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Abstract

This project report presents conditions on a compact Hausdorff space X for proving
Th(C(X)) does not have quantifier elimination in the language of metric structures for C∗-
algebras. We show that this condition holds in a large class of spaces. In an independent
result, it is shown that the class of Hilbert bimodules with a fixed left action are axiomati-
zable when the underlying vector space and right algebra are considered as sorts.
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1 Introduction

In this project report, we outline two applications of model theory to the study of C∗-algebras.
Model theory is a branch of mathematical logic which allows us to study structures in the setting
of first-order logic; in this report we focus a framework for continuous first-order logic, known
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as the model theory for metric structures. By applying methods and concepts from continuous
model theory, we can solve problems in the theory of operator algebras.

In the first section of this report we outline basic definitions and ideas from continuous model
theory, following the treatment given in [BY]. We then introduce the first problem considered
during the summer project, which involves proving that the class of Hilbert bimodules with a
fixed left action is an axiomatizable class in the sense of model theory. We then describe the
second problem, in which we determine a partial list of Abelian C∗-algebras whose theories do
not admit elimination of quantifiers. We also show in Corollary 4.5 that there is essentially only
one Abelian C∗-algebra of real rank zero whose theory admits quantifier elimination; this follows
from a result of Eagle and Vignati (see [EagVig]) which says that if two C∗-algebras have real
rank zero and both have no isolated points, then their complete theories are equal. We conclude
with a short list of open problems.

2 Continuous logic

2.1 Metric structures and languages

Let (M,d) be a complete, bounded metric space.

Definition 2.1. A predicate on M is a uniformly continuous function from Mn into a closed,
bounded interval in R, where n is a positive integer. A function on M is a uniformly continuous
function from Mn into M , where n is a positive integer. The positive integer n is called the arity
of a predicate or function.

Definition 2.2. A metric structure M based on (M,d) is a family of predicates (Ri : i ∈ I)
of predicates on M , a family of functions (Fj : j ∈ J) on M , and a family (ak : k ∈ K) of
distinguished elements of M . We denote a metric structure as

M = (M,Ri, Fj , ak) : i ∈ I, j ∈ J, k ∈ K).

Definition 2.3. A signature or language L consists of:

• a collection of predicate symbols (Pi : i ∈ I), together with an integer a(Pi) for each
i ∈ I to be interpreted as the arity of a predicate. Furthermore, for each predicate symbol
Pi, L specifies a closed, bounded interval IPi

in R (to be interpreted as the range of the
predicate) and a modulus of uniform continuity ∆Pi

(to be interpreted as the modulus of
uniform continuity of a predicate);

• a collection of function symbols (fj : j ∈ J), together with an integer a(fj) for each j ∈ J
to be interpreted as the arity of a function. Furthermore, for each function symbol fj , L
specifies a modulus of uniform continuity ∆fj (to be interpreted as the modulus of uniform
continuity of a function);

• a collection of constant symbols (ck : k ∈ K); and

• a non-negative real number DL, to be interpreted as a bound on the diameter of the
underlying metric space (M,d) of a metric structure M.

Given a language L and a metric structureM such that the predicate symbols, function sym-
bols and constant symbols of L correspond exactly to the predicates, functions and distinguished
elements which make up M, we say that M is an L-structure. In this situation, we say that
each function symbol, predicate symbol and constant symbol is interpreted in M; we write PM
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for the interpretation of the predicate symbol P inM, fM for the interpretation of the function
symbol f inM, and cM for the interpretation of the constant symbol c inM. We also sometimes
denote the metric d associated to M by dM in order to distinguish between interpretations of d
in different metric structures.

Without loss of generality, we will always assume that a language L satifies DL = 1 and
IP = [0, 1] ⊂ R for every predicate symbol P ∈ L.

Definition 2.4. Let L be a language and let M and N be L-structures. An embedding from
M into N is a metric space isometry

σ : (M,dM)→ (N, dN )

which satisfies the following:

• Whenever f ∈ L is an n-ary function symbol and a1, . . . , an ∈M , we have

fN (σ(a1), . . . , σ(an)) = σ(fM(a1, . . . , an)).

• Whenever P ∈ L is an n-ary predicate symbol and a1, . . . , an ∈M , we have

PN (σ(a1), . . . , σ(an)) = PM(a1, . . . , an).

• Whenever c ∈ L is a constant symbol, we have

cN = σ(cM).

In this case we say that σ preserves or commutes with the interpretations of the function symbols,
predicate symbols and constant symbols of L. An isomorphism betweenM and N is a surjective
embedding from M into N . If there exists an isomorphism between M and N , we say that M
and N are isomorphic and we write M∼= N .

An L-structure M is a substructure of another L-structure N if M ⊆ N and the inclusion
map i : M ↪→ N is an embedding of M into N . In this case we write M⊆ N .

2.2 Terms and formulas

In this section we develop the syntax of continuous first-order logic. To this end, fix a language
L for metric structures.

Definition 2.5. The atomic formulas of L are defined inductively as follows:

• The symbols of L include the predicate symbols, function symbols and constant symbols
in L; these are referred to as the non-logical symbols of L. The remaining symbols are the
logical symbols of L, which consist of:

– A symbol d for the underlying metric space of a metric structure L.

– An infinite set VL of variables.

– A symbol for each continuous function u : [0, 1]n → [0, 1] of finitely many variables n,
where n is a positive integer (these are referred to as the connectives of L.

– The symbols sup and inf, which can be thought of as quantifiers. (In the setting
of continous logic, sup acts as a universal quantifier while inf acts (roughly) as an
existential quantifier.)
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• The terms of L are defined inductively: Each variable and constant symbol is an L-term.
Given n L-terms t1, . . . , tn and an n-ary function symbol f in L, f(t1, . . . , tn) is an L-term.

• The atomic formulas of L are all expressions of the form P (t1, . . . , tn) where P is an n-ary
predicate symbol in L and t1, . . . , tn are L-terms. Expressions of the form d(t1, t2) for
L-terms t1, t2 are also atomic formulas. (Note that this is somewhat redundant since we
could view the metric symbol d as a binary predicate symbol if we so choose.)

Definition 2.6. The class of formulas of L is the smallest class of expressions in L satisfying
the following:

• All atomic formulas of L are L-formauls.

• Let u : [0, 1]n → [0, 1] be a continuous function (i.e. u is a connective) and let ϕ1, . . . , ϕn
be L-formulas. Then u(ϕ1, . . . , ϕn) is an L-formula.

• If ϕ is an L-formula and x is a variable, then supx ϕ and infx ϕ are L-formulas.

Given an L-formula ϕ, we say that an occurrence of a variable x is bound if x lies within a
subformula of ϕ of the form supx ψ or infx ψ. If no occurrences of the variable x are bound,
we say that x is free. (By a subformula of ϕ we mean any L-formula used in the inductive
construction of ϕ; this corresponds exactly to the notion of subformula in the usual first-order
setting.) An L-sentence is an L-formula which contains no free variables.

Given a term t or a formula ϕ in L, we write t(x1, . . . , xn) and ϕ(x1, . . . , xn), respectively,
to indicate that the free variables occurring in the term or the formula are among the distinct
variables x1, . . . , xn.

Definition 2.7. An L-formula is quantifier-free if it is formed inductively from atomic formulas
without using the symbols sup and inf.

2.3 Interpretation of formulas

Now we will develop the semantics of continuous logic. First, let M be an L-structure with
underlying metric space (M,dM), and let A ⊆ M . We extend L to a new language L(A) by
adding a collection of constants {c(a) : a ∈ A} to L. Each new constant symbol c(a) is interpreted
in M as itself (i.e. c(a)M) = a). We often write a instead of c(a) for the constant symbol in
L(A) to be interpreted as a ∈ A.

Now consider the language L(M) obtained by naming all elements m of M as constant
symbols. Given an L(M)-term t(x1, . . . , xn) we can define the interpretation of t in M as usual
(so that t is a function tM : Mn →M . We can now define the semantics of continuous first-order
logic.

Definition 2.8. Let ϕ be a sentence in the language L(M). The value of ϕ in M is a real
number in the interval [0, 1] denoted by ϕM, defined by induction as follows. (Note that all
terms in the following defiinition are terms in which no variables occur.)

• (d(t1, t2))M = dM(tM1 , tM2 ) for any L(M)-terms t1, t2.

• For any n-ary predicate symbol P of L and any L(M)-terms t1, . . . , tn,

(P (t1, . . . , tn))M = PM(tM1 , . . . , tMn ).
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• For any L(M)-sentences ψ1, . . . , ψn and any continuous function u : [0, 1]n → [0, 1],

(u(ψ1, . . . , ψn))M = u(ψM1 , . . . , ψMn ).

• For any L(M)-formula ψ(x),

(sup
x

(ψ(x))M = sup {ψ(a)M : a ∈M}

where the supremum is taken in the interval [0, 1].

• For any L(M)-formula ψ(x),

(inf
x

(ψ(x))M = inf {ψ(a)M : a ∈M}

where the infimum is taken in the interval [0, 1].

Definition 2.9. Let ϕ(x1, . . . , xn) be an L(M)-formula. We let ϕM denote the function Mn →
[0, 1] defined by

ϕM(a1, . . . , an) = (ϕ(a1, . . . , an))M

where a1, . . . , an are in M . Two formulas ϕ(x1, . . . , xn) and ψ(x1, . . . , xn) in a language L are
logically equivalent if

ϕM(a1, . . . , an) = ψM(a1, . . . , an)

for every L-structure M and every n-tuple of elements a1, . . . , an ∈M .

Definition 2.10. Let ϕ(x1, . . . , xn) be an L-formula. An L-condition E is a formal expression
of the form ϕ(x1, . . . , xn) = 0. We say that the L-condition E is closed if ϕ is an L-sentence.
We write E(x1, . . . , xn) to indicate that E has the form ϕ(x1, . . . , xn) = 0.

Suppose E is the L(M)-condition ϕ(x1, . . . , xn) = 0 and let a1, . . . , an ∈ M . We say E is
true of a1, . . . , an in M , and write M |= E[a1, . . . , an], if ϕM(a1, . . . , an) = 0. If E1 and E2 are
the L-conditions ϕ1(x1, . . . , xn) = 0 and ϕ2(x1, . . . , xn) = 0, respectively, we say that E1 and E2

are logically equivalent if

M |= E1[a1, . . . , an] iff M |= E2[a1, . . . , an]

holds for every L-structure M and every n-tuple of elements a1, . . . , an ∈M .

2.4 Model theory

We now briefly describe some basic model-theoretic notions. Fix a language L for metric struc-
tures.

Definition 2.11. An L-theory T is a set of closed L-conditions. If T is an L-theory and M is
an L-structure, we say thatM is a model of T , and writeM |= T , ifM |= E for every condition
E in T . We write ModL(T ) for the class of all L-structures that are models of T (or we write
Mod(T ) if the language is clear from context).

Let M be an L-structure. The theory of M, denoted Th(M), is the set of all closed L-
conditions true in M. If an L-theory T is of the form Th(M) for some L-structure M, then we
say that T is complete. Hence we sometimes refer to Th(M) as the complete theory of M.

Let T be an L-theory and let E be a closed L-condition. We say E is a logical consequence
of T , and write T |= E, if M |= E holds for every model M |= T .
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Definition 2.12. Let M and N be L-structures. We say that M and N are elementarily
equivalent, and write M≡ N , if ϕM = ϕN for every L-sentence ϕ. Note that two L-structures
are elementarily equivalent if and only if their complete theories are equal.

If M ⊆ N (where (M,dM) and (N, dN ) are the underlying metric spaces of M and N ,
respectively), we say thatM is an elementary substructure of N , and writeM� N , if whenever
ϕ(x1, . . . , xn) is an L-formula and a1, . . . , an ∈M , we have

ϕM(a1, . . . , an) = ϕN (a1, . . . , an).

When this holds, we also say that N is an elementary extension of M.
A function F :M→ N is an elementary embedding of M into N if whenever ϕ(x1, . . . , xn)

is an L-formula and a1, . . . , an ∈M , we have

ϕM(a1, . . . , an) = ϕN (F (a1), . . . , F (an)).

Note that, when M ⊆ N ,M is an elementary substructure of N if and only if the inclusion map
i : M ↪→ N is elementary, in the sense described above.

3 Axiomatization of Hilbert bimodules

3.1 Hilbert bimodules

In this section we define Hilbert bimodules, which are C∗-algebraic objects susceptible to attack
by model-theoretic techniques. First we give a few preliminary definitions.

Definition 3.1. Let X be a vector space and let B be a C∗-algebra. A B-valued positive
sesquilinear form on X is a map 〈·, ·〉 : X × X → B such that 〈·, ·〉 is linear in the second
component, conjugate linear in the first component, and 〈x, x〉 ≥B 0 for all x ∈ X. If furthermore
x ∈ X, 〈x, x〉 implies x = 0, then we call 〈·, ·〉 a B-valued inner product on X.

Note that if 〈·, ·〉 is a B-valued positive sesquilinear form on X, then for all x, y ∈ X we have
〈x, y〉∗ = 〈y, x〉. This fact follows from the polarization identity, which says

〈x, y〉 =
1

4

3∑
k=0

ik〈x+ iky, x+ iky〉

for all x, y ∈ X.

Proposition 3.1. [PS] Let X be a vector space, B a C∗-algebra, and 〈·, ·〉 a B-valued inner
product on X. Define ||x||X =

√
||〈x, x〉||B. Then || · ||X is a norm on X.

Definition 3.2. Let X be a vector space, B a C∗-algebra, and 〈·, ·〉 a B-valued inner product
on X. If X is complete with respect to the norm defined in Proposition 2.1, then we say that X
is a Hilbert B-space.

Example 3.1. Let X = B be a C∗-algebra and define a map 〈·, ·〉 : B × B → B by setting
〈A,B〉 = A∗B for A,B ∈ B. One can then check that 〈·, ·〉 is a B-valued inner product, and
that the B is complete with respect to the norm given by ||A||B =

√
||〈A,A〉||B. Thus B is a

Hilbert B-space.

Definition 3.3. Let H be a Hilbert B-space. If there exists a linear map ρ : B→ L(H) (where
L(H) denotes the set of linear maps on H) such that ρ is anti-multiplicative (i.e. such that
ρ(ab) = ρ(b)ρ(a) for all a, b ∈ B) and such that 〈h, ρ(b)g〉 = 〈h, g〉b for all b ∈ B, g, h ∈ H, then
H is called a right Hilbert B-module.
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Example 3.2. Consider the Hilbert B-space X in Example 2.1 and define a map ρ : B→ L(H)
by setting ρ(B)(A) = AB for all A ∈ X,B ∈ B. One can easily check that ρ satifies the
requirements in Definition 2.3, so that the collection (H, 〈·, ·〉, ρ) forms a right Hilbert B-module
under the action of ρ. (We will abuse notation and simply write H for the triple (H, 〈·, ·〉, ρ) in
the case that we have a right Hilbert module.)

The following result gives us a version of the Cauchy-Schwarz inequality for right Hilbert
modules.

Proposition 3.2. [PS] Let H be a right Hilbert B-module for some C∗-algebra B. For all
x, y ∈ H we have ||〈x, y〉||B ≤ ||x||H||y||H.

We would now like to consider linear maps on a Hilbert B-space H which act as adjoints in
the usual C∗-algebraic sense.

Definition 3.4. Let H be a Hilbert B-space. A linear map T : H → H is adjointable if there
is a linear operator T ∗ such that 〈x, Ty〉 = 〈T ∗x, y〉 for all x, y ∈ H. We denote the set of all
adjointable linear maps on H by Ba(H).

Note that not all linear maps have an adjoint; indeed, consider the following

Example 3.3. Let H = A⊕C([0, 1]), where A is the ∗-subalgebra of C([0, 1]) which consists of
all functions which vanish at 0. Define 〈·, ·〉 : H×H → C([0, 1]) by

〈(f1, g1), (f2, g2)〉 = f̄1f2 + ḡ1g2

and define ρ : C([0, 1])→ L(H) by

ρ(h)(f, g) = (fh, gh).

One can check that H is a right Hilbert C([0,1])-module. Now define a linear, continuous map
T : H → H by T (f, g) = (0, f) (one can check that this map is indeed linear and continuous).

Claim. The linear map T is not adjointable.

Proof. Suppose for a contradiction that T is adjointable. Let (g1, g2) = T ∗(0, 1), so in particular
g1 ∈ A. Then, given any f ∈ A, we see that

ḡ1f = 〈T ∗(0, 1), (f, 0)〉 = 〈(0, 1), T (f, 0)〉 = 〈(0, 1), (0, f)〉 = f.

So ḡ1f = f and hence g1(x) = 1 for all x in(0, 1]. But g ∈ A and so g(0) = 0, and so we have a
contradiction (since g is continuous). Thus T cannot have an adjoint.

We are now ready to define the object of interest for this section.

Definition 3.5. Let A,B be C∗-algebras and let H be a right Hilbert B-module. If there is a
∗-homomorphism λ : A→ Ba(H), then we call H a Hilbert A-B-bimodule. (If A and B are clear
from context we will usually refer to H simply as a Hilbert bimodule.)

Notice that a right Hilbert B-module H can be viewed as a Hilbert C-B-bimodule, where
the action of C on H is simply scalar multiplication by complex numbers.

Example 3.4. Let H be the right Hilbert B-module given in Example 2.2. Given A ∈ B,
define λ(A)B = AB. Then λ : B → Ba(H) is a unital ∗-homomorphism, and so H is a Hilbert
A-B-bimodule.
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3.2 Axiomatizability

Definition 3.6. Let C be a class of L-structures. We say that the class C is axiomatizable if
there exists a theory T such that C = ModL(T ). In this case, we say that T is a set of axioms
for C in L, or that T is an axiomatization of the class C .

We are interested in axiomatizing the class C of Hilbert A-B-bimodules for a fixed C∗-algebra
A and a varying C∗-algebra B. We prove that C is axiomatizable by constructing an equivalence
of categories between the classes C and ModL(T ) for some continuous theory T . Explicitly, we
want to determine a theory T (in an appropriate language L) such that the following hold:

• For every A ∈ C there is a model M of T determined up to isomorphism.

• For every model M of T there is some A ∈ C such that M∼=M(A).

• For any A,B ∈ C , we can find a bijection between Hom(A,B) and Hom(M(A),M(B))
(where Hom(X,Y ) denotes the class of morphisms f : X → Y ).

The language and axioms presented here will follow the notation given by P. Skoufranis [PS].
We fix a unital C∗-algebra A and assume all C∗-algebras B will be unital. The language LA for
Hilbert A-B modules is the following data:

1. Sorts (Hn, d
H
n ) and (Bn, d

B
n ) representing the closed balls of radius n for H and B respec-

tively along with injections ιHnm : Hn → Hm and ιBnm : Bn → Bm for each n < m1;

2. the symbols +H, +B,·B,∗B, −H, −B, 0H, 0B, and 1B for the appropriate sorts;

3. a right action

ρ : H×B→ H

for each appropriate sort;

4. a B-inner product

〈·, ·〉 : H×H → B ;

5. unary functions representing the action of each element of A on H, denoted by µa : H → H
for each a ∈ A;

6. unary functions representing scalar multiplication of each element of C on B, denoted by
λz : B→ B for each z ∈ C; and

7. unary functions representing scalar multiplication of each element of C on H, denoted by
λz : H → H for each z ∈ C.

The axioms are then as follows. We use the shorthand a = b to mean d(a, b) = 0 and suppress
‘= 0’ at the end of LA-conditions as appropriate.

1. The C∗-algebra axioms for B [axioms 1 - 10 of [FHS13]];

2. the axioms of a C-vector space for H [axiom 1 of [FHS13]];

3. the axioms stating that the injections ιnm behave as embeddings;

1We take the shorthand f : S̄ → S to mean that dom(f) = S̄ and ran(f) = S.
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4. the axioms setting ρ as the appropriate right ring action on H, i.e.,

i supx∈H supa,b∈B ρ(x, a+ b) = ρ(x, a) + ρ(x, b),

ii supx,y∈H supa∈B ρ(x+ y, a) = ρ(x, a) + ρ(y, a),

iii supx∈H supa,b∈B ρ(x, ab) = ρ(ρ(x, a), b), and

iv ρ(x, 1) = x;

5. the axioms defining 〈·, ·〉 as a B inner product 2, that is:

i supx,y,z∈H supa∈B〈x, ya+ z〉 = 〈x, y〉a+ 〈x, z〉,
ii supx,y∈H〈x, y〉 = 〈y, x〉∗,
iii supx∈H infa∈B〈x, x〉 = y∗y, and

iv supx,y∈H〈x, λzy〉 = z〈x, y〉 for every z ∈ C;

6. the axiom making sure the metric dH is indeed the norm, i.e.,

sup
x∈H

dH(x, y)2 = ||〈x− y, x− y〉||B ;

where || · ||B := dB(·, 0)

7. the axioms for the left action µa on H, i.e.,

i supx∈H µaµbx = µabx,

ii supx∈H µzax = λzµax,

iii supx∈H µax+ µbx = µa+bx,

iv supx,y∈H µa(x+ y) = µax+ µay,

v supx∈H µ1x = x, and

vi supx,y∈H〈x, µay〉 = 〈µa∗x, y〉

for all a and b in A, and z ∈ C; and finally the axioms

8. supx∈H1
||x|| .− 1 and

9. supx∈Hn
infy∈H1 min(1 .− ||x||H, dHn (x, ιH1n(y))),

where || · ||H means dH(·, 0), to make sure that the injection maps and the sorts behave
appropriately.

We set T to be the theory containing the above axioms.

Proposition 3.3. The class of Hilbert bimodules over unital C∗-algebras with fixed left action
and varying right action is axiomatized by the theory T .

2For clarity, we remove ρ from the action.
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Proof. Take C to be the class of all Hilbert A-B bimodules for A a fixed unital C∗-algebra and
B a unital C∗-algebra. The pair (H,B) denotes the underlying Hilbert space H and the right
action B for an element in C .3 We then define

M : C → Mod(T )

: (H,B) 7→


Hn = {x ∈ H : ||x||H ≤ n},
Bn = {x ∈ B : ||x||B ≤ n}, and

the symbols interpreted in the given way.

We wish to show that M is an equivalence of categories. We know that M is a well-defined map
by the way we have constructed T . As well, for any H1 := (H1,B1) and H2 := (H2,B2) in C , if

H1
σ−→ H2

is a homomorphism, then defining

M(H1)
Mσ−→M(H2) by

x ∈ XH1
n

Mσ7−→ σ(x) ∈ XH2
n

where X ∈ {H,B}, we have a bijection

Hom(H1,H2)
M−→ Hom(M(H1),M(H2)) .

Therefore, to get an equivalence of categories, it suffices to show that, given any M ∈ Mod(T ),
there is an H ∈ C such that M(H) ∼=M.

As the ιMnm are injective maps, by taking isomorphisms, we may assume that

XMn ⊆ XMm

for all n ≤ m and X ∈ {H,B}. Let us set

H :=
⋃
n<ω

HMn and

B :=
⋃
n<ω

BMn

and we take operations H and B as given by the direct limit. Define H := (H,B).

Claim. M(H) ∼=M .

To see the isomorphism holds, we define

ι :M→M(H)

: x ∈ HMn 7→ x ∈ H
b ∈ BMn 7→ b ∈ B

3If this proof was put into more detail, we should consider the tuple

(H,B, 〈·, ·〉, µ, ρ)

where µ and ρ denote the left and right actions respectively, but this would create clutter for no gain in under-
standing.
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By the construction of the direct limit, ι is an embedding. It remains to show that ι is surjective.
By the axiom

sup
x∈Hn

inf
y∈H1

min(1 .− ||x||H, dHn (x, ιH1n(y))) ,

we have that, for all n ∈ N,

HMn = {x ∈ H : ||x||H ≤ n}

and, by the fact that we have the C∗-algebra axioms, we know

BMn = {x ∈ B : ||x||B ≤ n} .

This tells us that

ι : M(H)
∼=−→M .

Therefore, we have that M is an equivalence of categories.

4 Quantifier elimination for C∗-algebras

4.1 The theory of C(2N)

Definition 4.1. Let L be a language and T be an L-theory. An L-formula ϕ(x1, . . . , xn) is
approximable in T by quantifier-free formulas if for every ε > 0 there is a quantifier-free L-
formula ψ(x1, . . . , xn) such that

|ϕM(a1, . . . , an)− ψM(a1, . . . , an)| ≤ ε

for every model M |= T and all n-tuples a1, . . . , an ∈M .
An L-theory T admits quantifier elimination if every L-formula is approximable in T by

quantifier-free formulas.

Recall that a space X is a Cantor space if it is homeomorphic to the Cantor set. Note that
the Cantor space (which we write as 2N) is a zero-dimensional compact Hausdorff space; also
note that it has no isolated points.

Proposition 4.1. The theory of C(2N) admits elimination of quantifiers.

Sketch of the proof. The set of projections in C(2N) is definable. Moreover, in the case of the
Cantor space any f ∈ C(2N) such that f = f∗ (i.e. any self-adjoint element of C(2N)) is
approximable by functions with finite spectrum.

This tells us C(2N) is separable with a dense set definable in the language of C∗-algebras.
If there is an isomorphism between substructures of C(2N) and any other Abelian C∗-algebra

A which satisfies same theory, then a ‘big’ subset of projections from C(2N) should be mapped
in A by the isomorphism, hence we can extend that isomorphism to an embedding.

By Proposition 13.5 in [BY] this implies that Th(C(2N)) admits quantifier elimination.

Notice that Proposition 4.1 implies that the theory of C(2N) is the only theory of a real rank
zero Abelian C∗-algebra which admits quantifier elimination.
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4.2 The theory of Peak Spaces

4.2.1 Notation and Definitions

Note: Any time the word function is used we mean a continuous function.

Definition 4.2. We say that a function f : U → [0,∞) on a compact Hausdorff space U is a
peak function provided

• sp(f) = [0, 1], and

• the set {x ∈ U : f(x) > 1− 1
5} is connected.

We say that a space U has the peaking property if C(U) has a peak function.

Example 4.1. Notice the pyramid function

pn : [−1, 1]n → [0, 1]

: t̄ 7→ min(p(t1) . . . , p(tn))

has the peaking property for

p : [−1, 1]→ [0, 1]

: t→

{
1 + t, t ≤ 0

1− t, t ≥ 0
.

We set the function

φ(x) := inf
f,g

max(‖x− (f∗f + g∗g)‖, ‖|g∗g‖ − 1|, ‖|f∗f‖ − 1|, ‖f∗fg∗g‖)

to characterize the property that a function x may be split into two orthogonal positive functions
of norm one.

4.2.2 Peak Functions Properties in C(U)

Suppose U is a compact Hausdorff space and α : U → C a peak function.
In this section we will prove φ(α)C(U) 6= 0 (where φ is as above).
Roughly speaking what we are trying to say is that α cannot be approximated by the sum

of two orthogonal positive functions.
Define the function ψ as follows

ψ(f, g, α) = max{‖f + g − α‖, |‖f‖ − 1|, |‖g‖ − 1|, ‖fg‖}

Let f, g : U → [0,∞) be positive functions of norm 1 and fix

A := {x ∈ U : α(x) > 1− 1

5
} .

We are interested in following result.

Proposition 4.2.

ψ(f, g, α) ≥ 1

10
.
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We will suppose the claim is false and prove a few claims to reach a contradiction. Following
claims in this section will suppose n = 10.

Claim. If x, y ∈ U satisfies f(x) > 1− 1
n and g(y) > 1− 1

n then x, y ∈ A.

Proof. We will prove it for x and it follows similarly for y.
We know |f(x) + g(x)− α(x)| < 1

n . Hence f(x) + g(x)− 1
n < α(x).

Since f(x) > 1− 1
n and g(x) ≥ 0, f(x) + g(x) > 1− 1

n .
Therefore 1− 2 1

n < α(x). By definition, this means x ∈ A.

Small Claim. There exists x, y ∈ U such that f(x), g(y) > 1− 1
n .

Proof. This is true since we are assuming ψ(f, g, α) < 1
n and that implies ‖f‖ > 1− 1

n ; the same
holds for g.

Proposition 4.3. If ψ(f, g, α) < 1
n then there is a z ∈ A such that f(z) = g(z).

Proof. We are still working with ψ < 1
n . Given this we know g(x)f(x) < 1

n for all x, y ∈ U . If
f(x), g(y) > 1− 1

n then

g(x)

(
1− 1

n

)
< g(x)f(x) <

1

n

g(x)− 1

n
g(x) <

1

n

g(x) < (1 + g(x))
1

n
< 3

1

n
.

This induces the following inequalities

g(x) < 3
1

n
< 1− 1

n
< g(y)

f(y) < 3
1

n
< 1− 1

n
< f(x).

As we remember, the definition of a peak function implies A is connected, then function
h = f − g satisfies h(x) > 0 > h(y). Since x, y ∈ A and A connected there is a z ∈ A such that
h(z) = 0.

Here is a contradictory result. We are still assuming 1
n = 1

10 .

Proposition 4.4. If ψ(f, g, α) < 1
n then there is no z ∈ A such that f(z) = g(z).

Proof. Suppose there is one. Then z ∈ A implies α(z) > 1− 2 1
n .

It follows directly that

2f(z) = 2g(z)

= f(z) + g(z)

> α(z)− 1

n

> 1− 2
1

n
− 1

n

= 1− 3
1

n
.
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Hence

f(z)g(z) >
(1− 3 1

n )2

4

since

ψ(f, g, α) <
1

n
implies f(z)g(z) <

1

n

and so

1

n
<

(1− 3 1
n )2

4
.

We have a contradiction and we can conclude z does not exist.

Now with enough material we come back to prove Proposition 4.2.

Proof of Proposition 4.2 . Suppose ψ(f, g, α) < 1
10 , then Propositions 4.3 and 4.4 hold but they

induce a contradiction.

Corollary 4.1.

φ(α)C(U) ≥ 1

10
> 0.

Proof. Directly from Proposition 4.2.

4.2.3 Volcano Functions C(U)

In this section we construct a new function given a peak function in C(U) and make two new
ones such that they are orthogonal.

The idea is send the ‘peak’ of the original function to 0 but preserving the spectrum and use
compactness properties of U as well. To illustrate how is this construction think as follows. If
we do this to a function in R2 → R in which its graph is a cone, the new function looks like a
volcano.

We should the normalize these functions and make them orthogonal. To do that we take the
‘maximum point where graphs intersects’ and send it to 0.

Proposition 4.5. Given α : U → C, a peak function, we construct a new function β : U → C
which satisfies

max{||β − (β1 + β2)||, |||β1|| − 1|, |||β2|| − 1|, ||β1β2||} = 0

for positive functions β1 and β2 and such that sp(β) = [0, 1].

Proof. Fix a point x0 ∈ U such that α(x0) < 1. Define

υ : U → C
: x 7→ 1− 2|α(x)− α(x0)| .

14



Consider the set {x ∈ U : α(x) = υ(x)}. This set is finite since α(x) = υ(x) = t when
t = 1− 2|t− α(x0)|. Therefore, it has a maximum θ. The value θ < 1 since the peak p is not in
{x ∈ U : α(x) = υ(x)}. Consider

β1 =
1

1− θ
(α .− θ) and

β2 =
1

1− θ
(υ .− θ) ,

where x .− y := max{x − y, 0}. We see that ||β1|| = 1 = ||β2|| since both α and υ are in [0, 1],
and attains a maximum at 1. By definition, these functions are positive. Now,

Small Claim. The product β1(x)β2(x) = 0 for all x ∈ U .

Proof of subclaim. Take any x ∈ U . Assume that β1(x)β2(x) > 0 to derive a contradiction. In
this case, we must conclude (α .− θ)(x) = α(x)− θ > 0 and (υ .− θ)(x) = υ(x)− θ > 0. Then

0 < (α(x)− θ)(υ(x)− θ = α(x)υ(x)− θ(α(x) + υ(x)) + θ2 .

Therefore, the discriminant of this quadratic in θ(x) must be negative. Hence

(α(x) + υ(x))2 − 4α(x)υ(x) < 0

α(x)2 − 2α(x)υ(x) + υ(x)2 < 0

(α(x)− υ(x))2 < 0 .

However, by α(x) > θ, α− υ 6= 0. Therefore, we have a contradiction.

We take β := β1 + β2 to get the proof of the claim.

4.2.4 Quantifier Elimination in Th(C(U))

Proposition 4.6. If U is a compact Hausdorff space with a peak function α : U → [0,∞) then
C(U) does not admit quantifier elimination.

Proof. By Corollary 4.1, φ(α)C(U) 6= 0. By proposition 4.5, there is a β : U → [0,∞) with
sp(β) = [0, 1] = sp(α) such that φ(β)C(U) = 0. Since sp(α) = sp(β), if C(U) has quantifier
elimination, then by the spectral theorem, we would get φ(α)C(U) = φ(β)C(U) – a contradiction.

With this, we have the following result:

Corollary 4.2. Let X be a compact Hausdorff space with an embedding Ψ : U → X on a compact
U with a peak function α : U → C such that Ψ(U)◦ 6= ∅ and the set Ψ({x ∈ U : α(x) > 0}) is
open. Then C(X) does not admit quantifier elimination.

Proof. It suffices to show that the function

ᾱ : X → [0,∞)

: x 7→

{
α(Ψ−1(x)), x ∈ Ψ(U)

0, x ∈ X \Ψ(U)◦

15



is a peak function. By the gluing lemma, it suffices to show that, given a point x ∈ Ψ(U)\Ψ(U)◦,
αΨ−1(x) = 0. Suppose not. Notice first that the set

V := {x ∈ U : α(x) > 0}

is open. Therefore, Ψ(V ) ⊆ Ψ(U) is an open neighbourhood of x. Therefore x ∈ Ψ(U)◦ –a
contradiction. Furthermore, [0, 1] = ran(α) = ran(ᾱ). Finally,

{x ∈ X : ᾱ(x) > 1− 1

5
} = {x ∈ X : α(Ψ−1(x)) > 1− 1

5
}

= Ψ({x ∈ U : α(x) > 1− 1

5
}) .

By the intermediate value theorem this set is connected. Therefore, by proposition 4.6, Th(C(X))
does not admit quantifier elimination.

4.2.5 Examples for spaces U without quantifier elimination

We see that since n-manifolds may embed an n-cube in the manner proposed in the proposition
that

Corollary 4.3. Given any n-manifold M , Th(C(M)) does not have quantifier elimination.

In fact, proposition 4.6 tells us

Corollary 4.4. Continuous functions on CW-complexes, simplicial complexes, and the Hawaiian
earring does not admit quantifier elimination.

4.3 Other spaces

Proposition 4.7. Let X be a compact Hausdorff space with an isolated point x0. Then Th(C(X))
does not eliminate quantifiers.

Proof. Let p := χx0
. We have the following facts:

1. (p, p, 0) and (p, 0, 0) are projections with the same spectrum on the space C(X)3.

2. Two projections on C(X)3 can add to (p, p, 0), namely (p, 0, 0) and (0, p, 0).

Therefore we can consider

φ(x1, x2, x3) = inf
a1,a2,a3,b1,b2,b3

max
k=1,2,3

{||xk − (a∗kak + b∗kbk)||,

|max{||a∗1a1||, ||a∗2a2||, ||a∗3a3||}−1|, |max{||b∗1b1||, ||b∗2b2||, ||b∗3b3||} − 1|}

If we have quantifier elimination, we expect φ(p, 0, 0) = φ(p, p, 0) by the spectral theorem. We
see φ(p, p, 0) = 0.

Claim. φ(p, 0, 0) 6= 0.

Proof. Suppose to derive a contradiction that φ(p, 0, 0) = 0. Then, for all N ∈ N, let aNk and bNk
be positive functions with aN = (aN1 , a

N
2 , a

N
3 ) and bN = (bN1 , b

N
2 , b

N
3 ) of norms

|||aN || − 1| ≤ 1

N
and

||bN || − 1| ≤ 1

N
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such that

||(aNk + bNk )− 0|| ≤ 1

N
(1)

for k = 2, 3 and

||(aN1 + bN1 )− p|| ≤ 1

N
. (2)

Notice inequality 1 tells us that

lim
N→∞

aNk = lim
N→∞

bNk = 0

for k = 2, 3. We now pick any x ∈ X \ {x0}. Then inequality 2 tells us

|aN1 (x) + bN1 (x)| ≤ 1

N

and we can conclude limN→∞ aN1 (x) = limN→∞ bN1 (x) = 0. On the point x0, we can say

|aN1 (x0) + bN1 (x0)− 1| ≤ 1

N

Hence

lim
N→∞

aN1 (x0) + bN1 (x0) = 1 . (3)

This tells us ||aN || ≤ max{1/N, aN1 (x0)}, ||bN || ≤ max{1/N, bN1 (x0)}. As ||aN || − 1| ≤ 1/N
and |||bN || − 1| ≤ 1/N , limN→∞ aN1 (x0) = limN→∞ bN1 (x0) = 1. By equation 3, this is a
contradiction.

As φ(p, p, 0) = 0, we have a contradiction by the spectral theorem.

Corollary 4.5. (Improvement to [EagVig]) Given a compact Hausdorff space X with dim(X) =
0, Th(C(X)) admits quantifier elimination if and only if X has no isolated points.

Proof. There are two cases. If X has no isolated points, then [EagVig] states that Th(C(X))
admits quantifier elimination. Otherwise, by proposition 4.7, Th(C(X)) does not admit quantifier
elimination.

Remark. Notice that when we have a unital C∗-algebra A and a := (a1, . . . , an) ∈ An, that
sp(a) =

⋃n
k=1 sp(ak).

Proposition 4.8. Given a unital Abelian C∗-algebra A, the theory Th(M2(A)) does not admit
quantifier elimination.

Proof. Consider the elements a =

([
1 0
0 0

]
, 0

)
and b =

([
1 0
0 1

]
,

[
1 0
0 1

])
in Mn(A)2.

By the previous remark, sp(a) = sp(b). Now, we consider

φ (x, y) = sup
F,G

max
i,j=1,2

{||(xFxxGx− xGxxFx)ij ||, ||(yFyyGy − yGyyFy)ij ||} .
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where x,y,F , and G are treated as 2 × 2 matrices. Interpreted in a C∗-algebra B, this asserts
that the space (x, y)B2(x, y) is Abelian. Notice that the space aM2(A)2a is Abelian since the
second component just drops M2(A) down to zero and the first component creates a projection of
M2(A) onto the first component. However, in bM2(A)2b = M2(A), since M2(A) is not Abelian,
bM2(A)2b is not Abelian. Hence φ(a)M2(A) 6= φ(b)M2(A). By the spectral theorem, this shows us
Th(M2(A)) does not have quantifier elimination.

Corollary 4.6. Given a unital Abelian C∗-algebra A, the theory Th
(⋃

n∈NMn(A)
)

does not
admit quantifier elimination.

Proof. Use φ(x, y) as in proposition 4.8. The same result still holds replacing M2(A) with⋃
n∈NMn(A).

Proposition 4.9. Let A be a unital Abelian C∗-algebra. Then the theory of Th(Mn(A)) does
not admit quantifier elimination for all n ≥ 3.

Proof. Fix n ∈ N such that n ≥ 3. Let ϕ(x) be the formula

sup
a,b∈Mn(A)

(||xaxxbx− xbx xax||).

Since n ≥ 3, we can find matrices p, q in Mn(A), where

p =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 and q =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 0

 .

Note that pMn(A)p ∼= M1(A) = A, since pMp is only non-zero on (pMp)11 for all M ∈Mn(A).
Similarly, qMn(A)q ∼= M2(A). Hence we see that ϕ(p) = 0 since pMn(A)p is an Abelian C∗-
algebra, while the non-commutativity of qMn(A)q implies ϕ(q) > 0. Thus Th(Mn(A)) cannot
have quantifier elimination.

5 Open Questions

We have classified a large number of Abelian C∗-algebras. Nevertheless, two big questions remain.

• Are there any spaces other than the Cantor space such that its continuous functions admit
quantifier elimination?

• Are there any non-abelian C∗-algebras with quantifier elimination?
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