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Abstract
In this talk, we will report our work on Poisson-Nernst-Planck (PNP) type

systems, a class of primitive continuum models for electrodiffusion, mainly in the
content of ionic flow through membrane channels. An important modeling feature of
the PNP type systems studied is the inclusion of hard-sphere potentials that account
for ion size effect. We will focus on hard-sphere potentials that are ion specific.
This complication is critical since ions with the same charge but different sizes could
have significantly different roles in many important biological functions of living
organisms. We will present an analytical framework that relies on a combination
of a powerful general theory of geometric singular perturbations and of specific
structures of PNP type systems. Beyond existence and uniqueness problems, we
are interested in obtaining concrete characteristics of solutions that have direct
implications to ionic flow properties. A particular attention is paid on effects of the
ion sizes and permanent charges to electrodiffusion and ion channel functions.
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Outline

Part I: Geometric singular perturbation theory (GSP).

Part II: GSP for PNP:

General framework of GSP + Special structures of PNP.

Part III: Effects of ion size, permanent charge, and channel geometry.
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Part I: Quick Review of GSP

1. Invariant manifold theory: normally hyperbolic and center manifolds.

More than one century of history involving works of first rate mathematicians.

2. A general dynamical system framework of GSP (last thirty years or so).

– Slow and fast systems, their limits, and their general relations

– Slow manifolds, normal hyperbolicity and turning points

3. Specifics in GSP

– Exchange Lemmas for NH slow manifolds

– Dynamics for slow manifolds with turning points

∗ Exchange Lemmas for slow manifolds with stability-loss turning points

∗ Tent structure for slow manifolds with stability-gain turning points
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1. Invariant manifold theory for nonlinear dynamics

Consider x′ = f(x), x ∈ Rn, with flow φt (w/o explicit formula).

Let Y be a compact invariant manifold: φt(Y ) = Y . Dynamics near Y ?

The simplest invariant manifold is an equilibrium; say, Y = {0}.

E-values and e-vectors of Df(0) determine dynamics of X ′ = Df(0)X.

Does the dynamics near 0 persist for the nonlinear equation? How to present?

Invariant manifold theory: from linear to nonlinear.
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For general invariant manifold Y :

- ∀y ∈ Y , the linearization along y · t = φt(y) ∈ Y is X ′ = Dxf(y · t)X.

Let Φ(y, t) = Dxφ
t(y) : TyRn → Ty·tRn be its principal FMS: Φ(y, 0) = I.

– If Y is a smooth manifold, then Φ(y, t) : TyY → Ty·tY .

– If (i) ∃ Φ(·, t)-invariant splitting of TYRn = ∪y∈Y TyRn:

TyRn = V s(y)⊕ TyY ⊕ V u(y) and Φ(y, t) : V s,u(y)→ V s,u(y · t);

(ii) the generalized Lyapunov numbers conditions hold:

α = lim sup
t→∞

1

t
ln ‖Φs(y, t)‖ < 0, β = lim inf

t→−∞

1

t
ln ‖Φu(y, t)‖ > 0.

γ = lim sup
t→∞

ln ‖Φs(y, t)‖
ln ‖Φc(y · t,−t)‖−1

<
1

k
, σ = lim sup

t→−∞

ln ‖Φu(y, t)‖
ln ‖Φc(y · t,−t)‖−1

<
1

k
,

then Y is k-normally hyperbolic (NH).
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Consequences of NH: [Fenichel 71 & Hirsch-Pugh-Shub 76]

(1) Stable and unstable manifolds with invariant foliations:

∃W s(Y ) = ∪y∈YW s(y), Wu(Y ) = ∪y∈YWu(y); φt(W s,u(y)) ⊂W s,u(y · t),

|φt(x2)− φt(x1)| ≤ Ke(α+δ)t|x2 − x1| for xj ∈W s(y) for t > 0,

|φt(x2)− φt(x1)| ≤ Ke(β−δ)t|x2 − x1| for xj ∈Wu(y) for t < 0.

(2) Forward bounded orbits near Y lie in W s(Y ),

Backward bounded orbits near Y lie in Wu(Y ),

Bounded orbits near Y lie in Y . (Interesting dynamics near Y occurs on Y .)

(3) The above persists under perturbations. (Bifurcations near Y occur on Y .)

*If, either (ii) does not hold or Y is not a mfld, then Y will NOT be NH, and will
NOT persist [Mane 77]. One needs to replace TyY by a generalized tangent space
V c(y) with (i) and (ii). Then, there is a center manifoldW c(Y ) so that Y ⊂W c(Y )
and W c(Y ) is NH, and hence, (1), (2), (3) hold for W c(Y ) replacing Y .

[Chow-L.-Yi: AMS Trans. 2000 & JDE 2000]
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2. Dynamical system framework for GSP

2.1. A standard form of singularly perturbed problems: slow and fast systems

(S)ε

{
εẋ(τ) = f(x, y; ε),
ẏ(τ) = g(x, y; ε).

⇐⇒ (F )ε

{
x′(t) = f(x, y; ε),
y′(t) = εg(x, y; ε).

2.2. Limiting slow and fast systems, slow manifolds, and general considerations

(S)0

{
0 = f(x, y; 0),
ẏ = g(x, y; 0).

(F )0

{
x′ = f(x, y; 0),
y′ = 0.

Slow manifold: Z0 = {(x, y) : f(x, y; 0) = 0} = {x = h0(y)}.

- (S)0 on Z0: ẏ = g(h0(y), y; 0) gives limiting dynamics of slow variable y.

- (F )0 determines limiting dynamics of fast variable x parameterized by y.

How to lift limiting slow and fast information to ε > 0 small ?
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2.3. Normally hyperbolic slow manifolds

- Slow manifold Z0 is a set of equilibria of (F )0.

- Linearization at each (h0(y), y) ∈ Z0 gives(
fx(h0(y), y) fy(h0(y), y)

0 0

)
,

which has dimZ0 many zero e-values and others are those of fx(h0(y), y).

- If all e-values of fx(h0(y), y) have non-zero real parts, then Z0 is NH.

One can then apply NH theory to study the dynamics of (F )ε near Z0.

Particularly, ∃ hε(y) ∼ h0(y) so that Zε = {x = hε(y)} is invariant for small ε.

On Zε, ẏ = g(hε(y), y; ε), which governs that near Zε through persistence.
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2.4. Turning points

- If, for some y∗, fx(h0(y∗), y∗) has e-values with zero real parts, then (h0(y∗), y∗)
is called a turning point where NH of Z0 is lost.

Folding points of Z0 are also turning points.

Generically, the set of turning points T form a co-dim-one sub-manifold of Z0.

- A rough classification:

(i) Stability-loss: as slow flow moves from one side of T to the other, real part
of an (fast) e-value changes from negative (stable) to positive (unstable).

A key feature: Canard points, Delay of stability-loss and its sensitivity.

(ii) Stability-gain: as slow flow moves from one side of T to the other, real part
of an (fast) e-value changes from positive (unstable) to negative (stable).

A Key feature: Tent structure and its robustness.

(iii) Others · · ·

12



3. Specifics in GSP

3.1. Exchange Lemmas for NH slow manifolds [C. Jones: Lect. Note in Math]
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3.2. Exchange Lemmas for stability-loss turning points [Liu 2000 JDE]
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3.3. Tent structure for stability-gain turning points [Liu TBA]
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Part II: GSP for PNP

1. General framework of GSP

2. Special structures of PNP (most important ingredients for concrete information)

3. Matching: yields (local) double-layers and brings (global) BV into picture

4. Governing systems for singular orbits of BVP of PNP

16



1. Ion channel, ionic flow, PNP model
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Quasi-one-dim PNP model for ionic flows

Poisson:
1

A(x)

d

dx

(
ε2A(x)

dφ

dx

)
= −e

∑
zscs −Q(x),

Nernst-Planck: − Jj =
1

kBT
DjA(x)cj

dµj
dx

,
dJj
dx

= 0.

BV: φ(0) = V, cj(0) = Lj; φ(1) = 0, cj(1) = Rj.

cj – concentration, Jj – flux density, zj – valence, Dj – diffusion constant,

φ–electric potential, ε2–dielectric, A(x)–area over x, Q(x)–permanent charge

Electrochemical potential: µj(φ, {ci}) = µidj + µexj :

Ideal component µidj = zjeφ+ kBT ln cj; Excess potential µexj for ion size.

Current-Voltage (I-V) relation: I =
∑
zjJj(V;L,R).
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2. GSP for cPNP w/ piecewise constant Q(x): [Liu 09 JDE]
2.1. Reformulate BVP to a connecting problem (after a rescaling)

Introduce u = εφ̇ and w = x. cPNP becomes, for k = 1, 2, · · · , n,

εφ̇ = u, εu̇ = −
n∑
s=1

zscs −Q(w)− εA
′(w)

A(w)
u,

εċk = −zkcku− εJkA−1(w), J̇ = 0, ẇ = 1.

Associated to boundary conditions, introduce

BL = {(φ, u, C, J, w) ∈ R2n+3 : φ = V, C = L, w = 0},
BR = {(φ, u, C, J, w) ∈ R2n+3 : φ = 0, C = R, w = 1}.

BVP ⇐⇒ A connecting orbit from BL to BR.
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Let Mε
L be the collection of all forward orbits starting from BL and Mε

R be the
collection of all backward orbits starting from BR.

Then, for ε > 0 small, the vector field is not tangent to BL and BR.

dimBL = dimBR = n+ 1 =⇒ dimM ε
L = dimM ε

R = n+ 2.

Generically, M ε
L and M ε

R intersect transversally. In this case,

dim(M ε
L ∩M ε

R) = dimM ε
L + dimM ε

R − dimR2n+3 = 1.

It suffices to show that M ε
L and M ε

R indeed intersect transversally. The idea is:

(i) to construct a singular orbit: union of fast and slow orbits of different limiting
systems, where fast orbits represent the boundary/internal layers and slow orbits
connect the boundary/internal layers;

(ii) to examine the evolutions of M ε
L and M ε

R along the singular orbit for transversality
and apply the Exchange Lemma.
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2.2. Construction of Singular Orbits over [0, 1].

Pre-assign the values of φ, ck’s at jump point xj of Q(x) for j = 1, 2, · · · ,m− 1,

φ(xj) = φ[j], ck(xj) = c
[j]
k , k = 1, 2, · · · , n (1)

with given φ[0] = V and c
[0]
k = Lk at x0 = 0, φ[m] = 0 and c

[m]
k = Rk at xm = 1,

and introduce the set, for j = 0, 1, · · · ,m,

Bj = {(φ, u, C, J, w) : φ = φ[j], C = C [j], w = xj}. (2)

Two main steps for a construction of a singular orbits over [0, 1]

- Singular orbits on [xj−1, xj] between Bj−1 and Bj with Q(x) = Qj.

- Matching them at jump points x = xj’s to form a singular orbit on [0, 1].
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2.2.1. Singular orbit over [xj−1, xj] between Bj−1 and Bj with Q(x) = Qj.

Each such an orbit will consist of two singular layers Γ[j−1,r] at x = xj−1,

and Γ[j,l] at x = xj, and a regular layer Λj over the interval [xj−1, xj].
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– Fast dynamics and singular layers.

The slow manifold is Zj = {u = 0,
∑n
s=1 zscs +Qj = 0} .

Note that dimZj = 2n+ 1 – co-dim two.

In terms of the independent variable ξ = x/ε, we obtain the fast system,

φ′ = u, u′ = −
n∑
s=1

zscs −Qj − ε
A′(w)

A(w)
u,

c′k = −zkcku− εJkA−1(w), J ′ = 0, w′ = ε.

The limiting fast system is, for k = 1, 2, · · · , n,

φ′ = u, u′ = −
n∑
s=1

zscs −Qj,

c′k = −zkcku, J ′ = 0, w′ = 0.

Two e-values normal to Zj are ±
√∑

z2
scs (Debye length). Thus, Zj is NH.

24



Special structure of the limiting fast system:

Proposition 1. The limiting fast system has a complete set of (2n + 2) first
integrals given by, for k = 1, 2, · · · , n,

Gk = ln ck + zkφ, Gn+1 =
1

2
u2 −

n∑
s=1

cs +Qjφ,

Gn+1+k = Jk and G2n+2 = w.

Consequences:

One can determine u[j−1,+] and u[j,−], and ω(Bj−1) and α(Bj) up to J .
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– Slow dynamics to connect ω(Bj−1) and α(Bj).

Introduce u = εp, zncn = −
∑n−1
s=1 zscs −Qj − εq.

In replacing u with p and cn with q, slow system becomes, for k = 1, · · · , n− 1,

φ̇ = p, εṗ = q − εA
′(w)

A(w)
p,

εq̇ =
( n−1∑
s=1

(zs − zn)zscs − znQj − εznq
)
p+A−1(w)

n∑
s=1

zsJs,

ċk = −zkpck − JkA−1(w), J̇ = 0, ẇ = 1.

When ε = 0, it is

φ̇ = p, 0 = q,

0 =
( n−1∑
s=1

(zs − zn)zscs − znQj
)
p+A−1(w)

n∑
s=1

zsJs,

ċk = −zkpck − JkA−1(w), J̇ = 0, ẇ = 1.
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For this system, the slow manifold is

Sj =

{
p = −

A−1(w)
∑n
s=1 zsJs∑n−1

s=1 (zs − zn)zscs − znQj
, q = 0

}
.

The limiting slow dynamics on Sj is, with I =
∑n
s=1 zsJs,

φ̇ = − A−1(w)I∑n−1
s=1 (zs − zn)zscs − znQj

,

ċk =
A−1(w)I∑n−1

s=1 (zs − zn)zscs − znQj
zkck −A−1(w)Jk,

J̇ = 0, ẇ = 1.

A crucial observation is that, on Sj where q = 0,

n−1∑
s=1

zscs +Qj = −zncn =⇒
n−1∑
s=1

(zs − zn)zscs − znQj =

n∑
s=1

z2
scs.
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Multiply A(w)
∑n
s=1 z

2
scs on the RHS to get

d

dτ
φ = −I, d

dτ
C = D(J)C,

n∑
s=1

zscs +Qj = 0,

d

dτ
J = 0,

d

dτ
w = A(w)

n∑
s=1

z2
scs,

where D(J) = Γ− JbT with Γ = I diag(z1, · · · , zn) and bT = (z2
1, · · · , z2

n).

Solving this system from ω(Bj−1) to α(Bj), one gets J [j] over [xj−1, xj].

2.2.2. Global matching: u[j,−] = u[j,+] and J [1] = J [2] = · · · = J [m].

m− 1 + n(m− 1) = (n+ 1)(m− 1) = the number of preassigned unknowns.

The result gives the governing system for singular orbits of the BVP.

2.3. Exchange Lemma allows one to lift the singular orbit to a true orbit.
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Part III
Effects of ion size, permanent charge and channel geometry

1. Ion size effects: PNP w/ Hard-Sphere (HS) potentials

– Critical potentials for ion size balance and ion preference (selectivity)

– Scaling Laws in boundary concentrations

2. Effects of small permanent charge and channel geometry
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1. PNP with hard-sphere potentials (HS)

1.1. Why do we care about ion sizes

Serious weakness of cPNP: treating Na+ = K+

In real world, Na+ 6= K+ significantly

Key difference: Na+ < K+ in ion size

Excess potential µexi accounts for finite size of ions
to distinguish ions with same valence but different sizes.
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1.2. A one-dim non-local HS potential µHSj

Percus-Yevick (70s) and Rosenfeld (93) model: (exact)

µHSj =
δΩ({ci})
δcj

,

where Ω({ci}) = −
∫
n0(x; {ci}) ln(1− n1(x; {ci}))dx,

nl(x; {ci}) =
∑
i

∫
ci(x

′)ωil(x− x′)dx′, l = 0, 1

ωi0(x) =
δ(x− ri) + δ(x+ ri)

2
, ωi1(x) = Θ(ri − |x|).

δ: Dirac function; Θ: Heaviside function; ri: radius of ith ions.
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1.3. A local HS potential µLHSj for 3-dim

Bikerman’s model (42):

µLHSj (x) = − ln
(

1− 4π

3

∑
i

r3
i ci(x)

)
− not ion specific.

Many refined models · · · · · ·

Boublik-Mansoori-Carnahan-Starling-Leland model (70-71):

Very accurate and more sophisticate, up to lowest order in radii,

µLHSj (x) = 8
∑
i

(rj + ri)
3ci(x) +O(r6)− ion specific.
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1.4. Effects of ion size [Ji-L: JDDE 12, Tu-Zhang-L: JDDE 12, Lin-L.-Yi-Zhang: SIADS 13]

How ion sizes affect I-V relation:
bdry potential V and/or bdry concentrations Lj, Rj.

Upshots: Allow one to obtain “explicit” information for direct applications.

It’s like you have the quadratic formula to study how roots depend on coefficients.
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Electroneutrality, n = 2: L := z1L1 = −z2L2, R := z1R1 = −z2R2

Theorem 1. [I-V relation] Let r = r1 and λ = r2/r1.

Let I(V ; ε, r) = I0(V ; ε) + I1(V ;λ, ε)r + o(r). Then,

I0(V ; 0) = (D1 −D2)(L−R) +
(z1D1 − z2D2)(L−R)

lnL− lnR
V,

I1(V ;λ, 0) =
2(z1D1 − z2D2)(λ− 1)(L−R)2

z1z2(lnL− lnR)

−2(D1 −D2)(z1λ− z2)(L2 −R2)

z1z2

−2(z1D1 − z2D2)(z1λ− z2)[(L2 −R2)(lnL− lnR)− 2(L−R)2]

z1z2(lnL− lnR)2
V.
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Two critical voltages for ion size effects: Vc and V c

Let Vc be such that I1(Vc;λ) = 0:

Vc =
(λ− 1)(L−R)(lnL− lnR)

(z1λ− z2)((L+R)(lnL− lnR)− 2(L−R))

− (D1 −D2)(L+R)(lnL− lnR)2

(z1D1 − z2D2)((L+R)(lnL− lnR)− 2(L−R))
.

Let V c be such that ∂λI1(V c;λ) = 0:

V c =
(L−R)(lnL− lnR)

z1((L+R)(lnL− lnR)− 2(L−R))

− (D1 −D2)(L+R)(lnL− lnR)2

(z1D1 − z2D2)((L+R)(lnL− lnR)− 2(L−R))
.
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Theorem 2. [Size-Balance-Voltage Vc]

For ε > 0 small and r > 0 small,

(i) if V > Vc, then ion sizes enhance current: I(V ; ε, r) > I(V ; ε, 0);

(ii) if V < Vc, then ion sizes reduce current: I(V ; ε, r) < I(V ; ε, 0).

Theorem 3. [Size-Selectivity-Voltage V c]

For ε > 0 small and r > 0 small,

(i) if V > V c, the current I is increasing in λ

(smaller positive ion species is ‘preferred’, say, Na+ over K+);

(ii) if V < V c, the current I is decreasing in λ

(larger positive ion species is ‘preferred’, say, K+ over Na+).

Electrodiffusive Contribution to Selectivity ?
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Scaling Properties in Boundary Concentrations

Recall I(V ; ε, r) = I0(V ; ε) + I1(V ; ε)r + o(r).

I0(V ; 0) = I0(V ;Lj, Rj) – point-charge component,

I1(V ; 0) = I1(V ;Lj, Rj) – ion size component,

Vc = Vc(Lj, Rj), V c = V c(Lj, Rj) – two critical voltages.

Theorem 4. [Scaling Laws in Bdry Concentrations]

(i) I0 scales linearly in (Lj, Rj): I0(V ;σLj, σRj) = σI0(V ;Lj, Rj);

(ii) I1 scales quadratically in (Lj, Rj): I1(V ;σLj, σRj) = σ2I1(V ;Lj, Rj);

(iii) Vc and V c scale invariantly in (Lj, Rj): V cc (σLj, σRj) = V cc (Lj, Rj).
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2. Effects of permanent charge and channel geometry via cPNP

2.1. Reversal charge and reversal potential:

– Signs of fluxes Jk’s vs sign of current I
– Not so intuitive properties

2.2. Effects of permanent charges and channel geometry

– Permanent charge effects on fluxes

– Effects of channel geometry with and without permanent charges
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2.1 Reversal charge and potential: Eisenberg-L.-Xu (Submitted)

- From NP: Jk

∫ 1

0

kBT

A(x)Dkck(x)
dx = µk(0)− µk(1).

The sign of Jk is determined by bdry electrochemical potentials.

Permanent charges cannot do anything about the sign of Jk BUT

do affect its magnitude. Hope: Chang the sign of I =
∑
zkJk.

- Reversal charge Q is defined to be the one that makes I = 0.

- Consider simplest Q(x):

Q(x) = Q∗ for x ∈ [x1, x2] and Q(x) = 0 for x 6∈ [x1, x2].
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For the given form of Q(x), define

g(V ) :=

n∑
s=1

zs(Lse
zsV0 −Rs)

1− x2 + x1ezsV0 + (x2 − x1)ezsV
.

Theorem. For any real root V∗ of g(V ) = 0, if

Q∗ = −
n∑
s=1

zse
zs(V0−V∗)(1− x2 + (x2 − x1)ezsV

∗
)Ls + x1Rs

1− x2 + x1ezsV0 + (x2 − x1)ezsV∗
,

then I = 0 and, for k = 1, 2, . . . , n,

Jk =
Lke

zkV0 −Rk
1− x2 + x1ezkV0 + (x2 − x1)ezkV∗

.
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Theorem. For n = 2, ∃ a reversal charge Q∗ if and only if

(L1e
z1V0 −R1)(L2e

z2V0 −R2) > 0.

The reversal charge Q∗ is unique. Moreover,

if L1e
z1V0 −R1 > 0, then Q∗ and V0 have the same sign;

if L1e
z1V0 −R1 < 0, then Q∗ and V0 have opposite signs.

Theorem. Let n = 2 w/ z1 = 1 = −z2 (Lj = L and Rj = R).

Assume Le−V0 −R > 0 and V0 > 0 (so that J1(0) > J2(0) > 0).

For some choices of (V0, L,R), one has

J1(0) > J2(0) > J1(Q∗) = J2(Q∗).

[Somewhat counterintuitive, if not, nobody knows before.]
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Theorem. Let n = 3 w/ z1 = 1, z2 = 2 and z3 = −1.

For example, for mixing of Na+Cl− and Ca++Cl−2 .

For some bdry conditions, there are at least TWO reversal charges.

Theorem. [Reversal Potential]

For any three-piece Q(x), there is at least one reversal potential.

The number of reversal potentials is odd.
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2.2. Effects of small Q(x) and channel geometry

Ji-L.-Zhang (Preprint) [From governing system in Eisenberg-L. 07 SIMA]

Consider three-piece Q(x) = Q0 over [x1, x2] w/ n = 2.

Electroneutrality: z1L1 = −z2L2 = L and z1R1 = −z2R2 = R.

Jk(Q0, ε) = Jk0 + Jk1Q0 +O(ε,Q2
0).

2.2.1. Effects of channel geometry on fluxes of zeroth order in Q0

J10 =
L−R

z1H(1)(lnL− lnR)
µδ1, J20 =

R− L
z2H(1)(lnL− lnR)

µδ2;

µδk := µk(0)− µk(1) = zkV0 + lnL− lnR and H(1) =

∫ 1

0

A−1(x)dx.

J10 doesn’t depend on 2nd ion species and J20 doesn’t depend on 1st ion species.

Effects of channel geometry w/o Q0 are simple.
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2.2.2. Effects of Q(x) and channel geometry on 1st order fluxes

J11 =
A(µδ2 − z2BV )

(z1 − z2)H(1)(lnL− lnR)2
µδ1,

J21 =
A(µδ1 − z1BV )

(z2 − z1)H(1)(lnL− lnR)2
µδ2,

where, in terms of α = H(x1)/H(1) and β = H(x2)/H(1),

A = A(L,R) = − (β − α)(L−R)2

((1− α)L+ αR)((1− β)L+ βR)(lnL− lnR)
,

B = B(L,R) =
ln((1− β)L+ βR)− ln((1− α)L+ αR)

A
.

J11 depends on 2nd ion species and J21 depends on 1st ion species.

More detailed channel geometry presents in Jk1.

44



2.2.3. Charge and channel geometry effects on fluxes

For t > 0, set

γ(t) =
t ln t− t+ 1

(t− 1) ln t
.

Lemma 1. For t > 0, 0 < γ(t) < 1, γ′(t) > 0,

lim
t→0

γ(t) = 0, lim
t→1

γ(t) = 1/2, lim
t→∞

γ(t) = 1.

45



Theorem 5. Let V 1
q and V 2

q be as

V 1
q = V 1

q (L,R) = −lnL− lnR

z2(1−B)
and V 2

q = V 2
q (L,R) = −lnL− lnR

z1(1−B)
.

Then, for t = L/R > 1, one has A < 0, and

(i) if α < γ(t) and β ∈ (α, β1), then V 1
q < 0 < V 2

q ; and,

(i1) for V ∈ (V 1
q , V

2
q ), positive Q0 reduces both |J1| and |J2|;

(i2) for V < V 1
q , positive Q0 strengthens |J1| but reduces |J2|;

(i3) for V > V 2
q , positive Q0 reduces |J1| but strengthens |J2|;

(ii) if either α < γ(t) and β ∈ (β1, 1) or α ≥ γ(t), then V 1
q > 0 > V 2

q ; and,

(ii1) for V ∈ (V 2
q , V

1
q ), positive Q0 strengthens both |J1| and |J2|;

(ii2) for V > V 1
q , positive Q0 strengthens |J1| but reduces |J2|;

(ii3) for V < V 2
q , positive Q0 reduces |J1| but strengthens |J2|.
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2.2.2. Major effect of channel geometry (through permanent charges)

Theorem 6. Under some conditions, |J11| and |J21| attain their maximums for
(α, β) = (0, 1).

(i). It implies: A short and narrow neck “ = ” A long and wide neck.

Short and Narrow : x2 − x1 � 1 and A(x) is much smaller for x ∈ (x1, x2).
Long and Wide: x2 − x1 ≈ 1 and A(x) is more uniform.

“Evolution knows and chooses short and narrow necks”.

(ii). Without permanent charges, the channel geometry needs not to be complex –
only its “average” property H(1) come into the picture for fluxes and current.
(True for PNP with HS.)
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Thank You !
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