Equations:

- James Clerk Maxwell: On the dynamical theory of gases, Phil. Trans. R. Soc. 157, 49-88 (1866).
- Josef Stefan: Uber das Gleichgewicht und die Bewegung insbesondere die Diffusion von Gasgemengen, ¨ Sitzber. Akad. Wiss. Wien 63, 63-124 (1871).

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

∽≏ດ

Maxwell-Stefan Equations - Criticism

Problems and open issues:

- rigorous derivation of the Maxwell-Stefan equations, including the thermodynamic driving forces
- **•** proper coupling to the mass and momentum balance
- extension to non-simple fluid mixtures
- extension to chemically reacting fluid mixtures

Aim: thermodynamically consistent mathematical modeling of reacting fluid mixtures, guided by rational thermodynamics

joint work with Wolfgang Dreyer (WIAS, Berlin) Preprint – arXiv:1401.5991v2 [physics.flu-dyn]

Maxwell-Stefan Equations - Derivation

Four different derivations of the Maxwell-Stefan equations:

- I. Employing only the barycentric momentum balance:
	- **o** naive balance of forces

ad hoc; mixes continuum balances with kinetic theory

- standard T.I.P. with "resistance form" of the closure consistency with kinetic theories only achievable via thermo-diffusive terms
- II. Employing partial momentum balances:
	- **•** diffusive approximation using time-scale separation not applicable with chemical reactions
	- **•** entropy invariant model reduction

Maxwell-Stefan Equations - Derivation

Four different derivations of the Maxwell-Stefan equations:

- I. Employing only the barycentric momentum balance:
	- **o** naive balance of forces

ad hoc; mixes continuum balances with kinetic theory

- standard T.I.P. with "resistance form" of the closure consistency with kinetic theories only achievable via thermo-diffusive terms
- II. Employing partial momentum balances:
	- **•** diffusive approximation using time-scale separation not applicable with chemical reactions
	- **•** entropy invariant model reduction

Maxwell-Stefan Equations - Derivation

Four different derivations of the Maxwell-Stefan equations:

- I. Employing only the barycentric momentum balance:
	- **o** naive balance of forces

ad hoc; mixes continuum balances with kinetic theory

- standard T.I.P. with "resistance form" of the closure consistency with kinetic theories only achievable via thermo-diffusive terms
- II. Employing partial momentum balances:
	- **•** diffusive approximation using time-scale separation not applicable with chemical reactions
	- **•** entropy invariant model reduction

2 [T.I.P. – Fickean vs. Maxwell-Stefan form](#page-13-0)

3 [Partial Balances and Constitutive Modeling Framework](#page-30-0)

4 [Closure for Non-Reactive Multicomponent Fluids](#page-52-0)

5 [The Maxwell-Stefan Equations and Electromigration](#page-63-0)

[The Nernst-Planck-Poisson System in nD](#page-79-0)

Partial Balances of Mass, Momentum and Energy

Continuum mechanical balances of the fluid components A_i

mass:
$$
\partial_t \varrho_i + \text{div}(\varrho_i \mathbf{v}_i) = r_i
$$

\n**mom**: $\partial_t (\varrho_i \mathbf{v}_i) + \text{div}(\varrho_i \mathbf{v}_i \otimes \mathbf{v}_i - \mathbf{S}_i) = \mathbf{f}_i + \varrho_i \mathbf{b}_i$
\n**energy**: $\partial_t (\varrho_i \mathbf{e}_i + \frac{\varrho_i}{2} \mathbf{v}_i^2) + \text{div}((\varrho_i \mathbf{e}_i + \frac{\varrho_i}{2} \mathbf{v}_i^2) \mathbf{v}_i - \mathbf{v}_i \mathbf{S}_i + \mathbf{q}_i) = I_i + \varrho_i \mathbf{b}_i \cdot \mathbf{v}_i$
\nmass conservation:
$$
\sum_i r_i = 0
$$

\nmomentum conservation:
$$
\sum_i f_i = 0
$$

∢ 倒 ▶ . ∢ ミ ▶ . ∢ ミ ▶

へのへ

energy conservation: $\sum_i I_i = 0$

Note: power due to external forces is $\varrho_i \mathbf{b}_i \cdot \mathbf{v}_i$, while internal forces (mechanical and chemical interactions) contribute to the l_i

Partial Balances of Mass, Momentum and Energy

Continuum mechanical balances of the fluid components A_i

mass:
$$
\partial_t \varrho_i + \text{div}(\varrho_i \mathbf{v}_i) = r_i
$$

\nmom. : $\partial_t (\varrho_i \mathbf{v}_i) + \text{div}(\varrho_i \mathbf{v}_i \otimes \mathbf{v}_i - \mathbf{S}_i) = \mathbf{f}_i + \varrho_i \mathbf{b}_i$
\nenergy : $\partial_t (\varrho_i e_i + \frac{\varrho_i}{2} \mathbf{v}_i^2) + \text{div}((\varrho_i e_i + \frac{\varrho_i}{2} \mathbf{v}_i^2) \mathbf{v}_i - \mathbf{v}_i \mathbf{S}_i + \mathbf{q}_i) = I_i + \varrho_i \mathbf{b}_i \cdot \mathbf{v}_i$
\nmass conservation:
$$
\sum_i r_i = 0
$$

\nmomentum conservation:
$$
\sum_i \mathbf{f}_i = 0
$$

\nenergy conservation:
$$
\sum_i I_i = 0
$$

へのへ

Note: power due to external forces is $\varrho_i \mathbf{b}_i \cdot \mathbf{v}_i$, while internal forces (mechanical and chemical interactions) contribute to the l_i

[Intro](#page-2-0) [TIP](#page-13-0) [Balances](#page-30-0) [Nonreactive](#page-52-0) [MS-Eqs](#page-63-0) [NPP](#page-79-0)

Balance of internal energy

Partial balance of internal energy:

$$
\partial_t(\varrho_i e_i) + \mathrm{div}(\varrho_i e_i \mathbf{v}_i + \mathbf{q}_i) = \nabla \mathbf{v}_i : \mathbf{S}_i + l_i - \mathbf{v}_i \cdot (\mathbf{f}_i - \frac{1}{2} r_i \mathbf{v}_i))
$$

Alternative definition of internal energy:

$$
\varrho e := \sum_i \varrho_i e_i \text{ total internal energy } = \varrho (e_{\text{tot}} - \frac{1}{2} \mathbf{v}^2) - \sum_i \frac{1}{2} \varrho_i \mathbf{u}_i^2
$$

$$
P_i := -\frac{1}{3} \text{tr}(\mathbf{S}_i) \text{ partial pressures, } P_i = p_i + \Pi_i \text{ with } \Pi_i | E = 0
$$

$$
\mathbf{q} := \sum_i (\mathbf{q}_i + (\varrho_i e_i + p_i) \mathbf{u}_i) \text{ mixture heat flux, } p := \sum_i p_i
$$

mixture internal energy balance:

$$
\partial_t(\varrho e) + \text{div}(\varrho e \mathbf{v} + \mathbf{q}) = -\rho \text{div} \mathbf{v} + \sum_i \nabla \mathbf{v}_i : \mathbf{S}_i^{\circ}
$$

$$
- \sum_i \mathbf{u}_i \cdot (\mathbf{f}_i - r_i \mathbf{v}_i + \frac{1}{2} r_i \mathbf{u}_i - \nabla p_i)
$$

K ロ ▶ K 伊 ▶ K $2Q$ ミト

[Intro](#page-2-0) [TIP](#page-13-0) [Balances](#page-30-0) [Nonreactive](#page-52-0) [MS-Eqs](#page-63-0) [NPP](#page-79-0)

Balance of internal energy

Partial balance of internal energy:

$$
\partial_t(\varrho_i e_i) + \mathrm{div}(\varrho_i e_i \mathbf{v}_i + \mathbf{q}_i) = \nabla \mathbf{v}_i : \mathbf{S}_i + l_i - \mathbf{v}_i \cdot (\mathbf{f}_i - \frac{1}{2} r_i \mathbf{v}_i))
$$

Alternative definition of internal energy:

$$
\varrho e := \sum_i \varrho_i e_i \text{ total internal energy } = \varrho (e_{\text{tot}} - \frac{1}{2} \mathbf{v}^2) - \sum_i \frac{1}{2} \varrho_i \mathbf{u}_i^2
$$

$$
P_i := -\frac{1}{3} \text{tr}(\mathbf{S}_i) \text{ partial pressures, } P_i = p_i + \Pi_i \text{ with } \Pi_i | E = 0
$$

$$
\mathbf{q} := \sum_i (\mathbf{q}_i + (\varrho_i e_i + p_i) \mathbf{u}_i) \text{ mixture heat flux, } p := \sum_i p_i
$$

mixture internal energy balance:

$$
\partial_t(\varrho \mathbf{e}) + \mathrm{div}(\varrho \mathbf{e} \mathbf{v} + \mathbf{q}) = -\rho \, \mathrm{div} \, \mathbf{v} + \sum_i \nabla \mathbf{v}_i : \mathbf{S}_i^\circ
$$

$$
- \sum_i \mathbf{u}_i \cdot (\mathbf{f}_i - r_i \mathbf{v}_i + \frac{1}{2} r_i \mathbf{u}_i - \nabla p_i)
$$

 $2Q$ K ロ ▶ K 倒 ▶

Constitutive Modeling

Variables: $\rho_1, \ldots, \rho_N, v_1, \ldots, v_N, \varrho$ e

class-II model requires constitutive equations for:

$$
R_a, \quad \mathbf{S}_i, \quad \mathbf{f}_i - r_i \mathbf{v}_i, \quad \mathbf{q}
$$

- ∢ 母 ▶ - ∢ ヨ ▶ - ∢ ヨ ▶

へのへ

Decompose the partial stresses as $\mathbf{S}_i = -P_i \mathbf{I} + \mathbf{S}_i^{\circ} = -p_i \mathbf{I} + \mathbf{S}_i^{\text{irr}}$

We consider non-polar fluids, hence the stresses S_i are symmetric.

Universal Principles:

- **1** material frame indifference
- ² entropy principle (second law of thermodynamics)

Notation: any (local) solution of the PDE-system is called thermodynamic process
Constitutive Modeling

Variables: $\rho_1, \ldots, \rho_N, v_1, \ldots, v_N, \varrho$ e

class-II model requires constitutive equations for:

$$
R_a, \quad \mathbf{S}_i, \quad \mathbf{f}_i - r_i \mathbf{v}_i, \quad \mathbf{q}
$$

Decompose the partial stresses as $\mathbf{S}_i = -P_i \mathbf{I} + \mathbf{S}_i^{\circ} = -p_i \mathbf{I} + \mathbf{S}_i^{\text{irr}}$

We consider non-polar fluids, hence the stresses S_i are symmetric.

Universal Principles:

- **1** material frame indifference
- 2 entropy principle (second law of thermodynamics)

Notation: any (local) solution of the PDE-system is called thermodynamic process

The entropy principle comprises the following postulates:

1) There is an entropy/entropy-flux pair $(\varrho s, \Phi)$ as a material dependent quantity, satisfying the principle of material frame indifference (ϱ s is an objective scalar, Φ is an objective vector).

2) The pair $(\rho s, \Phi)$ satisfies the balance equation

 $\partial_t(\rho s) + \text{div}(\rho s \mathbf{v} + \Phi) = \zeta$,

where the entropy production ζ satisfies

 $\zeta > 0$ for every thermodynamic process.

≮ロト ⊀個 ▶ ⊀ 君 ▶ ⊀ 君 ▶

へのへ

Equilibria are characterized by $\zeta = 0$.

The entropy principle comprises the following postulates:

- 1) There is an entropy/entropy-flux pair $(\varrho s, \Phi)$ as a material dependent quantity, satisfying the principle of material frame indifference (ϱ s is an objective scalar, Φ is an objective vector).
- 2) The pair (ρs , Φ) satisfies the balance equation

$$
\partial_t(\varrho s) + \mathrm{div}(\varrho s \mathbf{v} + \Phi) = \zeta,
$$

where the entropy production ζ satisfies

 $\zeta > 0$ for every thermodynamic process.

へのへ

Equilibria are characterized by $\zeta = 0$.

3) Every admissible entropy flux is such that the entropy production becomes a sum of binary products according to

$$
\zeta = \sum_{m} \mathcal{N}_{m} \mathcal{P}_{m},
$$

where \mathcal{N}_m , \mathcal{P}_m denote factors of negative, resp. positive parity.

The parity of a time-dependent quantity characterizes its behavior under time reversal in the *unclosed* balance equations. Resulting rule:

- [\cdot] contains the time units s^k with k even \Rightarrow positive parity
- [\cdot] contains the time units s^k with k odd \Rightarrow negative parity

Note: parity replaces the classical concept of "flux \times driving force", since the latter is misleading!

3) Every admissible entropy flux is such that the entropy production becomes a sum of binary products according to

$$
\zeta = \sum_{m} \mathcal{N}_{m} \mathcal{P}_{m},
$$

where \mathcal{N}_m , \mathcal{P}_m denote factors of negative, resp. positive parity.

The parity of a time-dependent quantity characterizes its behavior under time reversal in the *unclosed* balance equations. Resulting rule:

- [\cdot] contains the time units s^k with k even \Rightarrow positive parity
- [\cdot] contains the time units s^k with k odd \Rightarrow negative parity

Note: parity replaces the classical concept of "flux \times driving force", since the latter is misleading!

4) Each binary product in the entropy production describes a dissipative mechanism which has to be introduced in advance.

Extended principle of detailed balance:

$\mathcal{N}_m \mathcal{P}_m > 0$ for every m and any thermodynamic process.

Note: the specific form of the decomposition into binary products is not unique and has to be chosen as part of the modeling. Even the number of dissipative mechanisms is not fixed, but can be changed.

This non-uniqueness is the basis for:

- introduction of cross-effects via entropy-neutral mixing
- improvement of classical TIP-models

4) Each binary product in the entropy production describes a dissipative mechanism which has to be introduced in advance.

Extended principle of detailed balance:

 $\mathcal{N}_m \mathcal{P}_m > 0$ for every m and any thermodynamic process.

Note: the specific form of the decomposition into binary products is not unique and has to be chosen as part of the modeling. Even the number of dissipative mechanisms is not fixed, but can be changed.

This non-uniqueness is the basis for:

- introduction of cross-effects via entropy-neutral mixing
- improvement of classical TIP-models

Consequences of the extended principle of detailed balance

• the closure between the co-factors in the entropy production,

$$
\zeta = \sum_{m} \mathcal{N}_{m} \mathcal{P}_{m} =: \langle \mathbf{N}, \mathbf{P} \rangle,
$$

decouples. In a linear (in \mathcal{N}_m , \mathcal{P}_m) constitutive theory, this enforces a block-diagonal closure.

Note: $\mathcal{N}_m \mathcal{P}_m$ refers to a single mechanism, but may itself be a sum.

structure of entropy production as $\zeta = \sum_m \mathcal{N}_m \mathcal{P}_m$ is **not unique** In particular: mixing of different fluxes or forces is possible!

$$
\zeta = \langle A\mathbf{N}, B\mathbf{P} \rangle = \langle \mathbf{N}, A^{\mathsf{T}} B\mathbf{P} \rangle = \langle \mathbf{N}, \mathbf{P} \rangle \quad \forall \mathbf{N}, \mathbf{P} \Rightarrow A^{-1} = B^{\mathsf{T}}
$$

the diagonal closure implies cross-effects with Onsager symmetry:

 $A\, {\mathsf N} := \Lambda B\, {\mathsf P}$ with $\Lambda = \operatorname{diag}(\lambda_i) \geq 0 \ \Rightarrow \ \mathsf N := B^{\mathsf T} \, \Lambda B\, {\mathsf P}$

$$
\mathbf{1} \cup \mathbf{1} \rightarrow \mathbf{1} \oplus \mathbf{1} \rightarrow \mathbf{1} \oplus \mathbf{1} \rightarrow \mathbf{1} \oplus \mathbf{1} \rightarrow \mathbf{1} \oplus \mathbf{1} \oplus
$$

Consequences of the extended principle of detailed balance

• the closure between the co-factors in the entropy production,

$$
\zeta = \sum_{m} \mathcal{N}_{m} \mathcal{P}_{m} =: \langle \mathbf{N}, \mathbf{P} \rangle,
$$

decouples. In a linear (in \mathcal{N}_m , \mathcal{P}_m) constitutive theory, this enforces a block-diagonal closure.

Note: $\mathcal{N}_m \mathcal{P}_m$ refers to a single mechanism, but may itself be a sum.

structure of entropy production as $\zeta = \sum_m \mathcal{N}_m \mathcal{P}_m$ is **not unique** In particular: mixing of different fluxes or forces is possible!

$$
\zeta = \langle A\mathbf{N}, B\mathbf{P} \rangle = \langle \mathbf{N}, A^{\mathsf{T}} B\mathbf{P} \rangle = \langle \mathbf{N}, \mathbf{P} \rangle \quad \forall \mathbf{N}, \mathbf{P} \Rightarrow A^{-1} = B^{\mathsf{T}}
$$

the diagonal closure implies cross-effects with Onsager symmetry:

$$
A\mathbf{N} := \Lambda B \mathbf{P} \text{ with } \Lambda = \text{diag}(\lambda_i) \ge 0 \ \Rightarrow \ \mathbf{N} := B^{\mathsf{T}} \Lambda B \mathbf{P}
$$

Example: Entropy Inequality of T.I.P.

the strengthened entropy principle can be used in T.I.P. !

$$
\zeta^{\text{TIP}} = \mathbf{q} \cdot \nabla \frac{1}{\mathbf{T}} + \sum_{i=1}^{N} \mathbf{j}_{i} \cdot \left(\nabla \frac{\mu_{i}}{\mathbf{T}} - \frac{\mathbf{b}_{i}}{\mathbf{T}} \right) + \frac{1}{\mathbf{T}} \mathbf{S}^{\circ} : \mathbf{D}^{\circ} - \frac{1}{\mathbf{T}} \Pi \operatorname{div} \mathbf{v} - \frac{1}{\mathbf{T}} \sum_{a=1}^{N_{R}} R_{a} \mathcal{A}_{a}
$$

Consider a coupling between volume variations and chemical reactions Parity of the factors Π , div **v**, R_a , A_a : +1, -1, -1, +1

Cross-effects via entropy neutral mixing:

 $\mathrm{div}\, \mathbf{v} \, \Pi + \sum_{a=1}^{N_R} R_a \mathcal{A}_a = \mathrm{div}\, \mathbf{v} \, \big(\Pi + \sum_{a=1}^{N_R} I_a \mathcal{A}_a \big) + \sum_{a=1}^{N_R} \big(R_a - I_a \mathrm{div}\, \mathbf{v} \big) \mathcal{A}_a$

diagonal closure (with $\lambda > 0$, $[L_{ab}]$ pos. def., symmetric):

$$
\operatorname{div} \mathbf{v} = \lambda \big(\Pi + \sum_{a=1}^{N_R} I_a \mathcal{A}_a \big), \quad R_a - I_a \operatorname{div} \mathbf{v} = \sum_{b=1}^{N_R} L_{ab} \mathcal{A}_b
$$

Example: Entropy Inequality of T.I.P.

the strengthened entropy principle can be used in T.I.P. !

$$
\zeta^{\text{TIP}} = \mathbf{q} \cdot \nabla \tfrac{1}{\mathcal{T}} + \sum_{i=1}^{N} \mathbf{j}_{i} \cdot \left(\nabla \tfrac{\mu_{i}}{\mathcal{T}} - \tfrac{\mathbf{b}_{i}}{\mathcal{T}} \right) + \tfrac{1}{\mathcal{T}} \mathbf{S}^{\circ} : \mathbf{D}^{\circ} - \tfrac{1}{\mathcal{T}} \Pi \operatorname{div} \mathbf{v} - \tfrac{1}{\mathcal{T}} \sum_{a=1}^{N_{R}} R_{a} \mathcal{A}_{a}
$$

Consider a coupling between volume variations and chemical reactions Parity of the factors Π , div **v**, R_a , A_a : +1, -1, -1, +1

Cross-effects via entropy neutral mixing:

 $\mathrm{div}\, \mathbf{v} \, \Pi + \sum_{a=1}^{N_R} R_a \mathcal{A}_a = \mathrm{div}\, \mathbf{v} \, \big(\Pi + \sum_{a=1}^{N_R} I_a \mathcal{A}_a \big) + \sum_{a=1}^{N_R} \big(R_a - I_a \mathrm{div}\, \mathbf{v} \big) \mathcal{A}_a$

diagonal closure (with $\lambda > 0$, $[L_{ab}]$ pos. def., symmetric):

$$
\operatorname{div} \mathbf{v} = \lambda \big(\Pi + \sum_{a=1}^{N_R} I_a \mathcal{A}_a \big), \quad R_a - I_a \operatorname{div} \mathbf{v} = \sum_{b=1}^{N_R} L_{ab} \mathcal{A}_b
$$

Hence the apparent anti-symmetry (Onsager-Casimir relations):

 $\Pi = \lambda^{-1} \hbox{div} \, {\bf v} - \sum_{a=1}^{N_R} \, l_a {\cal A}_a, \quad R_a = l_a \hbox{div} \, {\bf v} + \sum_{b=1}^{N_R} L_{ab} {\cal A}_b$

K ロン K 御 X K ヨン K ヨン - ヨ つくい

Example: Entropy Inequality of T.I.P.

the strengthened entropy principle can be used in T.I.P. !

$$
\zeta^{\text{TIP}} = \mathbf{q} \cdot \nabla \frac{1}{\mathcal{T}} + \sum_{i=1}^{N} \mathbf{j}_{i} \cdot \left(\nabla \frac{\mu_{i}}{\mathcal{T}} - \frac{\mathbf{b}_{i}}{\mathcal{T}} \right) + \frac{1}{\mathcal{T}} \mathbf{S}^{\circ} : \mathbf{D}^{\circ} - \frac{1}{\mathcal{T}} \Pi \operatorname{div} \mathbf{v} - \frac{1}{\mathcal{T}} \sum_{a=1}^{N_{R}} R_{a} \mathcal{A}_{a}
$$

Consider a coupling between volume variations and chemical reactions Parity of the factors Π , div **v**, R_a , A_a : +1, -1, -1, +1

Cross-effects via entropy neutral mixing:

 $\mathrm{div}\, \mathbf{v} \, \Pi + \sum_{a=1}^{N_R} R_a \mathcal{A}_a = \mathrm{div}\, \mathbf{v} \, \big(\Pi + \sum_{a=1}^{N_R} I_a \mathcal{A}_a \big) + \sum_{a=1}^{N_R} \big(R_a - I_a \mathrm{div}\, \mathbf{v} \big) \mathcal{A}_a$

diagonal closure (with $\lambda > 0$, $[L_{ab}]$ pos. def., symmetric):

$$
\operatorname{div} \mathbf{v} = \lambda \big(\Pi + \sum_{a=1}^{N_R} I_a \mathcal{A}_a \big), \quad R_a - I_a \operatorname{div} \mathbf{v} = \sum_{b=1}^{N_R} L_{ab} \mathcal{A}_b
$$

Hence the apparent anti-symmetry (Onsager-Casimir relations):

$$
\Pi = \lambda^{-1} \text{div} \, \mathbf{v} - \sum_{a=1}^{N_R} I_a \mathcal{A}_a, \quad R_a = I_a \text{div} \, \mathbf{v} + \sum_{b=1}^{N_R} L_{ab} \mathcal{A}_b
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ... つくい

For the considered fluid mixture class we also postulate:

5) The dissipative mechanisms are: multi-component diffusion, heat conduction, chemical reaction, viscous flow.

6) The entropy density is given as

$$
\varrho s = h(\varrho e, \varrho_1, \ldots, \varrho_N)
$$

with a strictly concave material function h.

The absolute temperature T and chemical potentials μ_i are defined as

$$
\frac{1}{T} := \frac{\partial \varrho s}{\partial \varrho e}, \qquad -\frac{\mu_i}{T} := \frac{\partial \varrho s}{\partial \varrho_i}
$$

∽≏ດ

For the considered fluid mixture class we also postulate:

- 5) The dissipative mechanisms are: multi-component diffusion, heat conduction, chemical reaction, viscous flow.
- 6) The entropy density is given as

$$
\varrho s = h(\varrho e, \varrho_1, \ldots, \varrho_N)
$$

with a strictly concave material function h.

The absolute temperature T and chemical potentials μ_i are defined as

$$
\frac{1}{T} := \frac{\partial \varrho s}{\partial \varrho e}, \qquad -\frac{\mu_i}{T} := \frac{\partial \varrho s}{\partial \varrho_i}
$$

へのへ

Entropy Principle evaluated

Evaluation of the entropy principle:

- **1** entropy flux: $\frac{\mathbf{q}}{T} - \sum_{i} \frac{\varrho_i \mathbf{u}_i \mu_i}{T}$
- $\textbf{2}$ Gibbs-Duhem equation: $\quad p+\varrho \psi -\sum_i \varrho_i \mu_i=0$
- **3** restrictions to constitutive equations for dissipative mechanisms:

Entropy inequality, i.e. $\zeta > 0$ with the entropy production rate

 $\zeta=-\frac{1}{\mathcal{T}}\sum_{a=1}^{N_{\mathcal{R}}}R_{a}\mathcal{A}_{a}+\frac{1}{\mathcal{T}}\sum_{i}\mathbf{S}_{i}^{\text{irr}}:\mathbf{D}_{i}+\sum_{i}\mathbf{q}_{i}\cdot\nabla\frac{1}{\mathcal{T}}$ $-\sum_i \mathbf{u}_i \cdot \left(\varrho_i \nabla \frac{\mu_i}{\mathcal{T}} + \frac{1}{\mathcal{T}} (\mathbf{f}_i - r_i \mathbf{v}_i + \frac{1}{2} r_i \mathbf{u}_i - \nabla p_i) - (\varrho_i e_i + p_i) \nabla \frac{1}{\mathcal{T}} \right)$

 $\mathbf{S}_i^{\text{irr}} = -\mathbf{\Pi}_i \mathbf{I} + \mathbf{S}_i^{\circ}$, i.e. $\mathbf{S}_i = -p_i \mathbf{I} + \mathbf{S}_i^{\text{irr}}$

Entropy Principle evaluated

Evaluation of the entropy principle:

• entropy flux:
$$
\Phi = \frac{\mathbf{q}}{T} - \sum_i \frac{\varrho_i \mathbf{u}_i \mu_i}{T}
$$

 $\textbf{2}$ Gibbs-Duhem equation: $\quad p+\varrho \psi -\sum_i \varrho_i \mu_i=0$

3 restrictions to constitutive equations for dissipative mechanisms:

Entropy inequality, i.e. $\zeta \geq 0$ with the entropy production rate

$$
\zeta = -\frac{1}{\tau} \sum_{a=1}^{N_R} R_a A_a + \frac{1}{\tau} \sum_i \mathbf{S}_i^{\text{irr}} : \mathbf{D}_i + \sum_i \mathbf{q}_i \cdot \nabla \frac{1}{\tau}
$$

$$
- \sum_i \mathbf{u}_i \cdot \left(\varrho_i \nabla \frac{\mu_i}{\tau} + \frac{1}{\tau} (\mathbf{f}_i - r_i \mathbf{v}_i + \frac{1}{2} r_i \mathbf{u}_i - \nabla p_i) - (\varrho_i e_i + p_i) \nabla \frac{1}{\tau} \right)
$$

$$
\mathbf{S}_i^{\text{irr}} = -\mathsf{\Pi}_i \mathsf{\mathbf{I}} + \mathsf{\mathbf{S}}_i^{\circ}, \text{ i.e. } \mathsf{\mathbf{S}}_i = -p_i \mathsf{\mathbf{I}} + \mathsf{\mathbf{S}}_i^{\text{irr}}
$$

[Motivation](#page-2-0)

2 [T.I.P. – Fickean vs. Maxwell-Stefan form](#page-13-0)

3 [Partial Balances and Constitutive Modeling Framework](#page-30-0)

4 [Closure for Non-Reactive Multicomponent Fluids](#page-52-0)

5 [The Maxwell-Stefan Equations and Electromigration](#page-63-0)

[The Nernst-Planck-Poisson System in nD](#page-79-0)

化重氮 化重

Nonreactive fluids without viscosity

entropy production without viscosity, no chemical reactions:

$$
\zeta = -\sum_i \mathbf{u}_i \cdot \left(\varrho_i \nabla \frac{\mu_i}{\tau} + \frac{1}{\tau} (\mathbf{f}_i - \nabla p_i) - h_i \nabla \frac{1}{\tau} \right) + \sum_i \mathbf{q}_i \cdot \frac{1}{\tau}
$$

with partial enthalpies $h_i := \varrho_i e_i + p_i$.

With short-hand notation:

$$
\zeta = -\sum_i \mathbf{u}_i \cdot \left(\mathbf{B}_i + \frac{1}{\mathcal{T}}\mathbf{f}_i\right) + \sum_i \mathbf{q}_i \cdot \nabla \frac{1}{\mathcal{T}}
$$

with

$$
\mathbf{B}_i := \varrho_i \nabla \frac{\mu_i}{T} - \frac{1}{T} \nabla p_i - h_i \nabla \frac{1}{T}
$$

The Gibbs-Duhem equation implies $\sum_i \mathbf{B}_i = 0$!

 $4.17 \times$ つくい

Nonreactive fluids without viscosity

entropy production without viscosity, no chemical reactions:

$$
\zeta = -\sum_i \mathbf{u}_i \cdot \left(\varrho_i \nabla \frac{\mu_i}{\tau} + \frac{1}{\tau} (\mathbf{f}_i - \nabla p_i) - h_i \nabla \frac{1}{\tau} \right) + \sum_i \mathbf{q}_i \cdot \frac{1}{\tau}
$$

with partial enthalpies $h_i := \varrho_i e_i + p_i$.

With short-hand notation:

$$
\zeta = -\sum_i \mathbf{u}_i \cdot \left(\mathbf{B}_i + \frac{1}{\tau} \mathbf{f}_i\right) + \sum_i \mathbf{q}_i \cdot \nabla \frac{1}{\tau}
$$

with

$$
\mathbf{B}_i := \varrho_i \nabla \frac{\mu_i}{\mathcal{T}} - \frac{1}{\mathcal{T}} \nabla p_i - h_i \nabla \frac{1}{\mathcal{T}}
$$

The Gibbs-Duhem equation implies $\sum_i \mathbf{B}_i = 0$!

メロメ メ御 メメ ミメ メミメ つくい

Exploiting the second law

The interaction terms f_i necessarily satisfy

$$
-\sum_{i=1}^N \mathbf{u}_i \cdot \left(\mathbf{B}_i + \frac{1}{\mathcal{T}} \mathbf{f}_i\right) \ge 0 \quad \text{ and } \quad \sum_{i=1}^N \mathbf{B}_i = 0, \quad \sum_{i=1}^N \mathbf{f}_i = 0
$$

Hence

$$
-\sum_{i=1}^{N-1} (\mathbf{u}_i - \mathbf{u}_N) \cdot \left(\mathbf{B}_i + \tfrac{1}{T} \mathbf{f}_i\right) \geq 0,
$$

with build-in constraints.

The standard linear Ansatz for $\mathbf{B}_i + \frac{1}{\mathcal{T}}\mathbf{f}_i$ is

$$
\mathbf{B}_{i}+\frac{1}{T}\mathbf{f}_{i}=-\sum_{j=1}^{N-1}\tau_{ij}\left(\mathbf{u}_{j}-\mathbf{u}_{N}\right) \qquad \text{(for } i=1,\ldots,N-1\text{)}
$$

 \leftarrow \Box

つへへ

with a positive (semi-)definite matrix $[\tau_{ii}]$.

Exploiting the second law

The interaction terms f_i necessarily satisfy

$$
-\sum_{i=1}^N \mathbf{u}_i \cdot \left(\mathbf{B}_i + \frac{1}{\mathcal{T}} \mathbf{f}_i\right) \ge 0 \quad \text{ and } \quad \sum_{i=1}^N \mathbf{B}_i = 0, \quad \sum_{i=1}^N \mathbf{f}_i = 0
$$

Hence

$$
-\sum_{i=1}^{N-1} (\mathbf{u}_i - \mathbf{u}_N) \cdot \left(\mathbf{B}_i + \frac{1}{T} \mathbf{f}_i\right) \geq 0,
$$

with build-in constraints.

The standard linear Ansatz for $\mathbf{B}_i + \frac{1}{\mathcal{T}}\mathbf{f}_i$ is

$$
\mathbf{B}_{i}+\frac{1}{T}\mathbf{f}_{i}=-\sum_{j=1}^{N-1}\tau_{ij}\left(\mathbf{u}_{j}-\mathbf{u}_{N}\right) \qquad \text{(for } i=1,\ldots,N-1\text{)}
$$

with a positive (semi-)definite matrix $[\tau_{ii}]$.

Closure for thermo-mechanical Interactions

Extension to $N \times N$ format (positive semi-definite):

$$
\tau_{Nj} = -\sum_{i=1}^{N-1} \tau_{ij} \ \ (i=1,\ldots,N-1), \quad \tau_{iN} = -\sum_{j=1}^{N-1} \tau_{ij} \ \ (j=1,\ldots,N)
$$

Straight forward computation:

$$
\mathbf{B}_{i}+\frac{1}{T}\mathbf{f}_{i}=-\sum_{j=1}^{N}\tau_{ij}\left(\mathbf{u}_{j}-\mathbf{u}_{N}\right)=-\sum_{j=1}^{N}\tau_{ij}\left(\mathbf{u}_{j}-\mathbf{u}_{i}\right)
$$

Assumption of binary type interactions: (C. Truesdell)

$$
\tau_{ij} = \tau_{ij}(T, \varrho_i, \varrho_j) \to 0 \quad \text{if } \varrho_i \to 0+ \text{ or } \varrho_j \to 0+
$$

This implies symmetry of $[\tau_{ij}]$! (evaluate $\sum_{i,j}\tau_{ij}\left(\mathbf{u}_{i}-\mathbf{u}_{j}\right)=0)$

 $\Rightarrow \quad \tau_{ij} = -\, f_{ij} \varrho_i \varrho_j \quad \text{ for } i \neq j \text{ with } f_{ij} = f_{ji} \geq 0, \; f_{ij} = f_{ij} (\varrho_i, \varrho_j, \mathcal{T}).$

→ 御 ▶ → 君 ▶ → 君 ▶ ∽≏ເ

Closure for thermo-mechanical Interactions

Extension to $N \times N$ format (positive semi-definite):

$$
\tau_{Nj} = -\sum_{i=1}^{N-1} \tau_{ij} \ \ (i=1,\ldots,N-1), \quad \tau_{iN} = -\sum_{j=1}^{N-1} \tau_{ij} \ \ (j=1,\ldots,N)
$$

Straight forward computation:

$$
\mathbf{B}_{i}+\frac{1}{T}\mathbf{f}_{i}=-\sum_{j=1}^{N}\tau_{ij}\left(\mathbf{u}_{j}-\mathbf{u}_{N}\right)=-\sum_{j=1}^{N}\tau_{ij}\left(\mathbf{u}_{j}-\mathbf{u}_{i}\right)
$$

Assumption of binary type interactions: (C. Truesdell)

$$
\tau_{ij} = \tau_{ij}(T, \varrho_i, \varrho_j) \to 0 \quad \text{if } \varrho_i \to 0+ \text{ or } \varrho_j \to 0+
$$

This implies symmetry of $[\tau_{ij}]$! (evaluate $\sum_{i,j}\tau_{ij}\left(\mathbf{u}_i-\mathbf{u}_j\right)=0)$

 $\Rightarrow \quad \tau_{ij} = -f_{ij} \varrho_i \varrho_j \quad \text{ for } i \neq j \text{ with } f_{ij} = f_{ji} \geq 0, \; f_{ij} = f_{ij}(\varrho_i, \varrho_j, \mathcal{T}).$

へのへ

Momentum Balance with Thermo-mechanical Interactions

partial momentum balances:

$$
\varrho_i(\partial_t \mathbf{v}_i + \mathbf{v}_i \cdot \nabla \mathbf{v}_i) + \nabla p_i = \mathbf{f}_i + \varrho_i \mathbf{b}_i
$$

with

$$
\mathbf{f}_i = -\varrho_i \mathsf{T} \nabla \frac{\mu_i}{\mathsf{T}} + \nabla p_i + h_i \mathsf{T} \nabla \frac{1}{\mathsf{T}} - \mathsf{T} \sum_j f_{ij} \varrho_i \varrho_j (\mathbf{v}_i - \mathbf{v}_j)
$$

class-II momentum balances (no viscosity, no chemical reactions): $\varrho_i\big(\partial_t\mathbf{v}_i+\mathbf{v}_i\cdot\nabla\mathbf{v}_i\big)=-\varrho_i\,T\nabla\frac{\mu_i}{T}+Th_i\nabla\frac{1}{T}-T\sum_jf_{ij}\varrho_i\varrho_j\big(\mathbf{v}_i-\mathbf{v}_j\big)+\varrho_i\mathbf{b}_i$

∢ 倒 ▶ . ∢ ヨ ▶ . ∢ ヨ ▶

へのへ

Momentum Balance with Thermo-mechanical Interactions

partial momentum balances:

$$
\varrho_i(\partial_t \mathbf{v}_i + \mathbf{v}_i \cdot \nabla \mathbf{v}_i) + \nabla p_i = \mathbf{f}_i + \varrho_i \mathbf{b}_i
$$

with

$$
\mathbf{f}_i = -\varrho_i \mathit{T} \nabla \frac{\mu_i}{\mathit{T}} + \nabla p_i + h_i \mathit{T} \nabla \frac{1}{\mathit{T}} - \mathit{T} \sum_j f_{ij} \varrho_i \varrho_j (\mathbf{v}_i - \mathbf{v}_j)
$$

class-II momentum balances (no viscosity, no chemical reactions): $\varrho_i\big(\partial_t\mathbf{v}_i+\mathbf{v}_i\cdot\nabla\mathbf{v}_i\big)=-\varrho_i\,T\nabla\frac{\mu_i}{T}+Th_i\nabla\frac{1}{T}-T\sum_jf_{ij}\varrho_i\varrho_j(\mathbf{v}_i-\mathbf{v}_j)+\varrho_i\mathbf{b}_i$

special case of isothermal conditions:

$$
\varrho_i(\partial_t \mathbf{v}_i + \mathbf{v}_i \cdot \nabla \mathbf{v}_i) = -\varrho_i \nabla \mu_i - \mathcal{T} \sum_j f_{ij} \varrho_i \varrho_j (\mathbf{v}_i - \mathbf{v}_j) + \varrho_i \mathbf{b}_i
$$

special case of a *simple mixture:* $\varrho \psi(\mathcal{T}, \varrho_1, \dots, \varrho_N) = \sum_i \varrho_i \psi_i(\mathcal{T}, \varrho_i)$ $\varrho_i\big(\partial_t{\sf v}_i+{\sf v}_i\cdot\nabla{\sf v}_i\big)=-\nabla p_i-{\cal T}\sum_jf_{ij}\varrho_i\varrho_j({\sf v}_i-{\sf v}_j)+\varrho_i{\sf b}_i$

> ∽≏ດ

Momentum Balance with Thermo-mechanical Interactions

partial momentum balances:

$$
\varrho_i(\partial_t \mathbf{v}_i + \mathbf{v}_i \cdot \nabla \mathbf{v}_i) + \nabla p_i = \mathbf{f}_i + \varrho_i \mathbf{b}_i
$$

with

$$
\mathbf{f}_i = -\varrho_i \mathit{T} \nabla \frac{\mu_i}{\mathit{T}} + \nabla p_i + h_i \mathit{T} \nabla \frac{1}{\mathit{T}} - \mathit{T} \sum_j f_{ij} \varrho_i \varrho_j (\mathbf{v}_i - \mathbf{v}_j)
$$

class-II momentum balances (no viscosity, no chemical reactions): $\varrho_i\big(\partial_t\mathbf{v}_i+\mathbf{v}_i\cdot\nabla\mathbf{v}_i\big)=-\varrho_i\,T\nabla\frac{\mu_i}{T}+Th_i\nabla\frac{1}{T}-T\sum_jf_{ij}\varrho_i\varrho_j(\mathbf{v}_i-\mathbf{v}_j)+\varrho_i\mathbf{b}_i$

special case of isothermal conditions:

$$
\varrho_i(\partial_t \mathbf{v}_i + \mathbf{v}_i \cdot \nabla \mathbf{v}_i) = -\varrho_i \nabla \mu_i - \mathcal{T} \sum_j f_{ij} \varrho_i \varrho_j (\mathbf{v}_i - \mathbf{v}_j) + \varrho_i \mathbf{b}_i
$$

special case of a *simple mixture:* $\varrho \psi(\mathcal{T}, \varrho_1, \dots, \varrho_N) = \sum_i \varrho_i \psi_i(\mathcal{T}, \varrho_i)$ $\varrho_i\big(\partial_t{\sf v}_i+{\sf v}_i\cdot\nabla{\sf v}_i\big)=-\nabla\rho_i-{\cal T}\sum_jf_{ij}\varrho_i\varrho_j({\sf v}_i-{\sf v}_j)+\varrho_i{\sf b}_i$

> K ロ ⊁ K 御 ≯ K 君 ⊁ K 君 ≯ … 君 へのへ

Partial Momentum Balances due to Stefan

SITZHNGSBERICHTE nee

MATHEMATISCH-NATURWISSENSCHAFTLICHEN CLASSE

DES KAISEBLICHEN

AKADEMIE DER WISSENSCHAFTEN.

LXIII, BAND, II, ABTHEILUNG, J AHRGANG 1871. - HEFT I BIS V.

(Mit 18 Tafeln und 25 Holzschnitten.)

WIEN. AUS DER K. K. HOF- UND STAATSDEUCKEREL

IN COMMISSION BEI CARL GEROLD'S SONN, BUCHIEÄNDLER DER KAISSRLICHEN AKADEMIE DER WISSENSCHAFTEN. $1871.$

Über das Gleichgewicht und die Bewegung, insbesondere die Diffusion von Gasgemengen.

> Von J. Stefan. wirklichem Mitgliede der kats. Akademie der Wissenschaften

In einem Gemenge erfährt jedes einzelne Theilchen eines Gases, wenn es sich bewegt, von jedem andern Gase einen Widerstand proportional der Dichte dieses Gases und der relativen Geschwindigkeit beider. Auf die Einheit des Volumens kommt also ein dem Producte der Dichten der beiden Gase und ihrer relativen Geschwindigkeit proportionaler Widerstand in Rechnung. Besteht das Gemenge

aus mehr Gasen, so ist der Widerstand für jedes einzelne gleich der Summe der Widerstände, mit denen ihm die andern, jedes für sich gedacht, entgegenwirkten. Auf Grund dieser Annahme werden im

Handelt es sich um ein Gemenge von mehr als zwei Gasen, so kommt zu dem Widerstande, welchen ein Theilchen des ersten Gases in seiner Bewegung vom zweiten Gase erfährt, der vom dritten, vierten Gase u. s. w. hinzu, so dass man z. B. für ein Gemenge von drei Gasen die Gleichungen hat

$$
\begin{aligned} \rho_{t}\xi_{t}=&\rho_{t}X_{t}-\frac{d p_{t}}{dx}-A_{11}e_{t} \rho_{t}\left(u_{t}-u_{t}\right)-A_{13}e_{t} \rho_{3}\left(u_{t}-u_{b}\right)\\ \rho_{t}\xi_{2}=&\rho_{2}X_{t}-\frac{d p_{t}}{dx}-A_{11}e_{t} \rho_{2}\left(u_{t}-u_{t}\right)-A_{23}e_{1}e_{3}\left(u_{t}-u_{b}\right)\\ \rho_{3}\xi_{3}=&\rho_{2}X_{3}-\frac{d p_{3}}{dx}-A_{11}e_{t} \rho_{3}\left(u_{3}-u_{t}\right)-A_{23}e_{1}e_{3}\left(u_{2}-u_{b}\right) \end{aligned} \tag{3}
$$

worin die Bedeutungen der mit dem Index 3 versehenen Grössen nach den eingeführten Bezeichungen ohne weiters klar sind.

$$
\left\langle \Box \rightarrow \left\langle \Box \Box \right\rangle \right. \left\langle \Box \right\rangle \rightarrow \left\langle \
$$

[Motivation](#page-2-0)

- 2 [T.I.P. Fickean vs. Maxwell-Stefan form](#page-13-0)
- 3 [Partial Balances and Constitutive Modeling Framework](#page-30-0)
- 4 [Closure for Non-Reactive Multicomponent Fluids](#page-52-0)
- 5 [The Maxwell-Stefan Equations and Electromigration](#page-63-0)

へのへ

[The Nernst-Planck-Poisson System in nD](#page-79-0)

Consider the difference: momentum of species $i - y_i \times$ total momentum $\varrho_i(\partial_t + \mathsf{v}\cdot\nabla)\mathsf{u}_i + \varrho_i\mathsf{u}_i\cdot\nabla\mathsf{v}_i =$ $y_i \nabla \rho - \varrho_i \nabla \mu_i + \mathcal{T} (h_i - \varrho_i \mu_i) \nabla \frac{1}{\mathcal{T}} + \varrho_i (\mathbf{b}_i - \mathbf{b}) - \mathcal{T} \sum_j f_{ij} \varrho_i \varrho_j (\mathbf{u}_i - \mathbf{u}_j)$

nondimensionalized form:

$$
\frac{\partial V}{\partial \zeta} \nabla_j (\partial_t^* \mathbf{u}_j^* + \mathbf{v}^* \cdot \nabla^* \mathbf{u}_j^* + \mathbf{u}_i^* \cdot \nabla^* \mathbf{v}_j^*) =
$$
\n
$$
y_i \frac{\nabla^* \rho^*}{\rho^*} - \frac{c_0 R T_0}{\rho_0} y_i \nabla^* \mu_j^* - \left(\frac{h_0}{\rho_0} \frac{h_j^*}{\rho^*} - \frac{c_0 R T_0}{\rho_0} y_i \mu_j^* \right) \nabla^* \ln T^*
$$
\n
$$
+ \frac{\rho_0 BL}{\rho_0} y_i (\mathbf{b}_j^* - \mathbf{b}^*) - \frac{c_0 R T_0}{\rho_0} \frac{UL}{D} \rho^* T^* \sum_j \frac{y_i y_j}{M_i^* M_j^* D_{ij}^*} (\mathbf{u}_j^* - \mathbf{u}_j^*)
$$

some characteristic reference quantities:

U diffusion velocity, V mixture velocity, $\tau = L/V$ convective time scale, $C = \sqrt{p_0/\varrho_0}$ about the speed of sound in gas mixture

Consider the difference: momentum of species $i - y_i \times$ total momentum $\varrho_i(\partial_t + \mathsf{v}\cdot\nabla)\mathsf{u}_i + \varrho_i\mathsf{u}_i\cdot\nabla\mathsf{v}_i =$

 $y_i \nabla \rho - \varrho_i \nabla \mu_i + \mathcal{T} (h_i - \varrho_i \mu_i) \nabla \frac{1}{\mathcal{T}} + \varrho_i (\mathbf{b}_i - \mathbf{b}) - \mathcal{T} \sum_j f_{ij} \varrho_i \varrho_j (\mathbf{u}_i - \mathbf{u}_j)$

nondimensionalized form:

$$
\frac{\partial V}{\partial \zeta} \mathbf{y}_i (\partial_t^* \mathbf{u}_i^* + \mathbf{v}^* \cdot \nabla^* \mathbf{u}_i^* + \mathbf{u}_i^* \cdot \nabla^* \mathbf{v}_i^*) =
$$
\n
$$
y_i \frac{\nabla^* \rho^*}{\varrho^*} - \frac{c_0 R T_0}{\rho_0} y_i \nabla^* \mu_i^* - \left(\frac{h_0}{\rho_0} \frac{h_i^*}{\varrho^*} - \frac{c_0 R T_0}{\rho_0} y_i \mu_i^* \right) \nabla^* \ln T^*
$$
\n
$$
+ \frac{\varrho_0 BL}{\rho_0} y_i (\mathbf{b}_i^* - \mathbf{b}^*) - \frac{c_0 R T_0}{\rho_0} \frac{UL}{D} \varrho^* T^* \sum_j \frac{y_i y_j}{M_i^* M_j^*} \mathbf{B}_{ij}^* (\mathbf{u}_i^* - \mathbf{u}_j^*)
$$

some characteristic reference quantities:

U diffusion velocity, V mixture velocity, $\tau = L/V$ convective time scale, $C=\sqrt{\rho_0/\varrho_0}$ about the speed of sound in gas mixture

Approximation for $\frac{U}{C}\frac{V}{C}\ll 1$: generalized Maxwell-Stefan equations

$$
-\sum_{j\neq i}\frac{y_j\mathbf{i}_j-y_i\mathbf{i}_j}{cM_iM_j\oplus_{ij}}=\frac{y_i}{RT}\nabla\mu_i-\frac{y_i}{\varrho RT}\nabla p+\frac{\varrho_i\mu_i-h_i}{\varrho R}\nabla\frac{1}{T}-\frac{y_i}{\varrho RT}(\mathbf{b}_i-\mathbf{b})
$$

Phenomena: molecular, pressure, thermo- (partially) & forced diffusion

Chemical Eng. version of the generalized MS-eqs (isothermal case)*:

$$
-\sum_{j\neq i}\frac{x_j\mathbf{J}_i - x_i\mathbf{J}_j}{c\mathbf{D}_{ij}} = \frac{x_i}{RT}\nabla_p\mu_i^{\text{mol}} + \frac{\phi_i - y_i}{\varrho RT}\nabla_p - \frac{y_i}{\varrho RT}(\mathbf{b}_i - \mathbf{b})
$$

 x_i molar fractions, J_i molar mass fluxes, $\mu_i^{\mathrm{mol}} = M_i \mu_i$ molar based chemical potential

*R. Taylor, R. Krishna: Multicomponent Mass Transfer, 1993

Approximation for $\frac{U}{C}\frac{V}{C}\ll 1$: generalized Maxwell-Stefan equations

$$
-\sum_{j\neq i}\frac{y_j\mathbf{i}_j-y_i\mathbf{i}_j}{cM_iM_j\oplus y_j}=\frac{y_i}{RT}\nabla\mu_i-\frac{y_i}{\varrho RT}\nabla p+\frac{\varrho_i\mu_i-h_i}{\varrho R}\nabla\frac{1}{T}-\frac{y_i}{\varrho RT}(\mathbf{b}_i-\mathbf{b})
$$

Phenomena: molecular, pressure, thermo- (partially) & forced diffusion Chemical Eng. version of the generalized MS-eqs (isothermal case)*:

$$
-\sum_{j\neq i}\frac{x_j\mathbf{J}_i - x_i\mathbf{J}_j}{c\,\mathbf{D}_{ij}} = \frac{x_i}{RT}\nabla_p\mu_i^{\text{mol}} + \frac{\phi_i - y_i}{\varrho RT}\nabla_p - \frac{y_i}{\varrho RT}(\mathbf{b}_i - \mathbf{b})
$$

 x_i molar fractions, J_i molar mass fluxes, $\mu_i^{\mathrm{mol}} = M_i \mu_i$ molar based chemical potential

*R. Taylor, R. Krishna: Multicomponent Mass Transfer, 1993

Thermodynamic consistency?

The mass fluxes \mathbf{i}_i determined by the gen. Maxwell-Stefan equations (and $\sum_i \mathbf{j}_i = 0$) need to satisfy:

$$
\zeta^{\text{TIP}} = \left(\alpha \nabla \frac{1}{\tau} + \sum_i h_i \mathbf{u}_i\right) \cdot \nabla \frac{1}{\tau} - \frac{1}{\tau} \sum_i \mathbf{j}_i \cdot \left(\mathcal{T} \nabla \frac{\mu_i}{\tau} - \mathbf{b}_i\right) \geq 0
$$
!

Instead of inverting the MS-system, we use

$$
-T\sum_j f_{ij} \varrho_i \varrho_j (\mathbf{u}_i - \mathbf{u}_j) = \varrho_i T \nabla \frac{\mu_i}{T} - y_i \nabla p - h_i T \nabla \frac{1}{T} - \varrho_i (\mathbf{b}_i - \mathbf{b})
$$

to eliminate

$$
T\nabla \frac{\mu_i}{T} - \mathbf{b}_i - \frac{h_i}{\varrho_i} T\nabla \frac{1}{T}
$$

 4.17 ± 1.0

へのへ

Thermodynamic consistency?

The mass fluxes j_i determined by the gen. Maxwell-Stefan equations (and $\sum_i \mathbf{j}_i = 0$) need to satisfy:

$$
\zeta^{\text{TIP}} = \left(\alpha \nabla \frac{1}{\tau} + \sum_i h_i \mathbf{u}_i\right) \cdot \nabla \frac{1}{\tau} - \frac{1}{\tau} \sum_i \mathbf{j}_i \cdot \left(\mathcal{T} \nabla \frac{\mu_i}{\tau} - \mathbf{b}_i\right) \geq 0
$$
!

Instead of inverting the MS-system, we use

$$
-T\sum_j f_{ij} \varrho_i \varrho_j (\mathbf{u}_i - \mathbf{u}_j) = \varrho_i T \nabla \frac{\mu_i}{T} - y_i \nabla p - h_i T \nabla \frac{1}{T} - \varrho_i (\mathbf{b}_i - \mathbf{b})
$$

to eliminate

$$
T\nabla \frac{\mu_i}{T}-\mathbf{b}_i-\frac{h_i}{\varrho_i}T\nabla \frac{1}{T}
$$

This yields:

$$
\zeta^{\text{TIP}} = \alpha \big(\nabla \frac{1}{T}\big)^2 + \frac{1}{2} \sum_{i,j} f_{ij} \varrho_i \varrho_j \big(\mathbf{u}_i - \mathbf{u}_j\big)^2 \ge 0
$$

 4.17 ± 1.0 つくい

Thermodynamic consistency?

The mass fluxes j_i determined by the gen. Maxwell-Stefan equations (and $\sum_i \mathbf{j}_i = 0$) need to satisfy:

$$
\zeta^{\text{TIP}} = \left(\alpha \nabla \frac{1}{\tau} + \sum_i h_i \mathbf{u}_i\right) \cdot \nabla \frac{1}{\tau} - \frac{1}{\tau} \sum_i \mathbf{j}_i \cdot \left(\mathcal{T} \nabla \frac{\mu_i}{\tau} - \mathbf{b}_i\right) \geq 0
$$
!

Instead of inverting the MS-system, we use

$$
-T\sum_j f_{ij} \varrho_i \varrho_j (\mathbf{u}_i - \mathbf{u}_j) = \varrho_i T \nabla \frac{\mu_i}{T} - y_i \nabla p - h_i T \nabla \frac{1}{T} - \varrho_i (\mathbf{b}_i - \mathbf{b})
$$

to eliminate

$$
T\nabla \frac{\mu_i}{T}-\mathbf{b}_i-\frac{h_i}{\varrho_i}T\nabla \frac{1}{T}
$$

This yields:

$$
\zeta^{\text{TIP}} = \alpha \big(\nabla \frac{1}{T}\big)^2 + \frac{1}{2} \sum_{i,j} f_{ij} \varrho_i \varrho_j \big(\mathbf{u}_i - \mathbf{u}_j\big)^2 \ge 0
$$

 4.17 ± 1.0 つくい [Intro](#page-2-0) [TIP](#page-13-0) [Balances](#page-30-0) [Nonreactive](#page-52-0) MS-Eas [NPP](#page-79-0)

From Maxwell-Stefan to Nernst-Planck

Assume dilute solution: $x_0 \approx 1$, $x_i \ll 1$ for $i = 1, ..., N$. Then

$$
-\frac{1}{D_{i0}}\mathbf{j}_{i}=\frac{c_{i}}{RT}\nabla_{p,T}\mu_{i}+\frac{\phi_{i}-y_{i}}{\varrho RT}\nabla p-\frac{\varrho_{i}}{RT}(\mathbf{b}_{i}-\mathbf{b})\quad i=1,\ldots,N
$$

chemical potentials: $\mu_i(T, p, x) = g_i(T, p) + RT \log x_i$, $i = 1, \ldots, N$

forces on ions:
$$
\mathbf{b}_i = -\frac{F}{M_i} z_i \nabla \phi
$$
 (*z_i* charge numbers)

electrical potential: $-\nabla \cdot (\epsilon \nabla \phi) = F \sum_{k=0}^{N} z_k c_k$

neglecting pressure diffusion (& assuming $c \approx const$):

$$
\mathbf{j}_i = -D_i\big(\nabla c_i + \frac{F}{RT}\big(z_i c_i - \sum_{k=0}^N z_k c_k\big)\nabla \phi\big), \quad i=1,\ldots,N.
$$

つくい
From Maxwell-Stefan to Nernst-Planck

Assume dilute solution: $x_0 \approx 1$, $x_i \ll 1$ for $i = 1, ..., N$. Then

$$
-\frac{1}{D_{i0}}\mathbf{j}_{i}=\frac{c_{i}}{RT}\nabla_{p,T}\mu_{i}+\frac{\phi_{i}-y_{i}}{\varrho RT}\nabla p-\frac{\varrho_{i}}{RT}(\mathbf{b}_{i}-\mathbf{b})\quad i=1,\ldots,N
$$

chemical potentials: $\mu_i(T, p, x) = g_i(T, p) + RT \log x_i$, $i = 1, \ldots, N$

forces on ions: $\mathbf{b}_i = -\frac{F}{M_i} z_i \nabla \phi$ (z_i charge numbers)

electrical potential: $-\nabla \cdot (\epsilon \nabla \phi) = F \sum_{k=0}^{N} z_k c_k$

neglecting pressure diffusion ($\&$ assuming $c \approx const$):

$$
\mathbf{j}_i = -D_i\big(\nabla c_i + \frac{F}{RT}\big(z_i c_i - \sum_{k=0}^N z_k c_k\big)\nabla \phi\big), \quad i=1,\ldots,N.
$$

 $\mathbf{b}_0 = 0! \Rightarrow \mathbf{b}_i - \mathbf{b} = \mathbf{b}_i - \sum_{k=0}^N y_k \mathbf{b}_k = (1 - y_i) \mathbf{b}_i + \sum_{i \neq k=1}^N y_k \mathbf{b}_k \approx \mathbf{b}_i,$

assuming again a dilute solution.

K ロ ⊁ K 御 ≯ K 君 ⊁ K 君 ≯ … 君 つくい

From Maxwell-Stefan to Nernst-Planck

Assume dilute solution: $x_0 \approx 1$, $x_i \ll 1$ for $i = 1, ..., N$. Then

$$
-\frac{1}{D_{i0}}\mathbf{j}_{i}=\frac{c_{i}}{RT}\nabla_{p,T}\mu_{i}+\frac{\phi_{i}-y_{i}}{\varrho RT}\nabla p-\frac{\varrho_{i}}{RT}(\mathbf{b}_{i}-\mathbf{b})\quad i=1,\ldots,N
$$

chemical potentials: $\mu_i(T, p, x) = g_i(T, p) + RT \log x_i$, $i = 1, \ldots, N$

forces on ions: $\mathbf{b}_i = -\frac{F}{M_i} z_i \nabla \phi$ (z_i charge numbers)

electrical potential: $-\nabla \cdot (\epsilon \nabla \phi) = F \sum_{k=0}^{N} z_k c_k$

neglecting pressure diffusion ($\&$ assuming $c \approx const$):

$$
\mathbf{j}_i = -D_i\big(\nabla c_i + \frac{F}{RT}\big(z_i c_i - \sum_{k=0}^N z_k c_k\big)\nabla \phi\big), \quad i=1,\ldots,N.
$$

$$
\mathbf{b}_0 = 0! \ \Rightarrow \ \mathbf{b}_i - \mathbf{b} = \mathbf{b}_i - \sum_{k=0}^{N} y_k \mathbf{b}_k = (1 - y_i) \mathbf{b}_i + \sum_{i \neq k=1}^{N} y_k \mathbf{b}_k \approx \mathbf{b}_i,
$$

assuming again a dilute solution.

From Maxwell-Stefan to Nernst-Planck

Assume dilute solution: $x_0 \approx 1$, $x_i \ll 1$ for $i = 1, ..., N$. Then

$$
-\tfrac{1}{D_{i0}}\mathbf{j}_i=\tfrac{c_i}{RT}\nabla_{p,T}\mu_i+\tfrac{\phi_i-y_i}{\varrho RT}\nabla p-\tfrac{\varrho_i}{RT}(\mathbf{b}_i-\mathbf{b})\quad i=1,\ldots,N
$$

chemical potentials: $\mu_i(T, p, x) = g_i(T, p) + RT \log x_i$, $i = 1, \ldots, N$

forces on ions: $\mathbf{b}_i = -\frac{F}{M_i} z_i \nabla \phi$ (z_i charge numbers)

electrical potential: $-\nabla \cdot (\epsilon \nabla \phi) = F \sum_{k=0}^{N} z_k c_k$

neglecting pressure diffusion ($\&$ assuming $c \approx const$):

$$
\mathbf{j}_i=-D_i(\nabla c_i+\tfrac{F}{RT}z_ic_i\nabla\phi),\quad i=1,\ldots,N.
$$

 $\mathbf{b}_0 = 0! \Rightarrow \mathbf{b}_i - \mathbf{b} = \mathbf{b}_i - \sum_{k=0}^{N} y_k \mathbf{b}_k = (1 - y_i) \mathbf{b}_i + \sum_{i \neq k=1}^{N} y_k \mathbf{b}_k \approx \mathbf{b}_i,$

assuming again a dilute solution.

Remarks on the Nernst-Planck fluxes

Shortcomings of the specialization to Nernst-Planck:

- **•** If used for all constituents, Nernst-Planck (like Fickean) fluxes are inconsistent with the continuity equation
- **•** If only used for the dilute components, Nernst-Planck (like Fickean) fluxes do not yield pointwise upper bounds
- Even for globally dilute mixtures, the diluteness assumption breaks down near interfaces (walls). The solvent concentration can actually approach zero when transversing the double layer at a wall!
- Pressure effects are usually not negligible (especially near walls).

Implications

Implication for modeling transport of ions in solution:

Use the full set of balance equations together with thermodynamically consistent fluxes from Maxwell-Stefan theory instead of only mass balances with Nernst-Planck fluxes!

For first results from a complete and thermodynamically consistent model see the recent paper by Dreyer, Guhlke and Müller: "Overcoming the shortcomings of the Nernst-Planck model", Phys. Chem. Chem. Phys. 15, 7075-86 (2013).

In particular, it is shown there that the complete model can be applied simultaneously inside the bulk and in the boundary layer.

∽≏ດ

Implications

Implication for modeling transport of ions in solution:

Use the full set of balance equations together with thermodynamically consistent fluxes from Maxwell-Stefan theory instead of only mass balances with Nernst-Planck fluxes!

For first results from a complete and thermodynamically consistent model see the recent paper by Dreyer, Guhlke and Müller: "Overcoming the shortcomings of the Nernst-Planck model", Phys. Chem. Chem. Phys. 15, 7075-86 (2013).

In particular, it is shown there that the complete model can be applied simultaneously inside the bulk and in the boundary layer.

Final Remark: Extension to chemically reacting fluid mixtures exists.

∽≏ດ

Implications

Implication for modeling transport of ions in solution:

Use the full set of balance equations together with thermodynamically consistent fluxes from Maxwell-Stefan theory instead of only mass balances with Nernst-Planck fluxes!

For first results from a complete and thermodynamically consistent model see the recent paper by Dreyer, Guhlke and Müller: "Overcoming the shortcomings of the Nernst-Planck model", Phys. Chem. Chem. Phys. 15, 7075-86 (2013).

In particular, it is shown there that the complete model can be applied simultaneously inside the bulk and in the boundary layer.

Final Remark: Extension to chemically reacting fluid mixtures exists.

[Motivation](#page-2-0)

- 2 [T.I.P. Fickean vs. Maxwell-Stefan form](#page-13-0)
- 3 [Partial Balances and Constitutive Modeling Framework](#page-30-0)
- 4 [Closure for Non-Reactive Multicomponent Fluids](#page-52-0)
- 5 [The Maxwell-Stefan Equations and Electromigration](#page-63-0)
- 6 [The Nernst-Planck-Poisson System in nD](#page-79-0)

Joint work with A. Fischer, M. Pierre, G. Rolland

Navier-Stokes-Nernst-Planck-Poisson system (NSNPP)

$$
(NS) \begin{cases} \n\partial_t v + (v \cdot \nabla) v - \Delta v + \nabla p + \sum_{i=1}^N z_i c_i \nabla \Phi = 0 & \text{in } \Omega, \\ \n\text{div } v = 0 & \text{in } \Omega, \\ \nu = 0 & \text{on } \partial \Omega, \\ \n\text{(NP)} \begin{cases} \n\partial_t c_i + \text{div}(c_i v - d_i \nabla c_i - d_i z_i c_i \nabla \Phi) = 0 & \text{in } \Omega, \\ \n\partial_v c_i + z_i c_i \partial_v \Phi = 0 & \text{on } \partial \Omega, \\ \n\partial_v c_i + z_i c_i \partial_v \Phi = 0 & \text{on } \partial \Omega, \\ \n\text{(P)} \begin{cases} \n-\Delta \Phi - \sum_{i=1}^N z_i c_i = \sigma & \text{in } \Omega, \\ \n\partial_v \Phi + \tau \Phi = \xi & \text{on } \partial \Omega. \n\end{cases} \n\end{cases}
$$

Unknowns: v velocity field, p pressure, c_i concentration of species i , Φ electrical potential.

Data: $d_i(t, x)$ diffusivity, $\sigma(x)$ fixed charges, $\xi(x)$ boundary datum. Constants: $z_i \in \mathbf{Z}$ charge number, $\tau > 0$ boundary capacity.

Energy dissipation for (NSNPP)

Exploit the following Lyapunov structure:

 \bullet Define the functionals E and D by

$$
E(v, c, \Phi) := \frac{1}{2} \int_{\Omega} |v|^2 + \sum_{i=1}^N \int_{\Omega} c_i \log c_i + \frac{1}{2} \int_{\Omega} |\nabla \Phi|^2 + \frac{\tau}{2} \int_{\partial \Omega} |\Phi|^2,
$$

$$
D(v, c, \Phi) := \int_{\Omega} |\nabla v|^2 + \sum_{i=1}^N \int_{\Omega} \frac{1}{d_i c_i} |d_i \nabla c_i + d_i z_i c_i \nabla \Phi|^2 \ge 0.
$$

Given a regular solution (v, c, Φ) to (NSNPP), the functional

$$
V(t) = E(v(t), c(t), \Phi(t))
$$

is non-increasing in time with derivative

$$
\dot{V}(t)=-D(v(t),c(t),\Phi(t))\leq 0.
$$

重

 200

Analogous situation for pure (NPP) without kinetic energy term.

Global existence for NPP in three or higher dimensions

Theorem (B., Fischer, Pierre, Rolland, Nonl. Anal. TMA '14)

Let $n \in \mathbb{N}$, $\Omega \subset \mathbb{R}^n$ bounded and sufficiently smooth and

- $d_i \in L^\infty_{loc}(\mathbb{R}_+;L^\infty(\Omega))$, $0 < \underline{d}(\mathcal{T}) \leq d_i(t,x) \leq \overline{d}(\mathcal{T}) < \infty$ a.e. on $Q_\mathcal{T}$.
- $c^0 \in L^2(\Omega)^+$, $\sigma = 0$, $\xi \in L^2(\partial\Omega)$.

Then there exist $c \in L^{\infty}(\mathbb{R}_+; L^1(\Omega))$ and $\Phi \in L^{\infty}(\mathbb{R}_+; H^1(\Omega))$ such that (NPP) is satisfied in the following sense:

For all $T>0$, $\ c_i\in L^1(0,\,T;\, W_{loc}^{1,1}(\Omega))$, $d_i\nabla c_i+d_i z_i c_i\nabla\Phi\in L^1(Q_T)$ s.t., for all $\psi \in C^{\infty}(\overline{Q_T})$ with $\psi(T) = 0$, $\varphi \in C^{\infty}(\overline{\Omega})$,

$$
\int_{Q_T} -c_i \partial_t \psi + (d_i \nabla c_i + d_i z_i c_i \nabla \Phi) \nabla \psi = \int_{\Omega} c_i^0 \psi(0),
$$

$$
\int_{\Omega} \nabla \Phi(t) \cdot \nabla \varphi + \int_{\partial \Omega} \tau \Phi(t) \varphi = \int_{\Omega} \sum_{i=1}^N z_i c_i(t) \varphi \text{ a.e. } t \in \mathbb{R}_+.
$$

Nernst-Planck-Poisson in nD

Global weak solutions in nD - Sketch of proof:

- A priori estimate for (NPP)
- Approximate (NPP) by (NPP^{ε}) while conserving the Lyapunov structure

つくい

- Global existence and uniqueness for (NPP^{ϵ})
- Compactness for sequence of approximate solutions
- Limit as $\varepsilon \to 0$

Global weak solutions in nD - Sketch of proof

Recall from above (without *v*): $\dot{V} = -\sum_{i=1}^{N} \int_{\Omega} |d_i \nabla c_i + d_i z_i c_i \nabla \Phi|^2 / d_i c_i$ Integration in time yields

$$
C \geq \int_{Q_T} \sum_{i=1}^N \frac{|\nabla c_i + z_i c_i \nabla \Phi|^2}{c_i} = \int_{Q_T} \sum_{i=1}^N \Big(\underbrace{\frac{|\nabla c_i|^2}{c_i} + z_i^2 c_i |\nabla \Phi|^2}_{\geq 0} + \frac{2z_i \nabla c_i \nabla \Phi}{2z_i}
$$

Integration by parts and Poisson equation give

$$
\int_{Q_T} \sum_{i=1}^N z_i \nabla c_i \nabla \Phi = - \int_{Q_T} \sum_{i=1}^N z_i c_i \Delta \Phi + \int_{\Gamma_T} \ldots = \int_{Q_T} \underbrace{|\Delta \Phi|^2}_{\geq 0!!} + \int_{\Gamma_T} \ldots
$$

へのへ

Global weak solutions in nD - Sketch of proof

Recall from above (without *v*): $\dot{V} = -\sum_{i=1}^{N} \int_{\Omega} |d_i \nabla c_i + d_i z_i c_i \nabla \Phi|^2 / d_i c_i$ Integration in time yields

$$
C \geq \int_{Q_T} \sum_{i=1}^N \frac{|\nabla c_i + z_i c_i \nabla \Phi|^2}{c_i} = \int_{Q_T} \sum_{i=1}^N \Big(\underbrace{\frac{|\nabla c_i|^2}{c_i} + z_i^2 c_i |\nabla \Phi|^2}_{\geq 0} + \frac{2z_i \nabla c_i \nabla \Phi}{2z_i}
$$

Integration by parts and Poisson equation give

$$
\int_{Q_T} \sum_{i=1}^N z_i \nabla c_i \nabla \Phi = - \int_{Q_T} \sum_{i=1}^N z_i c_i \Delta \Phi + \int_{\Gamma_T} \ldots = \int_{Q_T} \underbrace{|\Delta \Phi|^2}_{\geq 0!!} + \int_{\Gamma_T} \ldots
$$

- Boundary terms difficult to estimate \Rightarrow only local $W^{1,1}$ -regularity, except in case $n = 3$, $\xi \in L^q(\partial\Omega)$ for $q > 2$.
- Appr. problem with global solution and similar Lyapunov structure?

Global weak solutions in nD - Sketch of proof

Recall from above (without *v*): $\dot{V} = -\sum_{i=1}^{N} \int_{\Omega} |d_i \nabla c_i + d_i z_i c_i \nabla \Phi|^2 / d_i c_i$ Integration in time yields

$$
C \geq \int_{Q_T} \sum_{i=1}^N \frac{|\nabla c_i + z_i c_i \nabla \Phi|^2}{c_i} = \int_{Q_T} \sum_{i=1}^N \Big(\underbrace{\frac{|\nabla c_i|^2}{c_i} + z_i^2 c_i |\nabla \Phi|^2}_{\geq 0} + \frac{2z_i \nabla c_i \nabla \Phi}{2z_i}
$$

Integration by parts and Poisson equation give

$$
\int_{Q_T} \sum_{i=1}^N z_i \nabla c_i \nabla \Phi = - \int_{Q_T} \sum_{i=1}^N z_i c_i \Delta \Phi + \int_{\Gamma_T} \ldots = \int_{Q_T} \underbrace{|\Delta \Phi|^2}_{\geq 0!!} + \int_{\Gamma_T} \ldots
$$

- Boundary terms difficult to estimate \Rightarrow only local $W^{1,1}$ -regularity, except in case $n = 3$, $\xi \in L^q(\partial\Omega)$ for $q > 2$.
- Appr. problem with global solution and similar Lyapunov structure?

Global weak solutions in nD - Sketch of proof

Approximate problem (based on an idea of Gajewski/Gröger):

$$
\partial_t c_i + \text{div}(-d_i \nabla h(c_i) - d_i z_i c_i \nabla \Phi) = 0 \text{ in } \Omega, \n\partial_\nu h(c_i) + z_i c_i \partial_\nu \Phi = 0 \text{ on } \partial \Omega, \n c_i(0) = c_i^0 \text{ in } \Omega, \n-\Delta \Phi - \sum_{i=1}^N z_i c_i = 0 \text{ in } \Omega, \n\partial_\nu \Phi + \tau \Phi = \xi \text{ on } \partial \Omega, \qquad (P)
$$

へのへ

where $h(r) = r + \eta r^p$ for fixed, large $p > 1$.

The solutions satisfy the same dissipation inequality, if the free energy $\sum_i c_i \log c_i$ is replaced by $\sum_i (c_i \log c_i + \eta c_i^p)$ $\binom{p}{i} (p-1)$.

Global weak solutions in nD - Sketch of proof

Approximate problem (based on an idea of Gajewski/Gröger):

$$
\partial_t c_i + \text{div}(-d_i \nabla h(c_i) - d_i z_i c_i \nabla \Phi) = 0 \text{ in } \Omega, \n\partial_\nu h(c_i) + z_i c_i \partial_\nu \Phi = 0 \text{ on } \partial \Omega, \n c_i(0) = c_i^0 \text{ in } \Omega, \n-\Delta \Phi - \sum_{i=1}^N z_i c_i = 0 \text{ in } \Omega, \n\partial_\nu \Phi + \tau \Phi = \xi \text{ on } \partial \Omega, \qquad (P)
$$

where $h(r) = r + \eta r^p$ for fixed, large $p > 1$.

The solutions satisfy the same dissipation inequality, if the free energy $\sum_i c_i \log c_i$ is replaced by $\sum_i (c_i \log c_i + \eta c_i^p)$ $\binom{p}{i} (p-1)$. \Rightarrow appr. c_i^{η} i^{η} a priori bounded in $L^{\infty}(0, T; L^{p}(\Omega)).$ \Rightarrow appr. Φ^{η} *a priori* bounded in $L^{\infty}(0, T; W^{2,p}(\Omega)).$

 \Rightarrow appr. solution (c_i^{η}) $\left(\mathbf{v}^{\eta},\mathbf{\Phi}^{\eta}\right)$ via fixed point argument for $\mathbf{\Phi}% _{j}^{(1)}$ in $L^{\infty}(0, T; W^{1,\infty}(\Omega))$, using $p > n$.

Global weak solutions in nD - Sketch of proof

Approximate problem (based on an idea of Gajewski/Gröger):

$$
\partial_t c_i + \text{div}(-d_i \nabla h(c_i) - d_i z_i c_i \nabla \Phi) = 0 \text{ in } \Omega, \n\partial_\nu h(c_i) + z_i c_i \partial_\nu \Phi = 0 \text{ on } \partial \Omega, \n c_i(0) = c_i^0 \text{ in } \Omega, \n-\Delta \Phi - \sum_{i=1}^N z_i c_i = 0 \text{ in } \Omega, \n\partial_\nu \Phi + \tau \Phi = \xi \text{ on } \partial \Omega, \qquad (P)
$$

where $h(r) = r + \eta r^p$ for fixed, large $p > 1$.

The solutions satisfy the same dissipation inequality, if the free energy $\sum_i c_i \log c_i$ is replaced by $\sum_i (c_i \log c_i + \eta c_i^p)$ $\binom{p}{i} (p-1)$. \Rightarrow appr. c_i^{η} i_j^{η} a priori bounded in $L^{\infty}(0, T; L^p(\Omega)).$

- \Rightarrow appr. Φ^{η} *a priori* bounded in $L^{\infty}(0, T; W^{2,p}(\Omega)).$
- \Rightarrow appr. solution (c_i^{η}) $\hat{p}^{\eta}_{i}, \Phi^{\eta}$) via fixed point argument for Φ in $L^{\infty}(0, T; W^{1,\infty}(\Omega))$, using $p > n$.

Thank You for Your Attention !

